
GPGP – A Domain-Independent Implementation

John Phelps and Jeff Rye
Honeywell Laboratories
3660 Technology Drive
Minneapolis, MN 55418

john.phelps@honeywell.com

Abstract

This paper describes a new, domain-independent design
and implementation of TAEMS-based Java Agent Frame-
work/Generalized Partial Global Planning agents that targets
the DARPA Coordinators program challenge problem envi-
ronment. It offers a description of the challenge problem en-
vironment, a mechanism utilized to provide abstract coordi-
nation problem contexts that avoids complete problem cen-
tralization, generalized coordination protocols, and some pre-
liminary performance results.

Introduction
We use the term Generalized Partial Global Planning
(GPGP) to describe a family of coordination theories and
implementations that share a common underlying problem
representation called Task Analysis Environmental Model-
ing and Simulation (TAEMS). Various implementations of
GPGP have been cited including the original DVM appli-
cation(Decker 1995), DECAF(Graham, Decker, & Mersic
2003), and various efforts at Honeywell(Wagneret al. 2004;
Wagner, Guralnik, & Phelps 2003b; 2003a). In our work at
Honeywell, GPGP has come to mean the coordination part
of a TAEMS-based agent. More specifically, it is the coor-
dination mechanism of such an agent that drives the Design-
to-Criteria (DTC) TAEMS scheduler.1

We describe a new implementation of the Honeywell
GPGP that is based on previous Honeywell versions of
GPGP. This latest incarnation targets a class of synthetic,
domain-independent challenge problems generated as part
for the DARPA Coordinators program (Wagner 2005). The
Coordinators program’s goal is the construction of sophis-
ticated cognitive agents capable of assisting large deployed
forces adapt their mission plans and schedules in real time.
To accomplish this while respecting the authority of human
commanders and the inherent complexity of the problems,
we are designing our agents to implement several functions,
including task analysis (singe-agent planning and schedul-
ing), coordination, autonomy control, organizational deci-
sion making, and metacontrol. In the agent architecture

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1Although there might be a less contentious name for widely
varying TAEMS-based agent coordination components, GPGP has
stuck and so we will continue to co-opt it for this paper.

discussed herein, DTC addresses the task analysis require-
ments, the GPGP component addresses the requirements of
coordination between agents. And, although autonomy con-
trol and organizational decision making are an integral part
of the overall program vision, we did not address them in
this program phase or, hence, our attendant solution. Our
metacontroller was developed by a team at the University of
North Carolina, Charlotte and is contained in this sympo-
sium’s report (Raja, Alexander, & Mappillai 2006).

The agent architecture and DTC+GPGP combination de-
scribed in this paper was one of several approaches inves-
tigated by the Honeywell team to solve the Coordinators
challenge problems. Building on previous versions of GPGP
was a natural choice because Coordinators problems are en-
coded in a variant of TAEMS called Coordinators TAEMS
(CTAEMS). Our hope was to leverage existing agent in-
frastructure and techniques developed Honeywell and the
UMass Multiagent Systems Lab.

Whereas previous Honeywell implementation of GPGP
were coupled through explicit task model constructs to spe-
cific domains, the version of GPGP implemented for Coordi-
nators moves much closer to true domain independence (vis-
a-vis TAEMS). This required creating a more general prob-
lem context management system than we had built before,
disentangling the previous GPGP distributed search proto-
cols from their reliance on domain-specific hooks, and de-
veloping a mechanism for maintaining real-time responsive-
ness while relying on the soft real-time DTC scheduler.

The Coordinators program stipulated that our solutions
could not completely centralize the problems we were given
to solve. One approach we developed that avoided com-
plete centralization but that also provided some quantita-
tive problem-solving context is a proxy method mechanism.
Proxy methods enable one agent to inform another agent
about the gross expected performance characteristics of an
potentially complex task structure via an approximation.
The approximation is stored in the performance character-
istics of a single method that is denoted “nonlocal”, mean-
ing that the agent cannot itself execute it. Proxy meth-
ods are thus used to provide problem solving context for
each agent’s limited view of the overall problem by adding
coarse-grained, quantitative approximations of its interac-
tions with other agents.

