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Abstract

In many real-world multiagent applications such as dis-
tributed sensor nets, a network of agents is formed based
on each agent’s limited interactions with a small number
of neighbors. While distributed POMDPs capture the
real-world uncertainty in multiagent domains, they fail
to exploit such locality of interaction. Distributed con-
straint optimization (DCOP) captures the locality of in-
teraction but fails to capture planning under uncertainty.
In previous work, we presented a model synthesized
from distributed POMDPs and DCOPs, called Net-
worked Distributed POMDPs (ND-POMDPs). Also,
we presented LID-JESP (locally interacting distributed
joint equilibrium-based search for policies: a distributed
policy generation algorithm based on DBA (distributed
breakout algorithm). In this paper, we present a sto-
chastic variation of the LID-JESP that is based on DSA
(distributed stochastic algorithm) that allows neighbor-
ing agents to change their policies in the same cycle.
Through detailed experiments, we show how this can
result in speedups without a large difference in solution
quality. We also introduce a technique calledhyper-link-
based decompositionthat allows us to exploit locality of
interaction further, resulting in faster run times for both
LID-JESP and its stochastic variant without any loss in
solution quality.

Introduction
Distributed Partially Observable Markov Decision Problems
(Distributed POMDPs) are emerging as an important ap-
proach for multiagent teamwork. These models enable mod-
eling more realistically the problems of a team’s coordinated
action under uncertainty. Unfortunately, as shown by Bern-
steinet al. (2000), the problem of finding the optimal joint
policy for a general distributed POMDP is NEXP-Complete.
Researchers have attempted two different approaches to ad-
dress this complexity. First, they have focused on algorithms
that sacrifice global optimality and instead focus on local op-
timality (Nair et al.2003; Peshkinet al.2000). Second, they
have focused on restricted types of domains, e.g. with transi-
tion independence or collective observability (Beckeret al.
2004). While these approaches have led to useful advances,
the complexity of the distributed POMDP problem has lim-
ited most experiments to a central policy generator planning
for just two agents. Further, these previous approaches have

relied on a centralized planner that computes the policies for
all the agents in an off-line manner.

Nair et al. (2005) presented third complementary ap-
proach called Networked Distributed POMDPs (ND-
POMDPs), that is motivated by domains such as distrib-
uted sensor nets (Lesser, Ortiz, & Tambe 2003), distrib-
uted UAV teams and distributed satellites, where an agent
team must coordinate under uncertainty, but agents have
strong locality in their interactions. For example, withina
large distributed sensor net, small subsets of sensor agents
must coordinate to track targets. To exploit such local inter-
actions, ND-POMDPs combine the planning under uncer-
tainty of POMDPs with the local agent interactions of dis-
tributed constraint optimization (DCOP) (Modiet al. 2003;
Yokoo & Hirayama 1996). DCOPs have successfully ex-
ploited limited agent interactions in multiagent systems,
with over a decade of algorithm development. Distributed
POMDPs benefit by building upon such algorithms that en-
able distributed planning, and provide algorithmic guaran-
tees. DCOPs benefit by enabling (distributed) planning un-
der uncertainty — a key DCOP deficiency in practical appli-
cations such as sensor nets (Lesser, Ortiz, & Tambe 2003).
In that work, we introduced the LID-JESP algorithm that
combines the JESP algorithm of Nairet al. (2003) and the
DBA (Yokoo & Hirayama 1996) DCOP algorithm. LID-
JESP thus combines the dynamic programming of JESP
with the innovation that it uses off-line distributed policy
generation instead of JESP’s centralized policy generation.

This paper makes two novel contributions to the previous
work on Networked POMDPs. First, we present a stochastic
variation of the LID-JESP that is based on DSA (distributed
stochastic algorithm) (Zhanget al.2003) that allows neigh-
boring agents to change their policies in the same cycle.
Through detailed experiments, we show how this can result
in speedups without a large difference in solution quality.

Second, we introduce a technique calledhyper-link-based
decomposition(HLD) that decomposes each agent’s lo-
cal optimization problem into loosely-coupled optimization
problems for each hyper-link. This allows us to exploit lo-
cality of interaction further resulting in faster run timesfor
both LID-JESP and its stochastic variant without any loss in
solution quality.
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Figure 1: Sensor net scenario: If present, target1 is in Loc1-
1, Loc1-2 or Loc1-3, and target2 is in Loc2-1 or Loc2-2.

Illustrative Domain
We describe an illustrative problem within the distributed
sensor net domain, motivated by the real-world challenge
in (Lesser, Ortiz, & Tambe 2003)1. Here, each sensor node
can scan in one of four directions — North, South, East or
West (see Figure 1). To track a target and obtain associated
reward, two sensors with overlapping scanning areas must
coordinate by scanning the same area simultaneously. We
assume that there are two independent targets and that each
target’s movement is uncertain and unaffected by the sen-
sor agents. Based on the area it is scanning, each sensor re-
ceives observations that can have false positives and false
negatives. Each agent incurs a cost for scanning whether the
target is present or not, but no cost if it turns off.

