
Cooperative Team Plan: Planning, Execution and Replanning

Olivier Bonnet-Torrès∗,† and Catherine Tessier†
∗ENSAE-Supaero and†ONERA-CERT/DCSD

2, avenue Édouard Belin 31055 Toulouse cedex 4 FRANCE
olivier.bonnet@onera.fr,catherine.tessier@onera.fr

Abstract

In the context of robot team control, this paper focuses on a
framework for designing a team plan and its projection onto
individual robotic agents. A mission plan, represented as a
coloured Petri net, is calculated through constraint optimisa-
tion from goal and time requirements. The mission plan is
then turned into a hierarchical team plan through reduction
rules that also structure the dynamic hierarchical team organ-
isation. Hence each level in the team plan corresponds to an
abstract plan at the corresponding subteam level in the team
hierarchy. Controlling an agent individually requires extract-
ing individual information, such as activities involving the
agent as well as interacting agents or subteams at each sub-
team level: the team plan is projected onto individual agents.
At runtime events may disrupt plan execution. A reaction
is executed while diagnosis triggers replanning which is per-
formed as locally as possible.

Introduction
In the agent world activity planning has been widely studied.
The increasing complexity of the jobs assigned to agents,
especially robotic agents, has led to using groups of agents.
The groups, when organised and aware of their organisation,
are called teams. The problem of team planning is consid-
ered difficult (state-space size of(2m−1)kk!

∏k

j=1
uj, with

m the number of agents,k the number of goals,uj the num-
ber of recipes for thejth goal).

The general framework is a mission specified in terms of
objectives: physical robotic agents are operated in order to
carry out the objectives and they are hierarchically organised
in a team. As outlined later on, most architectures currently
proposed either do not take advantage of the agents being
designed to operate as a team or restrict the agents to use
reactive behaviours. Replanning itself is often considered
as a separate problem. This paper aims at emphasizing the
relationship between the team plan and individual agents’
plans and formalising and integrating the replanning process
through the use of Petri nets (PN — see Appendix) (Bonnet-
Torrès & Tessier 2005a; 2005b).

In the first section the mission plan and team organisation
are derived from initial problem data. Then the plan is bro-
ken down into individual executable plans. The next section

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

details the execution of the plan and the replanning process.
Finally related works are presented.

From Mission Requirements to Mission Plan

Mission Plan Construction

Theobjectiveof the mission is decomposed into a hierarchy
of goals to be carried out. The leaves in the hierarchy are
elementary goals. Executing ataskcorresponds to satisfy-
ing an elementary goal.Recipes(Grosz & Kraus 1996) give
courses of actions for performing the tasks. Several recipes
requiring different sets of services may be available for the
same task allowing to achieve it – and performing the asso-
ciated goal — in a number of fashions.

[3,5][4,4]

p4

µ,ψ
α,κ,

α,κ,µ,ψ

2α,ε

2α,ε
p4

Figure 1: Two recipes for the same taskp4, requiring ser-
vices {2α,ǫ} and {α,κ,µ,ψ} resp. and durations 4 and 3 to 5
resp.

During mission preparation the set of recipes is defined by
the (human) mission manager. A recipe is a sub-PN consist-
ing in a single place and two transitions (see fig. 1). It speci-
fies what services are needed, how to use them and what the
predicted duration (including an allowed latency parameter)
for completion is. Recipes may be connected to each other
through transitions. The other assumptions of the model are:
(1) the elementary goals may come along with a completion
time requirement or a mutual temporal precedence specifi-
cation; (2) the (heterogeneous) agents can be regarded as
service aggregates managed by coloured Petri nets (CPNs
— see Appendix) (Jensen 1997) (see fig. 2). In the figure
each symbol is a token and its graphical type corresponds to
a colour. Each colour represents a usage constraint between
a number of services (the outer places) within the considered
agent. Typical constraints are mutual exclusions of combi-
nations of services and limitations in the number of services
concurrently used. Black tokens model the state of each ser-

δ
γ

β

α

ε

κ

**
** *

ρ

µ
ν

λ

η+2
+

*+2
+

*+2
+

4

4

*+2
+2
+2

*+2
+2
+2

*

*+3

*+3

*+2

*+2

*

+3

3

3

*

+2

*+ +2 *+ +2

*+2
+

*+2

*+3

*+2
+

*+2
+

Figure 2: An agent viewed as a collection of services.(Each
type of symbol is a colour; greek letters designate the services.)

vice (either free or in use). White tokens represent the re-
maining amount for consumable services as forκ.

