Exploiting L ocality of Interaction in Networ ked Distributed POMDPs

Yoonheui Kim*, Ranjit NairT, Pradeep Varakantham*, Milind Tambe*, Makoto Yokoo®
*Computer Science Department,University of Southern @alif, CA 90089, USAyoonheuk,varakant,tamb@usc.edu
TAutomation and Control Solutions, Honeywell Laboratordl 55418, USA, ranjit.nair@honeywell.com
8Department of Intelligent Systems, Kyushu University, &oka 812-8581, Japan,yokoo@is.kyushu-u.ac.jp

Abstract

In many real-world multiagent applications such as dis-
tributed sensor nets, a network of agents is formed based
on each agent’s limited interactions with a small number
of neighbors. While distributed POMDPs capture the
real-world uncertainty in multiagent domains, they fail
to exploit such locality of interaction. Distributed con-
straint optimization (DCOP) captures the locality of in-
teraction but fails to capture planning under uncertainty.
In previous work, we presented a model synthesized
from distributed POMDPs and DCOPs, called Net-
worked Distributed POMDPs (ND-POMDPs). Also,
we presented LID-JESP (locally interacting distributed
joint equilibrium-based search for policies: a distritzlite
policy generation algorithm based on DBA (distributed
breakout algorithm). In this paper, we present a sto-
chastic variation of the LID-JESP that is based on DSA
(distributed stochastic algorithm) that allows neighbor-
ing agents to change their policies in the same cycle.
Through detailed experiments, we show how this can
result in speedups without a large difference in solution
quality. We also introduce a technique caltggber-link-
based decompositichat allows us to exploit locality of
interaction further, resulting in faster run times for both
LID-JESP and its stochastic variant without any loss in
solution quality.

I ntroduction

Distributed Partially Observable Markov Decision Probéem
(Distributed POMDPSs) are emerging as an important ap-
proach for multiagent teamwork. These models enable mod-
eling more realistically the problems of a team’s coordidat
action under uncertainty. Unfortunately, as shown by Bern-
steinet al. (2000), the problem of finding the optimal joint
policy for a general distributed POMDP is NEXP-Complete.

relied on a centralized planner that computes the policies f
all the agents in an off-line manner.

Nair et al. (2005) presented third complementary ap-
proach called Networked Distributed POMDPs (ND-
POMDPs), that is motivated by domains such as distrib-
uted sensor nets (Lesser, Ortiz, & Tambe 2003), distrib-
uted UAV teams and distributed satellites, where an agent
team must coordinate under uncertainty, but agents have
strong locality in their interactions. For example, wittdn
large distributed sensor net, small subsets of sensorsgent
must coordinate to track targets. To exploit such localrinte
actions, ND-POMDPs combine the planning under uncer-
tainty of POMDPs with the local agent interactions of dis-
tributed constraint optimization (DCOP) (Mol al. 2003;
Yokoo & Hirayama 1996). DCOPs have successfully ex-
ploited limited agent interactions in multiagent systems,
with over a decade of algorithm development. Distributed
POMDPs benefit by building upon such algorithms that en-
able distributed planning, and provide algorithmic guaran
tees. DCOPs benefit by enabling (distributed) planning un-
der uncertainty — a key DCOP deficiency in practical appli-
cations such as sensor nets (Lesser, Ortiz, & Tambe 2003).
In that work, we introduced the LID-JESP algorithm that
combines the JESP algorithm of Nai al. (2003) and the
DBA (Yokoo & Hirayama 1996) DCOP algorithm. LID-
JESP thus combines the dynamic programming of JESP
with the innovation that it uses off-line distributed pglic
generation instead of JESP’s centralized policy generatio

This paper makes two novel contributions to the previous
work on Networked POMDPs. First, we present a stochastic
variation of the LID-JESP that is based on DSA (distributed
stochastic algorithm) (Zhargt al. 2003) that allows neigh-
boring agents to change their policies in the same cycle.

Researchers have attempted two different approaches to ad-Through detailed experiments, we show how this can result

dress this complexity. First, they have focused on algorith
that sacrifice global optimality and instead focus on logal o
timality (Nair et al. 2003; Peshkirt al. 2000). Second, they
have focused on restricted types of domains, e.g. withitrans
tion independence or collective observability (Bec&eal.

in speedups without a large difference in solution quality.

Second, we introduce a technique calgger-link-based
decomposition(HLD) that decomposes each agent’s lo-
cal optimization problem into loosely-coupled optimizati

2004). While these approaches have led to useful advances,problems for each hyper-link. This allows us to exploit lo-

the complexity of the distributed POMDP problem has lim-
ited most experiments to a central policy generator plagnin
for just two agents. Further, these previous approaches hav

cality of interaction further resulting in faster run timies
both LID-JESP and its stochastic variant without any loss in
solution quality.