As seen in this domain, each sensor interacts with only a
limited number of neighboring sensors. For instance, sen-
sors 1 and 3’s scanning areas do not overlap, and cannot
affect each other except indirectly via sensor 2. The sen-
sors’ observations and transitions are independent of each
other’s actions. Existing distributed POMDP algorithms are
unlikely to work well for such a domain because they are
not geared to exploit locality of interaction. Thus, they will
have to consider all possible action choices of even non-
interacting agents in trying to solve the distributed POMDP.
Distributed constraint satisfaction and distributed constraint
optimization (DCOP) have been applied to sensor nets but
they cannot capture the uncertainty in the domain.

ND-POMDPs
We define an ND-POMDP for a groupAg of n agents as a
tuple〈S,A,P,Ω,O,R,b〉, whereS=×1≤i≤nSi×Su is the set
of world states.Si refers to the set of local states of agent
i andSu is the set of unaffectable states. Unaffectable state
refers to that part of the world state that cannot be affected
by the agents’ actions, e.g. environmental factors like target
locations that no agent can control.A = ×1≤i≤nAi is the set
of joint actions, whereAi is the set of action for agenti.

We assume atransition independentdistributed POMDP
model, where the transition function is defined as
P(s,a,s′) = Pu(su,s′u) · ∏1≤i≤nPi(si ,su,ai ,s′i), where a=
〈a1, . . . ,an〉 is the joint action performed in states=
〈s1, . . . ,sn,su〉 and s′=〈s′1, . . . ,s

′
n,s
′
u〉is the resulting state.

Agent i’s transition function is defined asPi(si ,su,ai ,s′i) =

1For simplicity, this scenario focuses on binary interactions.
However, ND-POMDP and LID-JESP allow n-ary interactions.

Pr(s′i |si ,su,ai) and the unaffectable transition function is de-
fined asPu(su,s′u) = Pr(s′u|su). Becker et al. (2004) also
relied on transition independence, and Goldman and Zil-
berstein (2004) introduced the possibility of uncontrollable
state features. In both works, the authors assumed that the
state iscollectively observable, an assumption that does not
hold for our domains of interest.

Ω = ×1≤i≤nΩi is the set of joint observations whereΩi
is the set of observations for agentsi. We make an assump-
tion of observational independence, i.e., we define the joint
observation function asO(s,a,ω)= ∏1≤i≤nOi(si ,su,ai ,ωi),
wheres= 〈s1, . . . ,sn,su〉, a= 〈a1, . . . ,an〉, ω = 〈ω1, . . . ,ωn〉,
andOi(si ,su,ai ,ωi) = Pr(ωi |si ,su,ai).

The reward function, R, is defined as R(s,a) =
∑l Rl (sl1, . . . ,slk,su,〈al1, . . . ,alk〉), where eachl could re-
fer to any sub-group of agents andk = |l |. In the sen-
sor grid example, the reward function is expressed as the
sum of rewards between sensor agents that have overlap-
ping areas (k = 2) and the reward functions for an in-
dividual agent’s cost for sensing (k = 1). Based on the
reward function, we construct aninteraction hypergraph
where a hyper-link,l , exists between a subset of agents
for all Rl that compriseR. Interaction hypergraphis de-
fined asG = (Ag,E), where the agents,Ag, are the ver-
tices andE = {l |l ⊆ Ag∧Rl is a component ofR} are the
edges.Neighborhoodof i is defined asNi = { j ∈ Ag| j 6=
i∧ (∃l ∈ E, i ∈ l ∧ j ∈ l)}. SNi = × j∈NiSj refers to the states
of i’s neighborhood. Similarly we defineANi = × j∈Ni A j ,
ΩNi = × j∈Ni Ω j , PNi (sNi ,aNi ,s

′
Ni

) = ∏ j∈Ni
Pj(sj ,a j ,s′j ), and

ONi (sNi ,aNi ,ωNi ) = ∏ j∈Ni
O j(sj ,a j ,ω j).

b, the distribution over the initial state, is defined as
b(s) = bu(su) ·∏1≤i≤nbi(si) wherebu andbi refer to the dis-
tributions over initial unaffectable state andi’s initial state,
respectively. We definebNi = ∏ j∈Ni

b j(sj ). We assume that
b is available to all agents (although it is possible to re-
fine our model to make available to agenti only bu, bi and
bNi ). The goal in ND-POMDP is to compute joint policy
π = 〈π1, . . . ,πn〉 that maximizes the team’s expected reward
over a finite horizonT starting fromb. πi refers to the in-
dividual policy of agenti and is a mapping from the set of
observation histories ofi to Ai . πNi andπl refer to the joint
policies of the agents inNi and hyper-linkl respectively.

ND-POMDP can be thought of as ann-ary DCOP where
the variable at each node is an individual agent’s policy. The
reward componentRl where|l | = 1 can be thought of as a
local constraint while the reward componentRl wherel > 1
corresponds to a non-local constraint in the constraint graph.
In the next section, we push this analogy further by taking
inspiration from the DBA algorithm (Yokoo & Hirayama
1996), an algorithm for distributed constraint satisfaction,
to develop an algorithm for solving ND-POMDPs.

The following proposition (proved in (Nairet al. 2005))
shows that given a factored reward function and the assump-
tions of transitional and observational independence, there-
sulting value function can be factored as well into value
functions for each of the edges in the interaction hypergraph.