To maintain real-time responsiveness while generating



schedules with a soft real-time scheduler, we introduce a
multiprocessing model that allows the computationally ex-
pensive Design-to-Criteria (DTC) (Wagner & Lesser 2001)
scheduling performed at each agent to run outside of the co-
ordination context processing and schedule execution.

In the remainder of the paper, we discuss the DARPA
Coordinators program challendge problem environment, the
overall architecture and basic control flow of our JAF/GPGP
implementation, the proxy method technique, the approach
to maintaining real-time responsiveness while using a soft
real-time scheduler, the generalized coordination protocol,
and give some exploratory data on the new implementation’s
performance relative to a centralized scheduler provided by
the program evaluators.

TAEMS, CTAEMS, and The Coordinators
“Cookbook”

The Task Analysis, Environment Modeling, and Simulation
(TAEMS) (Decker 1995; Lesser, Horling, & et al. ) lan-
guage quantitatively describes the alternative ways a mission
can be achieved. A TAEMS task structure is essentially an
annotated task decomposition tree. Root-level tasks repre-
sent the goals or missions that an agent may try to achieve,
which may be decomposed into several levels of sub-tasks,
ultimately terminating at executable primitive tasks called
methods. TAEMS methods include quantitative details to
describe their expected quality, cost, and duration. Each of
these dimensions is described with a probabilistic distribu-
tion. Together, the three-tuple of quality, cost, and duration
represents a particular outcome. Methods may have multiple
outcomes, each with an associated probability. By explicitly
modeling this information, the TAEMS structure can capture
the uncertain and dynamic character of real-world actions.
TAEMS tasks have temporal constraints such as earliest start
times and deadlines. TAEMS also supports quantitative re-
lationships that span across the task hierarchy and capture
other forms of task interaction. For example, enables and
disables task inter-relationships (also called nonlocal effects
or NLEs) are used to denote causality or precedence require-
ments. So-called soft NLEs such as facilitates indicate that
one task can improve another, but is not required. Consum-
able and nonconsumable resources are used to represent the
physical or logical components required by methods. Rela-
tionships define the effects actions have on resources, and
the consequences that an absence or excess of resources
may have. Relationships can exist within a single agent’s
task model, or span those of several agents. The Coordina-
tors program created a variant of TAEMS called CTAEMS
to represent its challenge problems. CTAEMS basically re-
moves all explicit resource concepts from TAEMS and sev-
eral QAFs (such as the sequence QAFs). It also added a
QAF called a SyncSum which accumulates quality like Sum
QAF for those child tasks that start at the same time as the
first child task.

Further, a problem “cookbook” was created to prescribe
the types of CTAEMS-encoded problems that would be seen
in evaluation. The cookbook was then used by the program
evaluation team to create a scenario generator that auto-

mated the otherwise impossibly tedious process of creating
the problems by hand. Since we used problems generated
by the scenario generator to test the solution reported in this
paper it is worthwhile to discuss some of the specifics of the
types of problems that the scenario generator generates.

The basic structure of a scenario is as follows. Each sce-
nario is represented as a 5-to-6-level task structure with the
following basic composition:

Scenario Level — A Sum QAF task node and the root of
the task structure, a “task group” in TAEMS parlance.

Problem Level — Min or Sum QAF task nodes.
Window Level — Sum QAF task nodes and the locus of

the basic temporal constraints on the problem in that tasks
at this level specify the release times and deadlines for all
of their child tasks.

CTask Level(s) — Max or SyncSum task nodes. When a
SyncSum is introduced at this level, it’s child tasks are
CTasks, hence if there is a SyncSum task we have a 6-
level task structure whereas if we don’t, it’s a 5-level
structure.

Method Level — This is the lowest level, where methods
represent the most basic actions the agent can execute.

This is shown graphically in Figure 1. The simplicity of the
basic structure somewhat belies the complexity of problems
that can be generated within it. Note that we are talking only
about levels here, not numbers of nodes at each level. So, for
instance, you might have a scenario with 4 problems, where
each problem has 6 windows, each window has 5 CTasks,
and each CTask has 4 methods. This would give a total of
4*6*5*4=480methods. I don’t mean to suggest that that was
a typical problem, but it would not be out of scope, either.

Figure 1: The basic 5-to-6 level Coordinators “Cook-
book” structure for evaluation problems.