N, Locl-1 Loc2-1 Pr(s|s,su,a) and the unaffectable transition function is de-
WBZE‘ — Zgi S Egi fined asPy(sy,s,) = Pr(s,|su). Beckeret al. (2004) also
relied on transition independence, and Goldman and Zil-

‘ berstein (2004) introduced the possibility of uncontrioléa
Zgi Loc1:3 Egi state features. In both works, the authors assumed that the
T state iscollectively observablean assumption that does not
hold for our domains of interest.

Q = x1<i<nQ;i is the set of joint observations whefg
is the set of observations for agent$Ve make an assump-
tion of observational independengdee., we define the joint
observation function a€(s,a, w)= [11<j<Oi (S, Su, &, w),

. . wheres=(s1,...,S, %), a=(a1,...,an), W= (W, ...,Wn),
Illustrative Domain andO; (s, 5, a. W) = Pro|s, . a).

We describe an illustrative problem within the distributed ~ The reward function,R, is defined asR(s,a) =
sensor net domain, motivated by the real-world challenge ¥R (S1,.-.,Sk, S, (&1,...,aKk)), where each could re-

in (Lesser, Ortiz, & Tambe 2008)Here, each sensor node fer to any sub-group of agents ahd= |lI|. In the sen-
can scan in one of four directions — North, South, East or Sor grid example, the reward function is expressed as the
West (see Figure 1). To track a target and obtain associatedsum of rewards between sensor agents that have overlap-
reward, two sensors with overlapping scanning areas must ping areas K = 2) and the reward functions for an in-
coordinate by scanning the same area simultaneously. We dividual agent's cost for sensind & 1). Based on the
assume that there are two independent targets and that eactieward function, we construct anteraction hypergraph
target's movement is uncertain and unaffected by the sen- where a hyper-link], exists between a subset of agents
sor agents. Based on the area it is scanning, each sensor refor all R that compriseR. Interaction hypergraphs de-
ceives observations that can have false positives and falsefined asG = (Ag,E), where the agentsig, are the ver-
negatives. Each agent incurs a cost for scanning whether thetices andE = {I|| € AgA R is a component oR} are the
target is present or not, but no cost if it turns off. edges Neighborhoodof i is defined adN; = {j € Ag|j #

As seen in this domain, each sensor interacts with only a iA (3 €E, i €I Aj e} Sy = xjenS; refers to the states
limited number of neighboring sensors. For instance, sen- Of i's neighborhood. Similarly we defindy, = xjenAj,
sors 1 and 3's scanning areas do not overlap, and cannot@n = X jen Qj, Py (SnianisSy) = Mjen Pi(sj, a,5)), and
affect each other except indirectly via sensor 2. The sen- O (sSy,an,, W) = [jen Oj(Sj, @), wj).
sors’ observations and transitions are independent of each b, the distribution over the initial state, is defined as
other’s actions. Existing distributed POMDP algorithms ar b(s) = by(su) - [T1<i<nbi(s) whereby, andb; refer to the dis-
unlikely to work well for such a domain because they are tributions over initial unaffectable state aiigl initial state,
not geared to exploit locality of interaction. Thus, thefiwi respectively. We definby, = [jen bj(Sj). We assume that
have to consider all possible action choices of even non- b is available to all agents (although it is possible to re-
interacting agents in trying to solve the distributed POMDP fine our model to make available to agémtnly by, bj and

Figure 1: Sensor net scenario: If present, targetl is in Locl
1, Locl-2 or Locl-3, and target? is in Loc2-1 or Loc2-2.

Distributed constraint satisfaction and distributed ¢aaist bn). The goal in ND-POMDP is to compute joint policy
optimization (DCOP) have been applied to sensor nets but = (rmy, ...,) that maximizes the team’s expected reward
they cannot capture the uncertainty in the domain. over a finite horizon starting fromb. 15 refers to the in-
dividual policy of agent and is a mapping from the set of
ND-POMDPs observation histories afto A;. Ty, andTy refer to the joint
] policies of the agents iN; and hyper-lind respectively.
We define an ND-POMDP for a groufg of n agents as a ND-POMDP can be thought of as arary DCOP where
tuple (S A P.Q,O,Rb), whereS= x1<j<nS x S isthe set the variable at each node is an individual agent's policg Th
of world statesS refers to the set of local states of agent yeard componer® where|l| = 1 can be thought of as a

i and§, is the set of unaffectable states. Unaffectable state 5.5/ constraint while the reward compon&wherel > 1

refers to that part.of the world state that cannot bq affected corresponds to a non-local constraint in the constrainttgra

by the agents’ actions, e.g. environmental factors likgger |5 the next section, we push this analogy further by taking

locations that no agent can contrl= x1<i<pA is the set inspiration from the DBA algorithm (Yokoo & Hirayama

of joint actions, wheré is the set of action for agent 1996), an algorithm for distributed constraint satisfacti
We assume #&ransition independertistributed POMDP to develop an algorithm for solving ND-POMDPs.

model, where the transition function is defined as The following proposition (proved in (Nait al. 2005))