Proposition 1 Given transitional and ob-
servational independence and R(s,a) =



∑l∈E Rl (sl1, . . . ,slk,su,〈al1, . . . ,alk〉),

Vt
π(s

t ,~ωt ) = ∑
l∈E

Vt
πl

(st
l1, . . . ,s

t
lk,s

t
u,~ω

t
l1, . . .~ω

t
lk) (1)

where Vt
π(s

t ,~ω) is the expected reward from the state st

and joint observation history~ωt for executing policyπ, and
Vt

πl
(st

l1, . . . ,s
t
lk,s

t
u,~ωt

l1, . . .~ω
t
lk) is the expected reward for ex-

ecutingπl accruing from the component Rl .

We definelocal neighborhood utilityof agenti as the ex-
pected reward for executing joint policyπ accruing due to
the hyper-links that contain agenti:

Vπ[Ni ] = ∑
si ,sNi ,su

bu(su) ·bNi (sNi ) ·bi(si)·

∑
l∈E s.t. i∈l

V0
πl

(sl1, . . . ,slk,su,〈〉 , . . . ,〈〉) (2)

Proposition 2 Locality of interaction: The local neighbor-
hood utilities of agent i for joint policiesπ andπ′ are equal
(Vπ[Ni ] = Vπ′ [Ni ]) if πi = π′i andπNi = π′Ni

.

From the above Proposition (proved in (Nairet al.2005)),
we conclude that increasing the local neighborhood utilityof
agenti cannot reduce the local neighborhood utility of agent
j if j /∈ Ni . Hence, while trying to find best policy for agent
i given its neighbors’ policies, we do not need to consider
non-neighbors’ policies. This is the property oflocality of
interactionthat is used in later sections.

Previous Work
LID-JESP
The locally optimal policy generation algorithm called
LID-JESP (Locally interacting distributed joint equilibrium
search for policies) is based on DBA (Yokoo & Hirayama
1996) and JESP (Nairet al. 2003). In this algorithm (see
Algorithm 1), each agent tries to improve its policy with re-
spect to its neighbors’ policies in a distributed manner sim-
ilar to DBA. Initially each agenti starts with a random pol-
icy and exchanges its policies with its neighbors (lines 3-4).
It then computes its local neighborhood utility (see Equa-
tion 2) with respect to its current policy and its neighbors’
policies. Agenti then tries to improve upon its current policy
by calling function GETVALUE (see Algorithm 3), which
returns the local neighborhood utility of agenti’s best re-
sponse to its neighbors’ policies. This algorithm is described
in detail below. Agenti then computes the gain (always≥ 0
because at worst GETVALUE will return the same value as
prevVal) that it can make to its local neighborhood utility,
and exchanges its gain with its neighbors (lines 8-11). Ifi’s
gain is greater than any of its neighbors’ gain2, i changes
its policy (FINDPOLICY) and sends its new policy to all its
neighbors. This process of trying to improve the local neigh-
borhood utility is continued until termination. Termination
detection is based on using a termination counter to count
the number of cycles wheregaini remains= 0. If its gain
is greater than zero the termination counter is reset. Agent

2The functionargmax j disambiguates between multiplej cor-
responding to the same max value by returning the lowestj .

i then exchanges its termination counter with its neighbors
and set its counter to the minimum of its counter and its
neighbors’ counters. Agenti will terminate if its termination
counter equals the diameter of the interaction hypergraph.

Algorithm 1 LID-JESP(i,ND-POMDP)

1: Compute interaction hypergraph andNi
2: d← diameter of hypergraph,terminationCtri ← 0
3: πi ← randomly selected policy,prevVal← 0
4: Exchangeπi with Ni
5: while terminationCtri < d do
6: for all si ,sNi ,su do
7: B0

i (〈su,si ,sNi ,〈〉〉)← bu(su) ·bi(si) ·bNi (sNi )

8: prevVal
+
← B0

i (〈su,si ,sNi ,〈〉〉) ·
EVALUATE(i,si ,su,sNi ,πi ,πNi ,〈〉 ,〈〉 ,0,T)

9: gaini ← GETVALUE(i,B0
i ,πNi ,0,T)− prevVal

10: if gaini > 0 then terminationCtri ← 0

11: else terminationCtri
+
← 1

12: Exchangegaini ,terminationCtri with Ni
13: terminationCtri ←min j∈Ni∪{i}terminationCtrj
14: maxGain←maxj∈Ni∪{i}gainj
15: winner← argmaxj∈Ni∪{i}gainj

16: if maxGain> 0 and i = winner then
17: FINDPOLICY(i,b,〈〉 ,πNi ,0,T)
18: Communicateπi with Ni
19: else if maxGain> 0 then
20: Receiveπwinner from winnerand updateπNi

21: return πi

Algorithm 2 EVALUATE (i,st
i,s

t
u,s

t
Ni

,πi ,πNi ,~ωt
i ,~ω

t
Ni

,t,T)

1: ai ← πi(~ωt
i ), aNi ← πNi (~ω

t
Ni

)

2: val← ∑l∈E Rl
(

st
l1, . . . ,s

t
lk,s

t
u,al1, . . . ,alk

)