What further complicates the Coordinators evaluation
problems is the addition of nonlocal effects (NLEs) within a
single agent as well as between agents. NLEs come in too
many esoteric flavors in the evaluation problems to discuss
them at length here. The main concern for GPGP was the
NLEs that spanned agents and evaluating their quantitative
effects to properly evaluate potential commitments between
agents.



Scenarios were tailored for distributed coordination eval-
uation via a procedure called the “visible-to” procedure that
provided for each agent a subset of the initial task structure
based on which methods the agent controlled. Each method
generated in a scenario (problem) by the scenario generator
would have exactly one agent that could execute it. Methods
are not transferable between agents. We say that an agent
“owns” a method that it alone can execute. According to the
visible-to procedure, an agent would obtain from the simu-
lation environment during an evaluation run a subset of the
original scenario task structure based on the methods that it
owned such that it would see all parent tasks of those meth-
ods. It would also see tasks visible to other agents based
on their method ownership that are involved in inter-agent
NLEs.

Architecture
Like previous Honeywell GPGPs, the Coordinators GPGP
architecture is based on the Java Agent Framework (JAF)
(Horling 1998). JAF provides three primary components
that GPGP interacts with: the Design-to-Criteria scheduler
(DTC), State, and the Executive. These are shown with their
attendant interactions in Figure 2.

The Simulation Bridge is responsible for initially gener-
ating and then updating the agent’s subjective view of the
global task structure. Updates occur on events generated by
the simulator that can change task deadlines or release times
or add completely new tasks to the existing task structure.
The current task structure is stored in the State component.

GPGP is responsible for creating coordinated schedules
via exchange of information with other agents. Based on
information from other agents in the form of commitments
and proxy methods, GPGP calls DTC to analyze task struc-
tures and to create schedules which are deposited in the State
component and run by the Executive.

The Executive dispatches actions dictated by the sched-
ule and maintains consistency between the outcomes of the
actions dispatched and the agent’s view of the current state
of the task structure. It can also perform some rudimentary
rescheduling operations without invoking DTC, such as slid-
ing the start times of a set of tasks forward in time if doing
so does not violate scenario- or commitment-imposed con-
straints.

In conjunction with the MASS simulator, JAF was imple-
mented to provide deterministic and repeatable results. In
order to provide this guarantee, time was pulsed based on
events in the simulation instead of based on wall time pass-
ing. Messages were passed synchronously. The Coordina-
tors simulation changed both of these assumptions. Time in
the Coordinators simulation is pulsed based on the passage
of wall time and messages are passed asynchronously.

As a result of these simulation changes, JAF’s architec-
ture was adapted so that all processing of messages (whether
from the simulator of from other agents) happens in a short
period of time (apx. 1 second). Any processing that takes
a longer must happen in a dedicated processing thread. Be-
fore the adaptation, JAF agents had a Control component
which was responsible for pulsing the rest of the AgentCom-
ponents (Schedule, Execute, etc.). This Control component

Figure 2: The Coordinators GPGP architecture.

has a thread which waited for a period of time before wak-
ing to see if it was time to execute a pulse. If it was time to
do a pulse, Control would call the pulse method for each of
its AgentComponents. When all of the AgentComponents
had finished, Control would send a message to the simulator
indicating that the agent was finished.

Managing Coordination Contexts with Proxy
Methods

As mentioned previously, we assume that problem solving at
a single agent begins with a subjective view of a task struc-
ture created from a scenario via the visible-to procedure out-
lined previously. Each agent’s subjective view may thus not
by default be lacking some quantitative performance charac-
teristics of nonlocal tasks that enable or are enabled by local
tasks. To provide an improved view each agent’s interactions
with other agents, without completely centralizing the prob-
lem, our implementation of GPGP introduces proxy meth-
ods as quantitative approximations of other agents’s tasks
performance. Once proxy methods are communicated to
agents sharing an interaction, be it an NLE or shared task,
they can be used to guide quantitative choices for commit-
ments over the interaction.

Proxy methods are introduced on two types of interactions
spanning agents: shared tasks and NLEs. For shared tasks,
each agent in the shared task may have sibling subtasks of
the shared task that are not visible to other agents. Each
agent will communicate a proxy method for the sibling task
of the shared task to the agents that it is not visible to.