P(s,a,s) = Pu(su,8) - Mi<i<nP(S,50,8,5), where a= shows that given a factored reward function and the assump-
(a,...,an) is the joint action performed in state= tions of transitional and observational independencerghe
<Slv---g§1a3J> ands =(s;,...,s,,,)is the resulting state. gyjting value function can be factored as well into value
Agenti’s transition function is defined &(s,su, &) = functions for each of the edges in the interaction hypetgrap
For simplicity, this scenario focuses on binary interausio Proposition 1 Given transitional and ob-

However, ND-POMDP and LID-JESP allow n-ary interactions. servational independence and () =

zeEFﬁ(al,...,sk,aj, (@1,...,aK)),
Vt St |Z Vt #1’ ékaéﬁaﬁl’ o a)}k) (1)
cE

where \}(s,®) is the expected reward from the stafe s
and joint observation historgd' for executing policyt, and
Vi (S15- - S S B, - - @Yy) s the expected reward for ex-

ecutmgTu accruing from the component R
We defindocal neighborhood utilityof agent as the ex-
pected reward for executing joint poliagyaccruing due to
the hyper-links that contain ageint
= 3 by(s)-bu(su)-bi(s):
.5 Su
Ve (31,88 (s () (2)

I€E st. i€l

Proposition 2 Locality of interaction: The local neighbor-
hood utilities of agent i for joint policiem and 1 are equal

(Vr[Ni] = Vg [Ni]) if 5 = 10 and iy, = Tlf\,i.

From the above Proposition (proved in (Neiral.2005)),
we conclude that increasing the local neighborhood utility
agent cannot reduce the local neighborhood utility of agent
j if j ¢ Ni. Hence, while trying to find best policy for agent
i given its neighbors’ policies, we do not need to consider
non-neighbors’ policies. This is the property lotality of
interactionthat is used in later sections.

Previous Work
LID-JESP

The locally optimal policy generation algorithm called
LID-JESP (Locally interacting distributed joint equilibm
search for policies) is based on DBA (Yokoo & Hirayama
1996) and JESP (Naet al. 2003). In this algorithm (see
Algorithm 1), each agent tries to improve its policy with re-
spect to its neighbors’ policies in a distributed manner-sim
ilar to DBA. Initially each agent starts with a random pol-
icy and exchanges its policies with its neighbors (lineg.3-4
It then computes its local neighborhood utility (see Equa-
tion 2) with respect to its current policy and its neighbors’
policies. Agent then tries to improve upon its current policy
by calling function GTVALUE (see Algorithm 3), which
returns the local neighborhood utility of ager# best re-
sponse to its neighbors’ policies. This algorithm is ddxxi

in detail below. Agent then computes the gain (alwaysO
because at worst &VALUE will return the same value as
preva) that it can make to its local neighborhood utility,
and exchanges its gain with its neighbors (lines 8-11)sIf
gain is greater than any of its neighbors’ ¢fainchanges

its policy (ANDPoLICY) and sends its new policy to all its
neighbors. This process of trying to improve the local neigh
borhood utility is continued until termination. Terminati
detection is based on using a termination counter to count
the number of cycles whermgain, remains= 0. If its gain

is greater than zero the termination counter is reset. Agent

2The functionargmax; disambiguates between multipjeor-
responding to the same max value by returning the loyuest

i then exchanges its termination counter with its neighbors
and set its counter to the minimum of its counter and its
neighbors’ counters. Agentvill terminate if its termination
counter equals the diameter of the interaction hypergraph.

Algorithm 1 LID-JESRi,ND-POMDP

1: Compute interaction hypergraph axd
2: d — diameter of hypergraplterminationCty — 0
3. 1 «— randomly selected policygrewal« 0
4: Exchanget with N;
5. whileterminationCty < d do
6: forall 5,s\y,sdo
7 BY((su,5, 5+ ())) < bu(su) -bi(s) - b (sny)
8: prewal & B|O(<SJ7$7SNH<>>)
EVALUATE (i,S,Su, SN, T6, Ty, ()5 (), 0, T)
9: gain <« GETVALUE(, BI , T, 0,T) — prevVaI
10: if gain > OthenterminationCtr <+ O
11: dseterminationCty <= 1
12: Exchange@ain terminationCtr with N;
13: terminationCtr — minjcy,yterminationCty
14: maxGain— maxjcn (i} 9ain;
15: winner«— argma>§€N|u{,}gamJ
16: if maxGain> 0 and i = winnerthen
17: ANDPoLICY(i,b, (), mN;,,0,T)
18: Communicateg with N;
19: eseif maxGain> 0then
20: Receivatyinner from winnerand updatery;
21: return Tg

Algorithm 2 EVALUATE (i

sl Sy T T GF, @Y 8, T)
D e TH(6Y), any — Ty, (G,

:va|<—z.€ER.(§l, oSS AL
ift<T—1then

for all % s do
for all e, wi(* do
val & Ry, st
P (sl b an S)
ON. §\|+l §J+173-N.70)}\|+1)
g\lﬂ m, .,.[Nl7<(qt t+1> <Gﬁ\,