3: if t < T−1 then
4: for all st+1

i ,st+1
Ni

,st+1
u do

5: for all ωt+1
i ,ωt+1

Ni
do

6: val
+
← Pu(st

u,s
t+1
u ) · Pi(st

i ,s
t
u,ai ,s

t+1
i ) ·

PNi (s
t
Ni

,st
u,aNi ,s

t+1
Ni

) · Oi(s
t+1
i ,st+1

u ,ai ,ωt+1
i ) ·

ONi(s
t+1
Ni

,st+1
u ,aNi ,ω

t+1
Ni

) · EVALUATE(i,st+1
i ,st+1

u ,

st+1
Ni

,πi ,πNi ,
〈

~ωt
i ,ω

t+1
i

〉

,
〈

~ωt
Ni

,ωt+1
Ni

〉

,t +1,T)

7: return val

Finding Best Response

The algorithm, GETVALUE, for computing the best response
is a dynamic-programming approach similar to that used in
JESP. Here, we define anepisodeof agenti at time t as

et
i =

〈

st
u,s

t
i ,s

t
Ni

,~ωt
Ni

〉

. Treating episode as the state, results

in a single agent POMDP, where the transition function and
observation function can be defined as:

P′(et
i ,a

t
i ,e

t+1
i ) =Pu(s

t
u,s

t+1
u )·Pi(s

t
i ,s

t
u,a

t
i ,s

t+1
i )·PNi (s

t
Ni

,

st
u,a

t
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,st+1
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) ·ONi (s
t+1
Ni

,st+1
u ,at

Ni
,ωt+1

Ni
)

O′(et+1
i ,at

i ,ω
t+1
i ) = Oi(s

t+1
i ,st+1

u ,at
i ,ω

t+1
i )



A multiagent belief state for an agenti given the distribution
over the initial state,b(s) is defined as:

Bt
i (e

t
i ) = Pr(st

u,s
t
i ,s

t
Ni

,~ωt
Ni
|~ωt

i ,~a
t−1
i ,b)

The initial multiagent belief state for agenti, B0
i , can be com-

puted fromb as follows:

B0
i (〈su,si ,sNi ,〈〉〉)← bu(su) ·bi(si) ·bNi (sNi )

We can now compute the value of the best response pol-
icy via GETVALUE using the following equation (see Algo-
rithm 3):

Vt
i (B

t
i ) = max

ai∈Ai
Vai ,t

i (Bt
i) (3)

Algorithm 3 GETVALUE(i,Bt
i,πNi ,t,T)

1: if t ≥ T then return 0
2: if V t

i (Bt
i ) is already recordedthen return V t

i (Bt
i )

3: best←−∞
4: for all ai ∈ Ai do
5: value← GETVALUEACTION(i,Bt

i ,ai ,πNi ,t,T)

6: recordvalueasVai ,t
i (Bt

i )
7: if value> bestthen best← value
8: recordbestasVt

i (Bt
i )

9: return best

The function,Vai ,t
i , can be computed using GETVALUE-

ACTION(see Algorithm 4) as follows:

Vai ,t
i (Bt

i)=∑
et
i

Bt
i(e

t
i ) ∑
l∈E s.t. i∈l

Rl (sl1, . . . ,slk,su,〈al1, . . . ,alk〉)

+ ∑
ωt+1

i ∈Ω1

Pr(ωt+1
i |B

t
i ,ai) ·V

t+1
i

(

Bt+1
i

)

(4)

Bt+1
i is the belief state updated after performing action

ai and observingωt+1
i and is computed using the function

UPDATE (see Algorithm 5). Agenti’s policy is determined
from its value functionVai ,t

i using the function FINDPOLICY
(see Algorithm 6).

Stochastic LID-JESP (SLID-JESP)
One of the criticisms of LID-JESP is that if an agent is
the winner (maximum reward among its neighbors), then its
precludes its neighbors from changing their policies too in
that cycle. In addition, it will sometimes prevent its neigh-
bor’s neighbors (and may be their neighbors and so on) from
changing their policies in that cycle even if they are actu-
ally independent. For example, consider three agents,a,b,c,
arranged in a chain such thatgaina > gainb > gainc. In this
situation, onlya changes its policy is that cycle. However,
c should have been able to change its policy too because it
does not depend ona. This realization that LID-JESP allows
limited parallelism led us to come up with a stochastic ver-
sion of LID-JESP, SLID-JESP (Algorithm 7).

The key difference between LID-JESP and SLID-JESP is
that in SLID-JESP if an agenti can improve its local neigh-
borhood utility (i.e.gaini > 0), it will do so with probability
p, a predefined threshold probability (see lines 14-17). Note,

Algorithm 4 GETVALUEACTION(i,Bt
i,ai ,πNi ,t,T)

1: value← 0
2: for all et

i =
〈

st
u,s

t
i ,s

t
Ni

,~ωt
Ni

〉

s.t.Bt
i (e

t
i ) > 0 do

3: aNi ← πNi (~ωt
Ni

)

4: reward← ∑l∈E Rl
(

st
l1, . . . ,s

t
lk,s

t
u,al1, . . . ,alk

)

5: value
+
← Bt

i (e
t
i ) · reward

6: if t < T−1 then
7: for all ωt+1

i ∈Ωi do
8: Bt+1

i ← UPDATE(i,Bt
i ,ai ,ωt+1

i ,πNi )
9: prob← 0

10: for all st
u,s

t
i ,s

t
Ni

do

11: for all et+1
i =

〈

st+1
u ,st+1

i ,st+1
Ni

,
〈

~ωt
Ni

,ωt+1
Ni

〉〉

s.t.