Example 1 The lozenge colour (♦) represents the general
limitation of four services used at the same time;α prevents
the use of any other service andη limits the number of con-
current service use to only one. Practically lozenges rep-
resent the battery instant power consumption and serviceα
is “emit marker signal” which consists in sending a pow-
erful geographical reference signal from a fixed location.η
is “emit video stream” which heavily draws on battery cur-
rent andβ is “get video stream” which also uses the cam-
era (modelled by trianglesN) and co-processor bandwidth
(stars∗).

The triangles (N) symbolise the exclusion in accessing the
camera between the use ofβ and any ofǫ (“grab single im-
age”) andλ (“detect object”). ǫ andλ can be performed on
the same image and thus can be used at the same time.

The mission plan is a solution of a constrained optimi-
sation problem: knowing that services may have mutual ex-
clusion constraints within each agent and that several recipes
are available to perform each elementary goal, the construc-
tion process output is a partial preorder on the goals that re-
spects their constraints colocated with a dynamic agent ser-
vice allocation. Each goal is performed according to a recipe
to which some agents are attached so that both agent-internal
constraints (service exclusion) and external constraints(time
specifications and service requirements for each recipe) are
satisfied. Technically the problem is described in three parts.
The first one is the goal tree with time specifications and
some global options such as the factors to apply to the dif-
ferent terms in the optimisation function (prevalence of time,
goal achievement, or costs). The second part describes for
each elementary goal (i.e. each task) the different recipes
available and their requirements in terms of services or time.

Time specification of a task partly derives from the goals it
(totally or partly) achieves and may include a duration, a
start time interval, a stop time interval and a maximum la-
tency after finish (the next task must start before the max-
imum latency in order for the current task to have a valid
result). The last part is a list of all agents with their services
and internal constraints. The agents are described as collec-
tions of services (see fig. 2). The problem is solved thanks
to choco1, an open-source constraint optimisation and sat-
isfaction Java library.

Mission Plan and Agenticity Hierarchy

The output of the constraint solver is interpreted as the mis-
sion plan but is also a schedule: it corresponds to a detailed
sequence of tasks with dynamic service allocation. Accord-
ing to the goals some recipes are chosen to performed tasks
and the agents are allocated to the recipes as colour param-
eters. The recipe time parameters are instantiated to meet
time requirements as well as minimise completion time.
Then recipes are chained to each other by fusing transitions
in order to form the plan, which is represented as aCPN
(see fig. 4). The set of token colours is the set of elementary
agents. Each reachable markingM represents the allocation
of the agents to the corresponding tasks: a possible organi-
sation of the team is attached to the plan.

Since a group of closely interacting agents can be con-
sidered as an agent in itself (Shoham 1993), a subteam of
agents is equivalent to a composite agent. This agent bears
anagenticity hierarchy, whose leaves are elementary agents
and whose nodes are subteams,i.e. composite agents. Each
node has for children nodes the agents that compose the sub-
team it represents. There is no requirement that an individ-
ual agent be represented only once: an agent may belong
to several subteams (therefore the hierarchy is not a tree).
For instance agentx1 can use its camera for taking a coordi-
nated stereo picture of an object and at the same time send a
message to another subteam reporting the local ground ad-
herence.