: returnval

JaK)

PPS’?J?F*?'\’"‘

L

EVALUATE (i q‘“?éf{

1) t+1T)

Finding Best Response

The algorithm, GTVALUE, for computing the best response
is a dynamic-programming approach similar to that used in
JESP. Here, we define apisodeof agenti at timet as

g = <s{,,$$\h7a)}\,i > Treating episode as the state, results

in a single agent POMDP, where the transition function and
observation function can be defined as:

P/(éva}vqprl) :Pu(ilaiﬁl)'Pl(évilvaitvﬁtJrl)'PNi (é\liv
S OuS 4k
éJrl §J+1 t+l I

t+l

o' (¢, al, 0

A multiagent belief state for an agargiven the distribution
over the initial stateb(s) is defined as:

Bl (e)) = Pris,. 5, s @y &, &, b)

The initial multiagent belief state for agenB?, can be com-
puted fromb as follows:

B ((su,S, S, () « bu(su) - bi(s) - b (sw)

We can now compute the value of the best response pol-
icy via GETVALUE using the following equation (see Algo-
rithm 3):

Vi (B]) = maxvi*(8)) (3)

Algorithm 3 GETVALUE(i, B!

i B

1: ift >TthenreturnO

2: if Vi'(B!) is already recordethen return V! (B})
3. best«— —o

4: for all g € A do

5: Va|ue<—GETVALUEACTION(i,B},ahT[NI,LT)
6.

7

8

9

Ty, t, T)

recordvalueasV* ' (B!)

. if value> bestthen best— value
: recordbestasV/ (B})

. return best

The function,\/ia"t, can be computed usingeGVALUE-
AcCTION(see Algorithm 4) as follows:
Via“’t(Bf)—g_B > R(S1,- -9k Su, (-,)
I€E st. iel
+ Y Pr(etBLa) v (B @)

Wle,

B}*l is the belief state updated after performing action

a and observmg.o“rl and is computed using the function
UPDATE (see Algorithm 5). Agent's policy is determined
from its value functio’;*" using the function kD PoLICY

(see Algorithm 6).

Stochastic L1D-JESP (SLID-JESP)

One of the criticisms of LID-JESP is that if an agent is
the winner (maximum reward among its neighbors), then its
precludes its neighbors from changing their policies too in
that cycle. In addition, it will sometimes prevent its neigh
bor’s neighbors (and may be their neighbors and so on) from
changing their policies in that cycle even if they are actu-
ally independent. For example, consider three agernisc,
arranged in a chain such thggin, > gain, > gaine. In this
situation, onlya changes its policy is that cycle. However,

¢ should have been able to change its policy too because it
does not depend am This realization that LID-JESP allows
limited parallelism led us to come up with a stochastic ver-
sion of LID-JESP, SLID-JESP (Algorithm 7).

The key difference between LID-JESP and SLID-JESP is
that in SLID-JESP if an agemtan improve its local neigh-
borhood utility (i.e.gain, > 0), it will do so with probability
p, a predefined threshold probability (see lines 14-17). Note

Algorithm 4 GETVALUEACTION(i, B!, &, Ty, t, T)
1: value— 0
2: for all d = (5,85},) s.Bi(e) > 0do
3 ay Ty (aﬁ\l,)
4' reward<_2|€ER|(ﬁlv---v#kvﬁha”.v“'valk)
5. value< B!(e)-reward
6: ift<T —1then
7: foral Wit e Qi do
8 B! — UpDATE(, B, &, 0 ™, my,)
9 probH 0
0 for all g, do
11: for al &1 = <§fl,s‘1+1,s}\fl,<(ﬁ\“,m}\ﬁl>> st.
B (") > 0do
12: an, — Ty, (aﬁ\l,)
13: prob < Bi(el) - Pu(sl, #ﬁl - RS shai gt -
P, (#\jivstwaNivé\lTl) §+1 SIqul:ai (thrl
On #\Tl %Jrl an ,(A)IN+1)
14: value™ prob-GETVALUE(i, B2, Ty, t+1,T)

15: return value

f+1

Algorithm 5 UPDATE(i, B!, aj,w ™™, Ty,

for all e|t+1 _ <$+175I1+17§\|T17 <C)}\l.w}\lT1>> do
B}+l(e}+l) —0,ay — Ty, (a)}\l,)
for all §,, 5,5 do
Bt+1 elt+1 X e}

usﬁﬁfl Pi(s shai, ") -

A (S S StN+1 ol(¢H, %H’ai W)
ONI g\l‘fl §J+l7aN|7

5: normalizeB!*!

6: return BI*1

that unlike LID-JESP, an agent’s decision to change its pol-
icy does not depend on its neighbors’ gain messages. How-
ever, the agents need to communicate their gain messages to
their neighbors for termination detection.