Bt+1
i (et+1

i ) > 0 do
12: aNi ← πNi (~ωt

Ni
)

13: prob
+
← Bt

i (e
t
i ) · Pu(st

u,s
t+1
u ) · Pi(st

i ,s
t
u,ai ,s

t+1
i ) ·

PNi (s
t
Ni

,st
u,aNi ,s

t+1
Ni

) · Oi(s
t+1
i ,st+1

u ,ai ,ωt+1
i ) ·

ONi (s
t+1
Ni

,st+1
u ,aNi ,ω

t+1
Ni

)

14: value
+
←prob·GETVALUE(i,Bt+1

i ,πNi ,t +1,T)
15: return value

Algorithm 5 UPDATE(i,Bt
i ,ai ,ωt+1

i ,πNi )

1: for all et+1
i =

〈

st+1
u ,st+1

i ,st+1
Ni

,
〈

~ωt
Ni

,ωt+1
Ni

〉〉

do

2: Bt+1
i (et+1

i )← 0, aNi ← πNi (~ωt
Ni

)

3: for all st
u,s

t
i ,s

t
Ni

do

4: Bt+1
i (et+1

i )
+
← Bt

i (e
t
i ) · Pu(st

u,s
t+1
u ) · Pi(st

i ,s
t
u,ai ,s

t+1
i ) ·

PNi (s
t
Ni

,st
u,aNi ,s

t+1
Ni

) · Oi(s
t+1
i ,st+1

u ,ai ,ωt+1
i ) ·

ONi (s
t+1
Ni

,st+1
u ,aNi ,ω

t+1
Ni

)

5: normalizeBt+1
i

6: return Bt+1
i

that unlike LID-JESP, an agent’s decision to change its pol-
icy does not depend on its neighbors’ gain messages. How-
ever, the agents need to communicate their gain messages to
their neighbors for termination detection.

Since there has been no change to the termination detec-
tion approach and the way gain is computed, the following
proposition from LID-JESP(see (Nairet al. 2005)) hold for
SLID-JESP as well.

Proposition 3 SLID-JESP will terminate within d (=
diameter) cycles iff agent are in a local optimum.

This shows that the SLID-JESP will terminate if and only if
agents are in a local optimum.

Hyper-link-based Decomposition (HLD)
Proposition 1 and Equation 2 show that the value function
and the local neighborhood utility function can both be de-
composed into components for each hyper-link in thein-
teraction hypergraph. The Hyper-link-based Decomposition
(HLD) technique exploits this decomposability for speeding
up the algorithms EVALUATE and GETVALUE.

We introduce the following definitions to ease the descrip-
tion of HLD. LetEi = {l |l ∈E∧ i ∈ l} be the subset of hyper-



Algorithm 6 FINDPOLICY(i,Bt
i, ~ωi

t ,πNi ,t,T)

1: a∗i ← argmaxai
Vai ,t

i (Bt
i ), πi(~ωi

t)← a∗i
2: if t < T−1 then
3: for all ωt+1

i ∈Ωi do
4: Bt+1

i ← UPDATE(i,Bt
i ,a
∗
i ,ω

t+1
i ,πNi )

5: FINDPOLICY(i,Bt+1
i ,

〈

~ωi
t ,ωt+1

i

〉

,πNi ,t +1,T)

6: return

Algorithm 7 SLID-JESP(i,ND-POMDP, p)

0: {lines 1-4 same a LID-JESP}
5: while terminationCtri < d do {lines 6-13 same as LID-JESP}

14: if RANDOM() < p and gaini > 0 then
15: FINDPOLICY(i,b,〈〉 ,πNi ,0,T)
16: Communicateπi with Ni
17: Receiveπ j from all j ∈Ni that changed their policies
18: return πi

links that contain agenti. Note thatNi = ∪l∈Ei l −{i}, i.e.
the neighborhood ofi contains all the agents inEi except
agenti itself. Sl = × j∈lSj refers to the states of agents in
link l . Similarly, Al = × j∈lA j , Ωl = × j∈l Ωl , Pl(sl ,al ,s′l ) =
∏ j∈l Pj(sj ,a j ,s′j ), and Ol (sl ,al ,ωl ) = ∏ j∈l O j(sj ,a j ,ω j ).
Further, we definebl = ∏ j∈l b j(sj ), whereb j is the distribu-
tion over agentj ’s initial state. Using the above definitions,
we can rewrite Equation 2 as:

Vπ[Ni ] = ∑
l∈Ei

∑
sl ,su

bu(su) ·bl (sl ) ·V
0
πl

(sl ,su,〈〉 , . . . ,〈〉) (5)

EVALUATE -HLD (Algorithm 9) is used to compute the local
neighborhood utility of a hyperlinkl (inner loop of Equa-
tion 8). When the joint policy is completely specified, the
expected reward from each hyper-link can be computed in-
dependently (as in EVALUATE -HLD). However, when try-
ing to find the optimal best response, we cannot optimize on
each hyper-link separately since in any belief state, an agent
can perform only one action. The optimal best response in
any belief state is the action that maximizes the sum of the
expected rewards on each of its hyper-links.