More formally the teamX is composed of hierarchi-
cally organised elementary agents{x1, x2, . . . , xn}. Let
A = {a1, a2, . . . , am} be the set of agents inX . The agen-
ticity of agentai with regards to any subteamaj , ai ⊂ aj

(includingX) is its depth in the hierarchyHaj
whose root

is the considered subteam (see fig. 3).

agent

agent

= degree of
the team

= max (agenticity)
team

= degree of
the subteam

= max (agenticity)
subteam

0

1

2

3

0

1

2

agenticity composite

team

agentagent

agentagent

agentagent

subteam

subsubteam

agenticity

subteam
wrt the

elementary

Figure 3: Hierarchy of agenticity

1http://choco.sourceforge.net

b gd b c e f
g

team

ea b c d f g

a

d g

team

A B

b c e f
g

AA’ AB’

team

A B

c e f
g

BA

team

AA AB

AABAAA

● ●
●

●

b

a d g

ba g a gb

b

team

ea b c d f g

a g

p2

p1

p11

p14

p12

p10p9

p4 p6

p7

p13

p3

p5 p8a

p8b

Figure 4: Mission plan with some agenticity hierarchies derived from the initial allocation

As the marking evolves during plan execution, the organ-
isation of the team changes letting the agenticity hierarchy
be dynamic. Since it reflects the interactions between agents
and subteams, the agenticity hierarchy provides a means to
monitor and diagnose team activity and henceforth a hint for
determining the parts of the plan to be repaired.

Petri net analysis can be performed through the use of the
incidence matrixA (Murata 1989).A represents the rela-
tions between places and transitions, namely the arcs. The
arcs provide a visual verification that no agent can leave a
subteam if it has not been planned.

Figure 5: The mission plan in Pipe.The lighter place (p14)
corresponds to atransfer

Due to the nature of planning with scheduling the plan is
actually represented as a coloured Petri net including time
(see Appendix) and implemented with a modified version of
Pipe (Bloomet al. 2003), an open-source Petri net design,

animation and analysis tool2. An example of mission plan is
provided in figure 5.

From Mission Plan to Individual Plans
Planning is not an end in itself. The ultimate goal is to ex-
ecute a mission on physical robotic entities. Hence each of
these robots needs to have a valid executable plan. There-
fore the mission plan has to be adapted to the individuals.
The idea is then to project the team plan onto individual
agents. Indeed the mission plan bears some typical struc-
tures that can be identified as modifications of the team or-
ganisation, which give hints for turning the plan into a hier-
archy of tasks. The hierarchical plan will help monitoring
team activity at any level of details and will show the activ-
ity and team breakdowns: indeed diagnosis and repair will
be confined in and only in the failing parts of the plan, which
is worth considering when physical robots are spread out on
the field.

Reduction
Representing a team plan as a hierarchical Petri net (HPN)
allows for more flexibility thanCPN and helps incorporat-
ing team-related hierarchical information. The net is there-
fore adapted so as to represent the activities at each level
of agenticity. To represent the hierarchical information we
extend the ordinary Petri net reduction rules according to
the semantics of basic team management structures (Bonnet-
Torrès & Tessier 2005b), namelyarrival or withdrawal of
an agent, createor merge two subteams, transfer agents be-
tween subteamsand choose a possible course of actions.
Within the plan these structures combine so as to form some
activity patterns as shown on figure 6. For instance split-
ting a team and merging its subteams again corresponds to
theparallel activitiespattern (fig. 6.c). Each pattern is asso-
ciated a specific reduction rule that isolates it in a separate

2http://pipe.sourceforge.net, an offspring of
which stands athttp://pipe2.sourceforge.net

p4 p5● ●

p2*
~p313

●

●

AAA

p8a

p8b

p9

p45

mission

●

●

●
●

●

0

agenticity

1

2

3

4

agenticity 0 1 2 3

pm

p14

p1

p2313

●
●

AAB

p7

p13

p3

p8

p2

p3

~

p13

p78

p*

a gb

b c e f
g

BA

team

AA AB

p6

p11

p10

p12

p459

a d g

ba g

Figure 7: A hierarchical team plan with agenticity hierarchy tokens

km
tk1

t

1n

j1

pt

pk1 pk2

t

...

...