Since there has been no change to the termination detec-
tion approach and the way gain is computed, the following
proposition from LID-JESP(see (Nat al. 2005)) hold for
SLID-JESP as well.

Proposition 3 SLID-JESP will terminate within d =
diameter) cycles iff agent are in a local optimum.

This shows that the SLID-JESP will terminate if and only if
agents are in a local optimum.

Hyper-link-based Decomposition (HL D)
Proposition 1 and Equation 2 show that the value function
and the local neighborhood utility function can both be de-
composed into components for each hyper-link in itine
teraction hypergraphThe Hyper-link-based Decomposition
(HLD) technigue exploits this decomposability for speedin
up the algorithms EALUATE and GETVALUE.

We introduce the following definitions to ease the descrip-
tion of HLD. LetE; = {I|l € EAi €1} be the subset of hyper-

Algorithm 6 FinoPoLicy (i, B!, &', miy,t, T)

& « argmax V™" (B), Ti(3") — &
ift<T—1then
for all W € Q; do

B!« UPDATE(i, Bl &, o ™, Ty,

FINDPoOLICY(i, B!, <mi m”l> TN, t+1,T)
return

2 e

Algorithm 7 SLID-JESRi, ND-POMDR p)

0: {lines 1-4 same a LID-JESP

5: whileterminationCtr < d do {lines 6-13 same as LID-JE$P
14: if RaNDOM() < pand gain > Othen

15: FNDPoLicy(i,b, () ,my,,0,T)
16: Communicatesg with N;
17: Receivar from all j € N; that changed their policies
18: return Ty

links that contain agerit Note thatN; = Ujcg | — {i}, i.e.
the neighborhood off contains all the agents iB; except
agenti itself. § = x ¢ S refers to the states of agents in
link I. Similarly,A. = ><j€|Aj, Q = ><j€|Q|, H(S,&J,#) =
Mjei Pi(si,aj,s)), and Oi(s, &,) = je Oj(sj,aj, wj).
Further, we defing = ;¢ bj(s;j), whereb; is the distribu-
tion over ageni’s initial state. Using the above definitions,
we can rewrite Equation 2 as:

1=3 3 bls, V(8,80 0),--. () (B)
I€EiS,Su

EVALUATE -HLD (Algorithm 9) is used to compute the local
neighborhood utility of a hyperlink (inner loop of Equa-
tion 8). When the joint policy is completely specified, the
expected reward from each hyper-link can be computed in-
dependently (as in ®LUATE -HLD). However, when try-

ing to find the optimal best response, we cannot optimize on
each hyper-link separately since in any belief state, antage
can perform only one action. The optimal best response in
any belief state is the action that maximizes the sum of the
expected rewards on each of its hyper-links.

The algorithm, GTVALUE-HLD, for computing the best
response is a modification of theeGVALUE function that
attempts to exploit the decomposability of the value fuorcti
without violating the constraint that the same action must
be applied to all the hyper-links in a particular belief stat
Here, we define aepisodeof agenti for a hyper-linkl at

timet ase}, = <§J,$,6ﬁ7{i}>. Treating episode as the state,
the transition and observation functions can be defined as:

él7a1 e} §J+1 (évﬁna}’éjrl
'Olf{i} ﬁ iy St {i}a"%pr%.})
(e el W) = o474 a Y

whereap{i} = Tq,{i}(oo}f{i}). We can now define the mul-
tiagent belief state for an ageinvith respect to hyper-link
| €E as:

Bii (€)= Pr(i,é,aﬁ,{i}|6ﬁ,éff1,b)

We redefine the multiagent belief state of ages :

Bi(€) = {Bj ()|l € E}

We can now compute the value of the best response policy
using the following equation:

The value of the best response policy for the linkan be
computed as follows:

Vi (B =V (B 7)

where af = argmaxea, (3icg V' (B!)). The function
GETVALUE-HLD (see Algorithm 10) computes the term
Vi (B}) for all links | € E;.

The functionV;**, can be computed as follows:

Vi (B) g L(€)-Ri(s,Sua)
|

+ 3 e ELa) R EY) @)
(.tt)}Jr €

The function >VALUEACTION-HLD(see Algorithm 11)
computes the above value for all linksB!** is the belief

state updated after performing actigrand observmg«)t+1
and is computed using RDATE-HLD (see Algorithm 12).
Agenti’s policy is determined from its value functi():‘ila*"t
using ANDPoLICY-HLD (see Algorithm 13).

The reason why HLD will reduce the run time for finding
the best response is that the optimal value function is com-
puted for each link separately. This reduction in runtime is
borne out by our complexity analysis and experimental re-
sults as well.