The algorithm, GETVALUE-HLD, for computing the best
response is a modification of the GETVALUE function that
attempts to exploit the decomposability of the value function
without violating the constraint that the same action must
be applied to all the hyper-links in a particular belief state.
Here, we define anepisodeof agenti for a hyper-linkl at

time t aset
il =

〈

st
u,s

t
l ,~ω

t
l−{i}

〉

. Treating episode as the state,

the transition and observation functions can be defined as:

P′il (e
t
il ,a

t
i ,e

t+1
il ) =Pu(s

t
u,s

t+1
u ) ·Pl(s

t
l ,s

t
u,a

t
l ,s

t+1
l )

·Ol−{i}(s
t+1
l−{i},s

t+1
u ,at

l−{i},ω
t+1
l−{i})

O′il (e
t+1
i ,at

i ,ω
t+1
i ) = Oi(s

t+1
i ,st+1

u ,at
i ,ω

t+1
i )

whereat
l−{i} = πl−{i}(~ωt

l−{i}). We can now define the mul-
tiagent belief state for an agenti with respect to hyper-link
l ∈ Ei as:

Bt
il (e

t
il ) = Pr(st

u,s
t
l ,~ω

t
l−{i}|~ω

t
i ,~a

t−1
i ,b)

We redefine the multiagent belief state of agenti as :

Bt
i (e

t
i ) = {Bt

il (e
t
il )|l ∈ Ei}

We can now compute the value of the best response policy
using the following equation:

Vt
i (B

t
i ) = max

ai∈Ai

(

∑
l∈Ei

Vai ,t
il (Bt

i )

)

(6)

The value of the best response policy for the linkl can be
computed as follows:

Vt
il (B

t
i) = V

a∗i ,t
il (Bt

i ) (7)

where a∗i = argmaxai∈Ai

(

∑l∈Ei
Vai ,t

il (Bt
i )
)

. The function
GETVALUE-HLD (see Algorithm 10) computes the term
Vt

il (B
t
i ) for all links l ∈ Ei .

The function,Vai ,t
il , can be computed as follows:

Vai ,t
il (Bt

i ) =∑
et
il

Bt
il (e

t
il ) ·Rl (sl ,su,al )

+ ∑
ωt+1

i ∈Ω1

Pr(ωt+1
i |B

t
i ,ai) ·V

t+1
il

(

Bt+1
i

)

(8)

The function GETVALUEACTION-HLD(see Algorithm 11)
computes the above value for all linksl . Bt+1

i is the belief
state updated after performing actionai and observingωt+1

i
and is computed using UPDATE-HLD (see Algorithm 12).
Agent i’s policy is determined from its value functionVai ,t

i
using FINDPOLICY-HLD (see Algorithm 13).

The reason why HLD will reduce the run time for finding
the best response is that the optimal value function is com-
puted for each link separately. This reduction in runtime is
borne out by our complexity analysis and experimental re-
sults as well.

Algorithm 8 LID-JESP-HLD(i,ND-POMDP)

0: {lines 1-4 same a LID-JESP}
5: while terminationCtri < d do
6: for all su do
7: for all l ∈ Ei do
8: for all sl ∈ Sl do
9: B0

il (〈su,sl ,〈〉〉)← bu(su) ·bl (sl )

10: prevVal
+
← B0

il (〈su,sl ,〈〉〉) ·
EVALUATE -HLD(l ,sl ,su,πl ,〈〉 ,0,T)

11: gaini ← GETVALUE -HLD(i,B0
i ,πNi ,0,T)− prevVal

12: if gaini > 0 then terminationCtri ← 0

13: else terminationCtri
+
← 1

14: Exchangegaini ,terminationCtri with Ni
15: terminationCtri ←min j∈Ni∪{i}terminationCtrj
16: maxGain←maxj∈Ni∪{i}gainj
17: winner← argmaxj∈Ni∪{i}gainj

18: if maxGain> 0 and i = winner then
19: FINDPOLICY-HLD(i,B0

i ,〈〉 ,πNi ,0,T)
20: Communicateπi with Ni
21: else if maxGain> 0 then
22: Receiveπwinner from winnerand updateπNi

23: return πi



Algorithm 9 EVALUATE -HLD(l ,st
l,s

t
u,πl ,~ωt

l ,t,T)

1: al ← πl (~ωt
l )

2: val← Rl
(

st
l ,s

t
u,al

)

3: if t < T−1 then
4: for all st+1

l ,st+1
u do

5: for all ωt+1
l do

6: val
+
← Pu(st

u,s
t+1
u ) · Pl (st

l ,s
t
u,al ,s

t+1
l ) ·

Ol (s
t+1
l ,st+1

u ,al ,ωt+1
l ) ·

EVALUATE -HLD
(

l ,st+1
l ,st+1

u ,πl ,
〈

~ωt
l ,ω

t+1
l

〉

,t +1,T
)

7: return val

Algorithm 10 GETVALUE -HLD(i,Bt
i,πNi ,t,T)

1: if t ≥ T then return 0
2: if V t

il (B
t
i ) is already recorded∀l ∈ Ei then return [V t

il (B
t
i )]l∈Ei

3: bestSum←−∞
4: for all ai ∈ Ai do
5: value← GETVALUEACTION-HLD(i,Bt

i ,ai ,πNi ,t,T)
6: valueSum← ∑l∈Ei

value[l ]

7: recordvalueSumasVai ,t
i (Bt

i )
8: if valueSum> bestSumthen best← value,bestSum←

valueSum
9: for all l ∈ Ei do

10: recordbest[l ] asV t
il (B

t
i )