Similarly, for NLE interactions, any agent that shares
the source or target task communicates proxy methods that
approximate the performance characteristics of the shared
task’s subtasks. The specific algorithm used to create the
proxy methods at each agent is given below.



Figure 3: An example task structure with visibleTo infor-
mation annotated.

Algorithm 1: CREATEPROXYMETHODS(task)

for eachsubtask ∈ SUBTASKS(parent)
do agentsToInform← SETDIFF(
VISIBLETO(parent),
VISIBLETO(subtask));

SEND(agentsToInform,
CREATEPROXYMETHOD(subtask));

CREATEPROXYMETHODS(subtask);

In Algorithm 1 we introduce aVISIBLETO function that
returns the set of agents that a task in a subjective view is
visible to according to the visible-to procedure outlined pre-
viously. CREATEPROXYMETHODS is initially called with
the root of the subjective view of the task structure. It then
performs a depth-first traversal of the task structure, sending
proxy methods for tasks whose visibility decreases to those
agents in the set difference (SETDIFF)of the task’s and its
parent’sVISIBLETO sets. For example, consider the simple
task structure in Figure 3, which shows the subjective view
of Agent A.

Following the CREATEPROXYMETHODS algorithm,
Agent A would generate and send the following proxy
methods:

Task 1 Proxy — sent to Agents C and D, representing a
performance estimate of Task1.

Task 2 Proxy — sent to Agents B and C, representing a
performance estimate of Task2.

Creating the Approximation
A proxy method for a given task is generated by recursively
joining the characteristic distributions of descendant meth-
ods according to the subtask structure’s quality accumula-
tion functions (QAFs). Each method’s outcomes are first
joined by applying the density of each outcome to its char-
acteristic distributions (quality and duration distributions)
to create one “global outcome”. The global outcomes are
then joined up the task structure according to the following
heuristic formula for each QAF type:

Sum and SyncSum —return a new distribution for input

distributionsX , Y given by{(x + y, pX,Y (X = x, Y =
y))}.

Min — return a new distribution for input distributionsX ,
Y first given by{(min(x, y), pX,Y (X = x, Y = y))}
compacted.

Max — return a new distribution for input distributionsX ,
Y first given by{(max(x, y), pX,Y (X = x, Y = y))}
compacted.

pX,Y is the joint probability mass function (PMF) of the ran-
dom variablesX andY . To make the process more concrete,
let’s consider an example with the following distributions,
where each element of the distribution is given as a tuple
(value, P (value)).

• pX = (10, 0.8), (8, 0.2)
• pY = (5, 0.6), (4, 0.4)

marginal PMFX joint PMFX, Y
(10, 0.8) (15, 0.48) (14, 0.32)
(8, 0.2) (13, 0.12) (12, 0.8)

marginal PMFY → (5, 0.6) (4, 0.4)
Table 1: An example Sum/SyncSum QAF join.

To create the output distribution for a Sum QAF, we com-
bine all pairs of the values of each of the input distributions
to produce Table 1.

Each distribution resulting from a join ofk other distri-
butions (one for each subtask of a given task) feeds into the
join at its supertask. For instance, for the Task1 Proxy (see
Figure 3 Method1 2 1 and Method1 2 2 would Max join
at Task1 2. Then Task1 2 and Method1 1 would Min join
at Task1.

Real-Time Responsiveness with Soft
Real-Time Scheduling

Due JAF’s origin as a client of the Multi-Agent Survivabil-
ity Simulator (Vincent, Horling, & Lesser 2001), a discrete
event simulator where each time unit has no relation to wall-
clock time, JAF components share one thread and are given
processing time in a pulse that is delivered to each compo-
nent round-robin. The pulse for each component is part of a
larger control pulse that originates from MASS, when JAF
is connected to MASS, but that can also be generated inter-
nally. Each component pulse may take unbounded time and
during one component’s pulse no other component will be
pulsed.

While this model of control is excellent for producing pre-
dictable behavior in distributed systems, it posed problems
for meeting the real-time responsiveness challenges posed
by Coordinators problems, which established a strict rela-
tionship between the units of duration in TAEMS methods,
ticks, and wall-clock time. Specifically, a relationship spec-
ifying 1 duration unit = tick = 1 second was deemed accept-
able by the program evaluation team.