Algorithm 8 LID-JESP-HLD(i,ND-POMDP

0: {lines 1-4 same a LID-JESP
5: whileterminationCty < d do

6: for all 5, do

7 for all | € Ej do

8: forallg € § do

9: B ((su:5:())) < bu(su)-bi(s)

10: prewal & BY ((su;s1,()))

EVALUATE-HLD(l,§,s,T1, (), IO,T
11: gain « GETVALUE-HLD(i,B? 1,0, T) — prewal
12: if gain > OthenterminationCtr «— O
13: dseterminationCty <= 1
14: Exchange@ain terminationCtr with N;
15: terminationCty «— manGNU{,}termlnatlonCtr
16 maxGain— maxjc (i} 9ain;
17: winner«— argma>§€N|u{,}galnJ
18: if maxGain> 0 and i = winnerthen

19: FINDPoLICY-HLD(i,BY, (), my,,0,T)

20: Communicatet, with N;

21: dseif maxGain> Othen

22: Receivatyinner from winnerand updatety,
23: return Tg

Algorithm 9 EVALUATE-HLD (I, s, 1,6, t, T)

a — m(eY)
val — R (5,5, a)

ift <T—1then
for all §+1,¢;" do

for all of ™ do
val & Ry - RE a8t
o/(§1,4¢1 a, (q”l ,
EVALUATE -HLD < ,#*1,s{ﬁ1,rq,<®},uq”l> ,t+1,T>

return val

Algorithm 10 GETVALUE-HLD (i, B!, my,,t,T)

oONoTRWNE

1 ift >Tthenreturn0
- if Vi (B!) is already recordedl € Ej then return Vi (B!)]icg,
. bestSum— —o

for all g € Aj do
value— GETVALUEACTlON-HLD(i,Bt aj,Ty;,t,T)
valueSum— 3 g, valugl]
recordvalueSunasv;** (Bl)
if valueSum> bestSumthen best < valuebestSum—
valueSum

: for all | € E do
10:
11:

recorcbesfl] asVjf (B})
return best

Algorithm 11 GETVALUEACTION-HLD (i, B}, a, Ty, t, T)

10:
11:

12:

13:
14:

15:
16:
17:
18:

1
2
3
4
5:
6
7
8

: for alll € Ej do

valudl] — 0

for all & = (s,8.6f) st.BY(€)>0do
Ay — - (@ _gy)
valug|l] HBI (&) -R (s, a)

ift<T—1th

for all oq”leQ do
for all I € Ej do
Bit! UPDATE HLD(i,1, B}, a5, i ™, 1)

prob[|«
for all s, 5‘1 do

for all ¢t = (1970 (@f_y.wlhy)) st
B (ej"!) > 0do
Ay} — n;,{i}(a)},{i})
probjl] & BY (€} Pu S{, SR g.a,51)-
o] ﬁJrl %le?al ("ﬁ

futureValue—GETVALUE- HLD(i,B}+17mi7t+17T)
for all | € Ej do

valudl] < prob[l] - futureValuél]
return value

Algorithm 12 UppaTE-HLD (i, B}, &, 1, m_gj)

1: for all ;! = <5fj+lvst1+lv<(*’}f{i}’wlji}>> do

2. BitY(qﬂ*l) —0

3 ag — @)

4: for all s,§ do

. BirL(et) & B (el SRR ICIE IR

oY #+1 &+ g t+1
6: normalizes}!
7: return Byt

Algorithm 13 FiNnDPoLIcY-HLD (i, B!, &', iy, t, T)
& — argmax, V> (B})
ift<T—1then

for all wf ™1 € Q; do

for all | € Ej do
B — UPDATE-HLD(i,I,BY & i ™, m_y)

FINDPoLICY-HLD(i, B!, <wi m”l> TN, t+1,T)
return

O N ouaRhwdh R

Complexity Results

The complexity of the finding the optimal best response for
agenti for JESP (using the dynamic programming(Netir
al. 2003)) isO(|S?- |A|" - [jef1..ny IQj|T). Note that the
complexity depends on the number world std@sand the
number of possible observation histories of all the agents.

In contrast, the complexity of finding the optimal
best response for for LID-JESP (and SLID-JESP) is
O(Mieg [|Sux SI%- |A|T - |Q|T]). It should be noted that in
this case, the complexity depends on the number of states
|Su|. |S| and|Sy| and not on the number of states of any
non-neighboring agent. Similarly, the complexity depends
on only the number of observation histories ioand its
neighbors and not those of all the agents. This highlights
the reason for why LID-JESP and SLID-JESP are superior
to JESP for problems where locality of interaction can be
exploited.

The complexity for computing optimal best response for
i in LID-JESP with HLD (and SLID-JESP with HLD) is
O(Zicg [|Su x SI?- IAI" - |Q|T]). Key difference of note
compared to the complexity expression for LID-JESP, is the
replacement of produgt, with a sumz. Thus, as number of
neighbors increases, difference between the two appreache
increases.

Since JESP is a centralized algorithm, the best response
function is performed for each agent serially. LID-JESP and
SLID-JESP (with and without HLD), in contrast, are distrib-
uted algorithms, where each agent can be run in parallel on a
different processor, further alleviating the large comjtie
of finding the optimal best response.