11: return best

Algorithm 11 GETVALUEACTION-HLD(i,Bt
i,ai ,πNi ,t,T)

1: for all l ∈ Ei do
2: value[l ]← 0

3: for all et
il =

〈

st
u,s

t
l ,~ω

t
l−{i}

〉

s.t.Bt
il (e

t
il ) > 0 do

4: al−{i}← πl−{i}(~ωt
l−{i})

5: value[l ]
+
← Bt

il (e
t
il ) ·Rl

(

st
l ,s

t
u,al

)

6: if t < T−1 then
7: for all ωt+1

i ∈Ωi do
8: for all l ∈ Ei do
9: Bt+1

il ← UPDATE-HLD(i, l ,Bt
il ,ai ,ωt+1

i ,πl−{i})

10: prob[l ]← 0
11: for all st

u,s
t
l do

12: for all et+1
il =

〈

st+1
u ,st+1

l ,
〈

~ωt
l−{i},ω

t+1
l−{i}

〉〉

s.t.

Bt+1
il (et+1

il ) > 0 do
13: al−{i}← πl−{i}(~ωt

l−{i})

14: prob[l ]
+
←Bt

il (e
t
il ) ·Pu(st

u,s
t+1
u ) ·Pl (st

l ,s
t
u,al ,s

t+1
l ) ·

Ol (s
t+1
l ,st+1

u ,al ,ωt+1
l )

15: f utureValue←GETVALUE -HLD(i,Bt+1
i ,πNi ,t +1,T)

16: for all l ∈ Ei do
17: value[l ]

+
← prob[l ] · f utureValue[l ]

18: return value

Algorithm 12 UPDATE-HLD(i, l ,Bt
il ,ai ,ωt+1

i ,πl−{i})

1: for all et+1
il =

〈

st+1
u ,st+1

l ,
〈

~ωt
l−{i},ω

t+1
l−{i}

〉〉

do

2: Bt+1
il (et+1

il )← 0
3: al−{i}← πl−{i}(~ωt

l−{i})

4: for all st
u,s

t
l do

5: Bt+1
il (et+1

il )
+
← Bt

il (e
t
il ) · Pu(st

u,s
t+1
u ) · Pl (st

l ,s
t
u,al ,s

t+1
l ) ·

Ol (s
t+1
l ,st+1

u ,al ,ωt+1
l )

6: normalizeBt+1
il

7: return Bt+1
il

Algorithm 13 FINDPOLICY-HLD(i,Bt
i, ~ωi

t ,πNi ,t,T)

1: a∗i ← argmaxai
Vai ,t

i (Bt
i )

2: πi(~ωi
t)← a∗i

3: if t < T−1 then
4: for all ωt+1

i ∈Ωi do
5: for all l ∈ Ei do
6: Bt+1

il ← UPDATE-HLD(i, l ,Bt
il ,a
∗
i ,ω

t+1
i ,πl−{i})

7: FINDPOLICY-HLD(i,Bt+1
i ,

〈

~ωi
t ,ωt+1

i

〉

,πNi ,t +1,T)

8: return

Complexity Results

The complexity of the finding the optimal best response for
agenti for JESP (using the dynamic programming(Nairet
al. 2003)) isO(|S|2 · |Ai |

T ·∏ j∈{1...n} |Ω j |
T). Note that the

complexity depends on the number world states|S| and the
number of possible observation histories of all the agents.

In contrast, the complexity of finding the optimal
best response fori for LID-JESP (and SLID-JESP) is
O(∏l∈Ei

[|Su×Sl |
2 · |Ai |

T · |Ωl |
T ]). It should be noted that in

this case, the complexity depends on the number of states
|Su|, |Si| and |SNi | and not on the number of states of any
non-neighboring agent. Similarly, the complexity depends
on only the number of observation histories ofi and its
neighbors and not those of all the agents. This highlights
the reason for why LID-JESP and SLID-JESP are superior
to JESP for problems where locality of interaction can be
exploited.

The complexity for computing optimal best response for
i in LID-JESP with HLD (and SLID-JESP with HLD) is
O(Σl∈Ei [|Su× Sl |

2 · |Ai |
T · |Ωl |

T ]). Key difference of note
compared to the complexity expression for LID-JESP, is the
replacement of product,∏ with a sum,Σ. Thus, as number of
neighbors increases, difference between the two approaches
increases.

Since JESP is a centralized algorithm, the best response
function is performed for each agent serially. LID-JESP and
SLID-JESP (with and without HLD), in contrast, are distrib-
uted algorithms, where each agent can be run in parallel on a
different processor, further alleviating the large complexity
of finding the optimal best response.