...(b)

(a)

(c)

(f)(e)(d)

nt m

1l
p lp

m

ip

pj

t

i

tk

t l

pjp

pi
pj

tk

t l

p

...

pi2

t j2

pi1
1

i1 pik

...

pik

pi

Figure 6: Some activity patterns: (a) arrival, (b) with-
drawal, (c) parallel activities, (d) sequential activities, (e)
agent transfer, (f) choice

Petri net and abbreviates it as a single place using modu-
lar Petri net fusion sets. The reduction rules are iteratively
applied until the net is reduced to a single place (Bonnet-
Torrès & Tessier 2005a). The algorithm is then traced back
so that each reduction place is hierarchically unfolded. The
resulting plan then consists in aHPN whose levels corre-
spond to the levels of agenticity in the agent team (see fig. 7).
Each place develops into a subnet of higher agenticity whose
places hold the agent(s) performing the activity correspond-
ing to the marking. Hence each reachable markingM cor-
responds to an agenticity hierarchyHX(M) of the whole
teamX . The Petri net in figure 4 in fact corresponds to the
detailed global planbuilt from the leaf-places of the hierar-
chical team plan of figure 7. The leaf-places are the places

Figure 8: The hierarchical team plan in Pipe

that are not expanded in the hierarchical plan and thus cor-
respond the different tasks.

The hierarchical team plan in figure 7 is calculated from
the net in figure 5 by applying the reduction module that
we have implemented in Pipe. It results in a set of sub-
nets linked by fusion sets that represent the hierarchical team
plan (see fig. 8). The name of reduced places follows an un-
ambiguous algebraic semantics that reflects the sequence of
reductions applied.

Projection
The hierarchical structure of the team plan allows the agents’
individual plans to be derived. In the mission plan (see
fig. 4), the plan of agentai consists of the sequence of places
whereai appears and all levels above. The corresponding
activities all involveai or its ancestors in the different agen-

0

ABAA

team

A B

gda

p12

p6

agenticity

210agenticity

●

●

●

●
●

3

2

1

p1

p14

mission

*

p2

Figure 9: Projection of the team plan on agentd
Figure 10: Execution control PN displayed

in ProCoSA

ticity hierarchies. The projection of the team plan on agent
ai consists in isolating the places of the corresponding level
of agenticity in whichai is involved and extracting the hier-
archies of places and of agenticity.

Example 2 Figure 9 shows the agent plan for the elemen-
tary agentd. At each level the hierarchical team plan Petri
net has been pruned so that the remaining places involved
or its ancestors. One can notice that the same operation
can be performed locally for agentAA. Locality is a con-
sequence of the fugacity ofAA due to its being a composite
agent. Modifying the team organisation according to the
activity creates local cooperation groups. For instance in
marking {p4, p5, p6}, a, b and g are collaborating forp4

andp5 in resp.AAA andAAB, whereasb is not individu-
ally involved withAB: AAA andAAB interface withAB
is AA andAB does not need to know the specifics of the
activity of each individual agent.

Plan Execution
A General Overview
Another Petri net models execution control (see fig. 10). The
controller is the same for all agents at any level of agenticity
including the team itself: an abstract instance of the con-
troller is considered during mission design and monitoring
and is distributed on the team at mission start-up. The con-
troller is designed and executed with ProCoSA3. ProCoSA is

3Programmation et Contrôle des Systèmes Autonomes (Au-
tonomous System Programming and Command), developed at
Onera-DCSD.

a Petri net design, analysis and real-time execution environ-
ment running a simplified LISP interpreter. It deals with safe
Petri nets (PNs with at most one token per place) or coloured
Petri nets. It takes into account external events as transition
triggering pre-requisites and can launch the execution of any
compiled computational module.

Before the mission begins an initial planning phase (first
place in the PN on figure 10) is performed: the plan is pre-
pared out of the set of recipes, then reduced and projected
onto individual agents, as mentioned in the previous sec-
tions. Then the plan is executed. At the occurrence of a
disruptive event a replanning step is triggered. At that time
a reaction is performed (e.g. an immediate stop for a ground
robot) while the system goes under diagnosis. When the
failure is located the plan is repaired as locally as possible.
Once the new plan is elaborated an adjusting step is required
to ensure a smooth switch between the reaction and normal
execution of the new plan. Details are given in the next two
sections.