The crux of the problem for us was that the GPGP com-
ponent, which is responsible for creating coordinated sched-
ules for the agent to execute, makes repeated calls to the



Figure 4: DTC runtime on (a) single-agent, 1 problem, 1
window scenarios with varying numbers of fall-
backs and (b) the same except with 5 windows
instead of 1 window.

DTC scheduler. This is a problem because the DTC sched-
uler was not designed to be used in hard real-time problems.
It was designed to respond in soft real-time, where timely
response is seen as a goal but not an inviolable requirement.
So, by default, when GPGP made a call to DTC during its
pulse call (when the GPGP component got access to the
agent thread), all other components, including the compo-
nent responsible for responding to executing a schedule and
responding to events from the simulator, would block.

Although in our early investigations this performance is-
sue was not prevalent, when we began to scale up the size
of the problems we generated for GPGP+DTC we started to
notice significant performance degradation. Figure 4 shows
how DTC’s response time increases with the number of fall-
backs for a given CTask. Fallbacks are methods under a
CTask owned by the same agent that are intended to be sub-
stituted in case the originally scheduled method fails. Fall-
backs are generated by the scenario generator to take in-
creasingly less time to execute but to also yield lower and
lower expected quality. As problem sizes grew DTC had in-
creasing numbers of alternatives to generate and consider,
leading to longer runtimes.

Since, when they are made, the calls to DTC (during

GPGP’s pulse) consume nearly all the the time for a given
round of pulses to all the JAF components, we decided to
move the DTC scheduling to a separate thread. With that
done, each pulsed component needed only to return quickly
enough from the pulse call so that the sum of all the compo-
nent pulse times was less than the duration of a tick.

With simulator tick durations equal to approximately 1
second, this required us to break up each major function that
called DTC into pre- and post-processing that returned im-
mediately rather than waiting for DTC to return. The prepro-
cessing function creates the task structure for DTC to sched-
ule and then forks a thread for the DTC processing. The
processing thread assigned to DTC simply waits for DTC
to return, reads in the schedules produced and set a global
flag that indicates the scheduling run is done. The postpro-
cessing function examines the schedules returned and takes
whatever control actions are appropriate based on the new
schedule.

In the following section, the protocols that we discuss
show basically how this mechanism was used in our imple-
mentation.

GPGP Protocol
Previous Honeywell GPGP protocol implementations were
tied to the domain they were targeted to, usually via hooks
in the task structure created by the domain problem solver
(Wagneret al. 2004; Wagner, Guralnik, & Phelps 2003b;
2003a). For the Coordinators implementation of GPGP, we
were given an opportunity to create a version of GPGP that
generalized previous versions.

For Coordinators problems, GPGP would not be given as
explicit guidance about which tasks required coordination
because each agent is simply given a subjective view of a
shared global task structure with no annotations to guide its
coordination search. Agents would thus have to first expand
their local views of the problem to obtain a better under-
standing of their relationships with other agents. This is ac-
complished via the proxy methods mechanism just covered.

Once the proxy methods have been established for each
agent for each potential interaction with other agents, each
agent generates sets of commitment requests. This is done
by first conditioning the agent’s subjective view by assum-
ing the best case for all interactions with other agents us-
ing the information established via proxy methods. The ap-
proximate quality and time performance characteristics of
the proxy methods are used in conjunction with problem-
dictated constraints, such as task release times and deadlines
to generate sets of what-if commitments on the proxy meth-
ods (values for the proxy methods commitment variables).
As a simple example, using Figure 3, if Agent C has a task
that is enabled by a method owned by Agent A, Agent C as-
sumes that the enabling method will be active at its release
time.

The agent then schedules the best case what-if task struc-
ture using DTC. If DTC returns a schedule, that schedule
is used in conjunction with the non-conditioned subjective
view to determine the commitments required for the sched-
ule to be valid. The times commitments are required by



are also updated to reflect the times required by the what-
if schedule. For instance, returning to our example from
above, if Task3’s first descendant method is scheduled at
time 40, Method2 2 (from Agent A) would not need to
complete until that time.

Once the set of commitment requests is generated, they
are sent to the agents owning the required tasks. If a task is
shared by more than one agent, one is picked. Obviously, an
extension to this protocol would be to request both tasks and
then make some determination about whether redundancy
would be beneficial.