Experimental Results

In this section, we performed comparison of the algorithms
– LID-JESP, SLID-JESP, LID-JESP with HLD and SLID-
JESP with HLD – in terms of value and runtime. We used
four different topologies of sensors, shown in Figure 2,
each with a different target movement scenario. With 2 tar-
gets moving in the environment, possible positions of tar-
gets are increased as the network grows and the number
of unaffected states are increased accordingly. Figure 2(a)
shows the example where there are 3 sensors arranged in
a chain and the number of possible positions for each tar-
get is 1. In the cross topology, as in Figure 2(b), we con-
sidered 5 sensors with one sensor in the center surrounded
by 4 sensors and 2 locations are possible for each tar-
get. In the example in Figure 2(c) with 5 sensors arranged
in P shape, target1 and target2 can be at 2 and 3 lo-
cations respectively, thus leading to a total of 12 states.
There are total 20 states for six sensors in example of Fig-
ure 2(d) with 4 and 3 locations for target1 and target2, re-
spectively. As we assumed earlier, each target is indepen-
dent of each other. Thus, total number of unaffected states
are (∏targets(number of possible positions of each target+
1)). Due to the exponentially increasing runtime, the size
of the network and time horizon is limited but is still signifi-
cantly larger than those which have previously been demon-
strated in distributed POMDPs. All experiments are started
at random initial policies and averaged over five runs for
each algorithm. We chose 0.9 as the threshold probability
(p) for SLID-JESP which empirically gave a good result for
most cases.

Figure 3 shows performance improvement of SLID-JESP
and HLD in terms of runtime. In Figure 3, X-axis shows
the time horizonT, while Y-axis shows the runtime in mil-
liseconds on a logarithmic scale. In all cases of Figure 3,
the line of SLID-JESP is lower than that of LID-JESP with
and without HLD where the difference of two grows as the
network grows. As in Figure 3(c) and Figure 3(d) the dif-
ference in runtime between LID-JESP and SLID-JESP is
bigger than that in smaller network examples. The result
that SLID-JESP always takes less time than LID-JESP is
because in SLID-JESP, more agents change their policy in
one cycle, and hence SLID-JESP tends to converge to a
local optimum quickly. As for HLD, all the graphs shows
that the use of Hyper-link-based decomposition clearly im-
proved LID-JESP and SLID-JESP in terms of runtime. The
improvement is more visible when the number of neighbors
increases where HLD takes advantage of decomposition. For
example, in Figure 3(b), by using HLD the runtime reduced
by more than an order of magnitude forT = 4. In cross
topology, the computation for the agent in the center which
has 4 neighbors is a main bottleneck and HLD significantly
reduces the computation by decomposition.

Figure 4 shows the values of each algorithm for differ-
ent topologies. In Figure 4, X-axis shows the time horizon
T, while Y-axis shows the value of team reward. There are
only two lines in each graph because the values of the al-
gorithm with HLD and without HLD are always the same
because HLD only exploits independence between neigh-

(a) 1x3 (b) Cross (c) 5-P

(d) 2x3

Figure 2: Different sensor net configurations.
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Figure 3: Runtime (ms) for (a) 1x3, (b) cross, (c) 5-P and (d)
2x3.

bors and doesn’t affect the value of the resulting joint policy.
The reward of LID-JESP is larger than that of SLID-JESP in
three out of the four topologies that we tried. This suggests
SLID-JESP’s greedy approach to changing the joint policy
causes it to converge to smaller local optima than LID-JESP
in some cases. However, note that in Figure 4(a) SLID-JESP
converges to a greater local optima than LID-JESP. This sug-
gests that network topology greatly impacts the choice of
whether to use LID-JESP or SLID-JESP. Further, the results
of SLID-JESP vary in value for different threshold proba-
bilities, however there is a consistent trend that the result is
better when the threshold probability (p) is large. This trend
means that in our domain, it is generally better to change
policy if there is a visible gain.

Summary and Related Work
In this paper, we presented a stochastic variation of the LID-
JESP that is based on DSA (distributed stochastic algorithm)
that allows neighboring agents to change their policies in the
same cycle. Through detailed experiments, we showed how
this can result in speedups without a large difference in so-
lution quality. We also introduced a technique calledhyper-
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link-based decomposition(HLD) that allows us to exploit lo-
cality of interaction further, resulting in faster run times for
both LID-JESP and its stochastic variant without any loss in
solution quality.

Among related work, we have earlier discussed the rela-
tionship of our work to key DCOP and distributed POMDP
algorithms, i.e., we synthesize new algorithms by exploit-
ing their synergies. We now discuss some other recent al-
gorithms for locally and globally optimal policy generation
for distributed POMDPs. For instance, Hansenet al. (2004)
present an exact algorithm for partially observable stochastic
games (POSGs) based on dynamic programming and iter-
ated elimination of dominant policies. Emery-Montemerlo
et al. (2004) approximate POSGs as a series of one-step
Bayesian games using heuristics to find the future dis-
counted value for actions. We have earlier discussed Nair
et al. (2003)’s JESP algorithm that uses dynamic program-
ming to reach a local optimal. In addition, Beckeret al.’s
work (2004) on transition-independent distributed MDPs is
related to our assumptions about transition and observabil-
ity independence in ND-POMDPs. These are all centralized
policy generation algorithms that could benefit from the key
ideas in this paper — that of exploiting local interaction
structure among agents to (i) enable distributed policy gen-
eration; (ii) limit policy generation complexity by consider-
ing only interactions with “neighboring” agents. Guestrinet
al. (2002), present “coordination graphs” which have simi-
larities to constraint graphs. The key difference in their ap-
proach is that the “coordination graph” is obtained from the
value function which is computed in a centralized manner.
The agents then use a distributed procedure for online action
selection based on the coordination graph. In our approach,
the value function is computed in a distributed manner. Dol-
gov and Durfee’s algorithm (2004) exploits network struc-
ture in multiagent MDPs (not POMDPs) but assume that
each agent tried to optimize its individual utility insteadof
the team’s utility.
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