Event Detection, Reaction and Diagnosis
During plan execution a disruptive event may be detected.
Events can be categorised as follows:

Predicted events: they are usually predicted from mission
preparation as highly probable events in specific situa-
tions. They may model the indeterminate outcome of an
uncertain action. They are taken care of thanks to alter-
nate branches in the team plan —cf. choice structure.

Identified events: they are identified during mission prepa-
ration but are likely to happen at any time. They may

model either mission-critical or highly probable unwanted
events. At mission preparation a ready-to-instantiate al-
ternative plan is computed for each of these events.

Unidentified events: they are not distinguishable and are
usually diagnosed through time-out. They trigger a
generic reaction defined at mission preparation.

For the last two categories a diagnosis step is triggered at the
same time as the reaction plan is instantiated and executed.
Diagnosis determines which agent(s) is(are) in trouble and
which task(s) is(are) impacted, what the current locationsof
the agents are,etc., according to the features of the situation.
Example 3 Let us consider a team of robots on an explo-
ration mission. In the plan on figure 4, (case 1) agentd
diagnoses a payload failure affecting the use of the IR cam-
era it is using for completing taskp6. The reaction of the
robot is to stop while replanning. At another time, letp7 be
a precision line-in wheree is to check the alignment. Sup-
pose (case 2) agente is late and misses the time window for
transitionp7→p13which is externally detected by agentg.
The reaction plan consists in all robots in subteamB halting
the activity corresponding top7 but carrying on their other
tasks. At that point there is no guaranteee performed task
p7 at all.

Replanning
Replanning is triggered for unidentified events. The event
results in some new constraints on the remaining recipes.
The plan is repaired by applying the planning process lo-
cally. Indeed a subset of the initial problem is input to the
choco constraint solver. Locality is ensured in trying to
solve the problem at the lowest possible level in the agentic-
ity hierarchy. The plan repair consists in replacing the fail-
ing recipe by another recipe or subset of recipes that realise
the same goal. The subsequent activities may be modified
so as to respect the constraints. If this fails it is necessary to
involve other parts of the initial plan in ascending the agen-
ticity hierarchy. One can notice that, as far as some sub-
teams are concerned, there exists a discontinuity between
the already-executed part of the plan and the new plan at the
repaired level, but not at the above levels in the hierarchy.
Example 4 (case 1) agentd tries to use its EO camera in-
stead of IR vision, since it is another recipe for the same task
of taking a picture. However this other recipe accounts for a
lesser reward than the original one because of lower image
constrast. (case 2) agentB broadcasts to all agents a request
for precision theodolite. Answers are treated on a first-come
first-serve basis. If no agent can takee’s place agentB re-
placesp7 with p47 that has a higher cost in energy and
lasts longer. The subsequent tasks are not impacted because
of high latencies.

When the repaired plan is constituted the current state of
the team may not correspond to the initial state of the re-
paired plan. An adjustment is then necessary. Two possi-
bilities have been identified: either the beginning of the new
plan is appended a dispatch phase that will be suited to the
expected end point of the reaction, or the reaction is inter-
rupted and the dispatch is organised from that point. In both
cases the transition to standard mission execution is smooth.

Example 5 (case 1) agentd resumes its task and moves to
the next task with a reduced latency. (case 2) all robots inB,
except fore who may not be operational any more, have to
get back to their working locations and start the new recipe
from where the failing one stopped.

Related Work
Replanning is a particular type of planning. In our model ob-
jective decomposition is close to that inHTN (Erol, Hendler,
& Nau 1994). In the wake ofHTN, Groszet al. (Grosz
& Kraus 1996) base theSharedPlanapproach on the hier-
archical decomposition of shared plans into a sequence of
recipes to be applied by a team of agents. Their work also
inherits from the logics of beliefs and intentions (Cohen &
Levesque 1990). Tambeet al. (Tambe 1997) have focused in
STEAM on reactive team behaviour based on rules. Kaminka
has pursued the previous work and proposes BITE (Kaminka
& Frenkel 2005), a behaviour-based architecture extending
Tambe’s TEAMCORE. It consists of three components: a
team (or organisation) hierarchy, a hierarchically and se-
quentially decomposed behaviour graph and a set of interac-
tion protocols (described with Petri nets) for behaviour tran-
sitions. One of the characteristics of the approach compared
to ours is that an agent may only have one behaviour and
thus only appears in one branch of the organisation.