Experimental Results

In this section, we performed comparison of the algorithms
— LID-JESP, SLID-JESP, LID-JESP with HLD and SLID-
JESP with HLD — in terms of value and runtime. We used
four different topologies of sensors, shown in Figure 2,
each with a different target movement scenario. With 2 tar-
gets moving in the environment, possible positions of tar-
gets are increased as the network grows and the number
of unaffected states are increased accordingly. Figurg 2(a
shows the example where there are 3 sensors arranged in
a chain and the number of possible positions for each tar-
get is 1. In the cross topology, as in Figure 2(b), we con-
sidered 5 sensors with one sensor in the center surrounded
by 4 sensors and 2 locations are possible for each tar-
get. In the example in Figure 2(c) with 5 sensors arranged
in P shape, targetl and target2 can be at 2 and 3 lo-
cations respectively, thus leading to a total of 12 states.
There are total 20 states for six sensors in example of Fig-
ure 2(d) with 4 and 3 locations for targetl and target2, re-
spectively. As we assumed earlier, each target is indepen-
dent of each other. Thus, total number of unaffected states
are (Trargets(NUMber of possible positions of each target

1)). Due to the exponentially increasing runtime, the size
of the network and time horizon is limited but is still signifi
cantly larger than those which have previously been demon-
strated in distributed POMDPs. All experiments are started
at random initial policies and averaged over five runs for
each algorithm. We chose 0.9 as the threshold probability
(p) for SLID-JESP which empirically gave a good result for
most cases.

Figure 3 shows performance improvement of SLID-JESP
and HLD in terms of runtime. In Figure 3, X-axis shows
the time horizorT, while Y-axis shows the runtime in mil-
liseconds on a logarithmic scale. In all cases of Figure 3,
the line of SLID-JESP is lower than that of LID-JESP with
and without HLD where the difference of two grows as the o)
network grows. As in Figure 3(c) and Figure 3(d) the dif- bors and doesn't affect th_e value of the resulting joint@oli .
bigger than that in smaller network examples. The result three out of the four topologies that we tried. This suggests
that SLID-JESP always takes less time than LID-JESP is SLID-JESP's greedy approach to changing the joint policy
one cycle, and hence SLID-JESP tends to converge to a in SOme cases. However, note t_hatm Figure 4(a) SLID.-JESP
local optimum quickly. As for HLD, all the graphs shows convergesto a greater local optlmathgn LID-JESP. Th|_s sug-
that the use of Hyper-link-based decomposition clearly im- 9gests that network topology greatly impacts the choice of
proved LID-JESP and SLID-JESP in terms of runtime. The whether to use LID-J_ESP or SLIDTJESP. Further, the results
improvement is more visible when the number of neighbors ©f SLID-JESP vary in value for different threshold proba-
increases where HLD takes advantage of decomposition. For bilities, however there is a consistent trend that the tesul
example, in Figure 3(b), by using HLD the runtime reduced bPetter when the threshold probability)(is large. This trend
by more than an order of magnitude f&r= 4. In cross means that in our qualn,_n is generally better to change
topology, the computation for the agent in the center which Policy if there is a visible gain.
has 4 neighbors is a main bottleneck and HLD significantly
reduces the computation by decomposition.

!

{0

Qg

X}

X

D

(@) 1x3

(d) 2x3

Figure 2: Different sensor net configurations.

1000000

7——LID-JESP with HLD
—= SLID-JESP with HLD

-~ LID-JESP »
1= _sLiD-JESP 5> o
/

/

1 2 3
Time Horizon

7——LID-JESP with HLD
—= SLID-JESP with HLD
=&« LID-JESP
—*_ SLID-JESP

100000

10000

Time(ms)
Time(ms)
5
8
S

e
o
]

=
S

-

1 2 3

Time Horizon

—— LID-JESP with HLD
—= SLID-JESP with HLD
- = LID-JESP
—<_SLID-JESP

1000000 4 1000000 T——1p-JESP with HLD
—= SLID-JESP with HLD
=& LID-JESP

—_ SLID-JESP.

100000 100000

10000 10000

1000

1000

Time(ms)
Time(ms)

100

100

10

10

1

1

2 3
Time Horizon Time Horizon

Figure 3: Runtime (ms) for (a) 1x3, (b) cross, (¢) 5-P and (d)
2x3.