A sustained interest in handling durations and time win-
dows also exists in planning (Fox & Long 2005; Gerevini,
Saetti, & Serina 2005). Our approach is to use constraint
programming to treat both time and service allocation. The
current setup makes use of a centralised solver that will al-
low easier assessment of replanning quality. Yet this choice,
which is linked to our goal to assess the relevance of local vs.
from-scratch replanning, may be changed for a more elabo-
rate algorithm, such as OptAPO (Mailler & Lesser 2004) or
Adopt (Modiet al. 2005). Their semi-centralised distributed
nature is actually well adapted to our problem (sparse con-
straints, distribution, fast approximate). However such open
issues asn-ary constraints also prevent a fast use of both
OptAPO and Adopt. Cox and Durfee, while using Adopt
as a distributed solver (Cox, Durfee, & Bartold 2005), focus
on coordination (Cox & Durfee 2005), with limited com-
mon goals and individual planninga posterioriadapted to
the multiagent setting. In that sense coordination is differ-
ent from team work where all agents have knowledge of a
common objective.

Van der Krogt (van der Krogt & de Weerdt 2004) identi-
fies two effects in the repair process: removing actions from
the plan and adding actions. However the approach also con-
siders multiagent (re)planning from a coordination point of
view (van der Krogt & de Weerdt 2005). This character-
istic stems from the privacy requirement. The diagnosis in
(Witteveenet al. 2005) is performed on the values of spe-
cific variables in the plan. Though the idea allows predic-
tion of failures and propagation of effects, its limit stands in
the number of monitored variables that might not capture all
failure conditions. On the contrary, our approach does not
depend on variable monitoring – thus cannot provide pre-
diction — and deals with events as they occur by cancelling
the affected task(s).

Task allocation often uses constraint solving (Baptiste,
Le Pape, & Nuijten 2001). Scerri’s approach (Scerriet al.
2005) presupposes that all agents can perform all tasks and
that an agent is assigned to a unique task thus forbidding
collaborative work. The idea of information tokens being
passed around is also developed in (Xuet al. 2005). In this
work the agents are organised in an acquaintance network
that in the end does not take avantage of tighter or looser
coupling due to joint task performance. In our approach the
agenticity hierarchy provides an acquaintance network with
degrees of acquaintance: agents may know each other well
(meaning they directly interact) or more vaguely (meaning
they only interact through the hierarchy). The hierarchy of
tasks takes advantage of tight coupling between tasks within
a single structure but also describes looser coupling be-
tween structures in two different branches of the hierarchy.
Plan representation itself tends to make use of the automata
theory (El Fallah-Seghrouchni, Degirmenciyan-Cartault,&
Marc 2004) and the Petri net formalism (Chanthery, Barbier,
& Farges 2004).

Experiments & Conclusion

In the context of teams of robots, the approach described
in this paper aims at dynamically responding to disruptive
events, such as a failure or an external action, at a relevant
level. The extensive use of Petri nets is due to the com-
pleteness of the formalism (with clear semantics and exten-
sions for time or net coupling) as well as the possiblity to
both visually and computationally verify the soundness of
the plans. Current works concern the reallocation problem
in the repair. An identified difficulty is to avoid global repair
that involves the whole team: the repair must be attempted
at the lowest agenticity level (recipe level) so as to ensure
its locality; if unsuccessful the next level is considered.An
assessment of the pertinence of local replanning is under in-
vestigation by comparing runtime and quality of local re-
planning and replanning from scratch. The midterm objec-
tive is the completion of EΛAIA, a Petri net-based decision
architecture for local replanning within the team.

The evaluation will consist in measuring time used for re-
planning when an obstacle or failure event prevents the mis-
sion to be carried out. The comparison is made on local re-
planning against replanning from scratch. Experiments are
currently in progress in order to run the architecture and val-
idate the principles of local replanning with a team ofPeKee
robots at Supaero. The mission consists in two UAVs and
two UGVs getting at some points through different ways to
take a stereo picture and then reaching together a final way-
point. Obstacles may block some routes. The envisioned ap-
plications concern the implementation of cooperative robots
for missions ranging from search and rescue operations to
military UAV /robot team operation.

Acknowledgements

The authors wish to thank W. Knottenbelt (Imperial College,
London, UK) and J. Bloom (Sapient, London, UK) for per-
mission to use the name and part of their tool.

References
Baptiste, P.; Le Pape, C.; and Nuijten, W. 2001.
Constraint-based scheduling: applying constraint pro-
gramming to scheduling problems. Boston, MA: Kluwer
Academic.
Bloom, J.; Clark, C.; Clifford, C.; Duncan, A.; Khan, H.;
and Papantoniou, M. 2003. Platform Independent Petri-net
Editor – final report. Technical report, Imperial College,
London, UK.Under the supervision of W. Knottenbelt.
Bonnet-Torrès, O., and Tessier, C. 2005a. From multiagent
plan to individual agent plans. InICAPS’05 Workshop on
Multiagent Planning and Scheduling.
Bonnet-Torrès, O., and Tessier, C. 2005b. From team plan
to individual plans: a Petri net-based approach. InAA-
MAS’05, 797–804.
Chanthery, E.; Barbier, M.; and Farges, J.-L. 2004. Inte-
gration of mission planning and flight scheduling for un-
manned aerial vehicles. InECAI’04 - Workshop on Plan-
ning and Scheduling: Bridging Theory to Practice.
Christensen, S., and Petrucci, L. 1992. Towards a modular
analysis of coloured Petri nets. InATPN’92, 113–133.
Cohen, P., and Levesque, H. 1990. Intention is choice with
commitment.Artificial Intelligence42:213–261.
Cox, J., and Durfee, E. 2005. An efficient algorithm for
multiagent plan coordination. InAAMAS’05, 828–835.
Cox, J.; Durfee, E.; and Bartold, T. 2005. A distributed
framework for solving the multiagent plan coordination
problem. InAAMAS’05, 821–827.
David, R., and Alla, H. 2005.Discrete, continuous and
hybrid Petri nets. Springer-Verlag.
El Fallah-Seghrouchni, A.; Degirmenciyan-Cartault, I.;
and Marc, F. 2004. Modelling, control and validation of
multi-agent plans in dynamic context. InAAMAS’04, 44–
51.
Erol, K.; Hendler, J.; and Nau, D. 1994. HTN planning:
complexity and expressivity. InAAAI’94, 1123–1128.
Fox, M., and Long, D. 2005. Time in planning. In Fisher,
M.; Gabbay, D.; and Vila, L., eds.,Handbook of tempo-
ral reasoning in Artificial Intelligence. Amsterdam, The
Netherlands: Elsevier. 497–536.
Gerevini, A.; Saetti, A.; and Serina, I. 2005. Integrating
planning and temporal reasoning for domains with dura-
tions and time windows. InIJCAI’05, 1226–1231.
Grosz, B., and Kraus, S. 1996. Collaborative plans for
complex group action.Artificial Intelligence86(2):269–
357.
Jensen, K. 1997.Coloured Petri nets. Basic concepts,
analysis methods and practical use. MTCS. Springer.
Kaminka, G., and Frenkel, I. 2005. Flexible teamwork in
behavior-based robots. InAAAI’05 (NCAI’05), 108–113.
Lakos, C. 1995. From coloured Petri nets to object Petri
nets. InATPN’95, 278–297.
Mailler, R., and Lesser, V. 2004. Solving distributed con-
straint optimization problems using cooperative mediation.
In AAMAS’04, 438–445.