Summary and Related Work

Figure 4 shows the values of each algorithm for differ-
ent topologies. In Figure 4, X-axis shows the time horizon
T, while Y-axis shows the value of team reward. There are
only two lines in each graph because the values of the al-
gorithm with HLD and without HLD are always the same
because HLD only exploits independence between neigh-

In this paper, we presented a stochastic variation of the LID
JESP thatis based on DSA (distributed stochastic algoyithm
that allows neighboring agents to change their policiebén t
same cycle. Through detailed experiments, we showed how
this can result in speedups without a large difference in so-
lution quality. We also introduced a technique calfggber-

Value

Value

——LID-JESP with and
without HLD

- = SLID-JESP with and
without HLD

——LID-JESP with and
without HLD

B 3
Time Horizon Time Horizon

Figure 4: Value for (a) 1x3, (b) cross, (c) 5-P and (d) 2x3.

link-based decompositiqhiLD) that allows us to exploit lo-
cality of interaction further, resulting in faster run timfor
both LID-JESP and its stochastic variant without any loss in
solution quality.

Among related work, we have earlier discussed the rela-
tionship of our work to key DCOP and distributed POMDP
algorithms, i.e., we synthesize new algorithms by exploit-
ing their synergies. We now discuss some other recent al-
gorithms for locally and globally optimal policy generatio
for distributed POMDPs. For instance, Hanstral. (2004)
present an exact algorithm for partially observable ststiba
games (POSGs) based on dynamic programming and iter-
ated elimination of dominant policies. Emery-Montemerlo
et al. (2004) approximate POSGs as a series of one-step
Bayesian games using heuristics to find the future dis-
counted value for actions. We have earlier discussed Nair
et al. (2003)’s JESP algorithm that uses dynamic program-
ming to reach a local optimal. In addition, Becletral’s
work (2004) on transition-independent distributed MDPs is
related to our assumptions about transition and observabil
ity independence in ND-POMDPs. These are all centralized
policy generation algorithms that could benefit from the key
ideas in this paper — that of exploiting local interaction
structure among agents to (i) enable distributed policy gen
eration; (ii) limit policy generation complexity by consid
ing only interactions with “neighboring” agents. Guesgin
al. (2002), present “coordination graphs” which have simi-
larities to constraint graphs. The key difference in thei a
proach is that the “coordination graph” is obtained from the
value function which is computed in a centralized manner.
The agents then use a distributed procedure for onlineractio
selection based on the coordination graph. In our approach,
the value function is computed in a distributed manner. Dol-
gov and Durfee’s algorithm (2004) exploits network struc-
ture in multiagent MDPs (not POMDPSs) but assume that
each agent tried to optimize its individual utility insteafl
the team’s utility.

Acknowledgments

This material is based upon work supported by the

DARPA/IPTO COORDINATORS program and the Air
Force Research Laboratory under Contract No. FA8750-05—
C—-0030. The views and conclusions contained in this docu-
ment are those of the authors, and should not be interpreted
as representing the official policies, either expresseder i
plied, of the Defense Advanced Research Projects Agency
or the U.S. Government.

References

Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman,
C. 2004. Solving transition independent decentralized
Markov decision processedAlR22:423—-455.

Bernstein, D. S.; Zilberstein, S.; and Immerman, N. 2000.
The complexity of decentralized control of MDPs. Ul

Dolgov, D., and Durfee, E. 2004. Graphical models in
local, asymmetric multi-agent markov decision processes.
In AAMAS

Goldman, C., and Zilberstein, S. 2004. Decentralized con-
trol of cooperative systems: Categorization and compfexit
analysis.JAIR22:143-174.

Guestrin, C.; Venkataraman, S.; and Koller, D. 2002. Con-

text specific multiagent coordination and planning with
factored MDPs. IrAAAL

Hansen, E.; Bernstein, D.; and Zilberstein, S. 2004. Dy-
namic Programming for Partially Observable Stochastic
Games. IMPAAAL

Lesser, V.; Ortiz, C.; and Tambe, M. 200®istributed
sensor nets: A multiagent perspectivduwer.

Modi, P. J.; Shen, W.; Tambe, M.; and Yokoo, M. 2003. An
asynchronous complete method for distributed constraint
optimization. INAAMAS

Montemerlo, R. E.; Gordon, G.; Schneider, J.; and Thrun,
S. 2004. Approximate solutions for partially observable
stochastic games with common payoffs AAMAS

Nair, R.; Pynadath, D.; Yokoo, M.; Tambe, M.; and
Marsella, S. 2003. Taming decentralized POMDPs: To-
wards efficient policy computation for multiagent settings
In IJCAL

Nair, R.; Varakantham, P.; Tambe, M.; and Yokoo, M.
2005. Networked distributed POMDPs: A synthesis of dis-
tributed constraint optimization and POMDPs Hroceed-
ings of the Twentieth National Conference on Atrtificial In-
telligence (AAAI-05)133-139.

Peshkin, L.; Meuleau, N.; Kim, K.-E.; and Kaelbling, L.
2000. Learning to cooperate via policy searchUKI.
Yokoo, M., and Hirayama, K. 1996. Distributed break-
out algorithm for solving distributed constraint satisfan
problems. INCMAS

Zhang, W.; Xing, Z.; Wang, G.; and Wittenberg, L. 2003.
An analysis and application of distributed constraintssati

faction and optimization algorithms in sensor networks. In
AAMAS