Merlin, P., and Farber, D. 1976. Recoverability of com-
munication protocols: implications of a theoretical study.
In IEEE trans. on Communications, volume 24-9, 1036–
1043.
Modi, P.; Shen, W.-M.; Tambe, M.; and Yokoo, M. 2005.
Adopt: asynchronous distributed constraint optimization
with quality guarantees. Artificial Intelligence 161(1-
2):149–180.
Murata, T. 1989. Petri nets: properties, analysis and appli-
cations. InProc. of the IEEE, volume 77-4, 541–580.
Ramchandani, C. 1973.Analysis of asynchronous concur-
rent systems by timed Petri nets. Ph.D. Dissertation, MIT,
Cambridge, MA.
Scerri, P.; Farinelli, A.; Okamoto, S.; and Tambe, M. 2005.
Allocating tasks in extreme teams. InAAMAS’05, 727–
734.
Shoham, Y. 1993. Agent-oriented programming.Artificial
Intelligence60:51–92.
Tambe, M. 1997. Towards flexible teamwork.Journal of
Artificial Intelligence Research7:83–124.
van der Krogt, R., and de Weerdt, M. 2004. The two faces
of plan repair. InProc. of the 16th Belg.-Neth. Conf. on
Art. Int., 147–154.
van der Krogt, R., and de Weerdt, M. 2005. Self-interested
planning agents using plan repair. InICAPS’05 workshop
on Multiagent Planning & scheduling, 36–44.
Witteveen, C.; Roos, N.; van der Krogt, R.; and de Weerdt,
M. 2005. Diagnosis of single and multi-agent plans. In
AAMAS’05, 805–812.
Xu, Y.; Scerri, P.; Yu, B.; Okamoto, S.; Lewis, M.; and
Sycara, K. 2005. An integrated token-based algorithm for
scalable coordination. InAAMAS’05, 407–414.

Appendix
A Petri Net Reminder

A Petri net< P, T, F,B > is a bipartite graph with two
types of nodes:P = {p1, ..., pi, ..., pm} is a finite set
of places;T = {t1, ..., tj , ..., tn} is a finite set of transi-
tions (fig. 11(a)) (Murata 1989; David & Alla 2005). Arcs
are directed and represent the forward incidence function
F : P × T → N and the backward incidence function
B : P × T → N respectively. Aninterpreted Petri netis
such that conditions and events are associated with places
and transitions respectively (fig. 11(b)). When the condi-
tions corresponding to some places are satisfied, tokens are
assigned to those places and the net is said to be marked.
The evolution of tokens within the net follows transition fir-
ing rules. Petri nets allow sequencing, parallelism and syn-
chronization to be easily represented.

Several extensions have been proposed to model more
complex systems. Acoloured Petri net(Jensen 1997) is a
Petri net whose tokens are assigned simple or complex (vec-
tor) colours. Conditions on colours, called guards, may be
imposed for firing a transition. A place may accept tokens if
their colours are included in the local set of allowed colours.
Colour functions may additionally be allocated to the arcs.

t1

p1

t3

2t

p
2

p
3

p
0

(a) Ordinary PN

!message

buffer full

?message

buffer empty

(b) Interpreted PN modelling a
one-stage communication buffer

Figure 11: Petri net examples

They modify the colour of the token while it is “transferred”
through the arc. The use of colours simplifies otherwise
large and sometimes redundant Petri nets. Coloured Petri
nets are also used for describing type-dependent behaviours.
For instance a flexible manufacturing system may be mod-
elled with a coloured Petri net where places represent the
shops and coloured tokens the different types of parts.

Time in Petri nets has been dealt with in two differ-
ent ways. One — timed Petri nets — has considered that
time parameters are limited to specific dates (Ramchandani
1973). The other — time Petri nets — promotes the use
of intervals (Merlin & Farber 1976). For both models two
(dual) versions exist, time parameters being placed eitheron
transitions (t-time(d)) or on places (p-time(d)). Conditions
and external events may also respectively guard or trigger
transitions.

Another extension is the possibility to link several places
or transitions in different Petri nets. For instance the execu-
tion of a plan is conditioned by the availability of the ser-
vices in the agents. Therefore the agent service Petri nets
are linked to the plan by using place or transition fusion sets
in modular Petri nets (MPN) (Christensen & Petrucci 1992).

For more details on these extensions, refer to (David &
Alla 2005; Lakos 1995).