GPGP’s function is to determine set of commitments that
maximizing quality at the task group. This is done in theUP-
DATESCHEDULE shown in Algorithm 3. The basic control
flow of the GPGP protocol is given in Algorithm 2.

Algorithm 2: COORDINATE()

UPDATEPROXYMETHODS();
if needUpdate or inUpdateSchedule

then
UPDATESCHEDULE();

else
UPDATECOMMITMENT REQUESTS();

What theCOORDINATE algorithm (Algorithm 2) shows
is that the proxy methods and commitment requests are
constantly updated with changes to the agent’s subjective
task structure. Often there are no updates necessary, in
which case the functions return without performing any ac-
tions. The main processing of commitments to coordinate
the agent’s schedule according to its interactions with other
agents occurs in theUPDATESCHEDULE function.

Algorithm 3: UPDATESCHEDULE()

taems← SUBJECTIVEV IEW();
if not inUpdateSchedule

then
ADDPROXYMETHODS(taems);
ADDNONLOCALCOMMITMENTS(taems);
ADDLOCALCOMMITMENTS(taems);
SCHEDULEWITHDTC(taems);
inUpdateSchedule← true;

else ifDTCSCHEDULE() not null
then

whatIf ← DTCSCHEDULE();
commitsSatisfied←
DETERMINECOMMITSSATISFIED(whatIf);

ACCEPT(commitsSatisfied);
DECOMMIT(commitsSatisfied);
inUpdateSchedule← false;

The UPDATESCHEDULE function (Algorithm 3) is in-
voked whenever theneedUpdate flag is set. It can be set
in two ways. The first is by the Executive, which may have

determined that, because of the actual execution character-
istics of the scheduled methods, the schedule is no longer
valid. The second is by a commitment message from an-
other agent.

Once called,UPDATESCHEDULE begins its DTC sched-
ule preprocessing step by setting theinUpdateSchedule flag
so that when it is called a second time (on the next pulse),
it will check to see if DTC has returned (as indicated by a
non-null result fromDTCSCHEDULE.

In the preprocessing step,UPDATESCHEDULE conditions
the agent’s subjective task structure by adding the proxy
methods, nonlocal commitments (commitments from other
agents to this agent), and local commitments (commitments
from this agent to other agents). It then forks a process for
DTC to schedule the task structure in the callSCHEDULE-
WITHDTC.

When DTC returns from scheduling,UPDATESCHEDULE
performs the postprocessing on the DTC call by generating
the set of commitments satisfied by the new schedule (DE-
TERMINECOMMITMENTSSATISFIED). It then sends com-
mitment accept messages for tasks that it had previously not
made commitments for but that are in the satisfied commit-
ment set. It also sends decommit messages for commitments
that had been made previously but that are not in the set of
satisfied commitments. It will also update commitments if
they are in both sets, but there has been some change (say in
the time that the commitment will be satisfied). Finally, the
inUpdateSchedule flag is cleared.

Results
In this section, we present some preliminary results from
some targeted investigations into the GPGP’s behavior. As
we noted previously, scalability issues with the DTC sched-
uler cropped up in our investigations which ultimately lead
us to stop work on this branch of the project. (We intend
to integrate the basic ideas of this work into a solution we
developed in parallel that performed more robustly on the
larger problems we tested on.) The following results are
meant to demonstrate some of the capabilities of this solu-
tion.

The program evaluation scenario generator was used to
generate each of the problems below. There are two basic
parameters used in configuring the generator that are not ref-
erenced in the specific experiments: random NLE frequen-
cies and NLE localities. Both soft and hard random NLE
frequencies were set to 50% and NLE locality was set to be
fully connected. That means, roughly, that there is a 50%
chance for an NLE to be added to any permissible pair of
nodes and that there are no special groupings of NLEs, e.g.,
two isolated groups. The one other aspect of the scenarios
that is common throughout the experiments is the earliest
release time. It was fixed at 100 ticks into the simulation to
allow the agents some time to negotiate before they would
be required to run anything.

The Central Solver quality reported is the maximum qual-
ity reported by the program evaluation team’s centralized
solver; the major advantages for the central solver are that
it gets the original problem from the scenario generator, i.e.,
it has not been sectioned and distributed via the visible-to



procedure described previously, and it could take as long as
it wanted to solve the problem.

Figure 5 shows GPGP’s response to scenarios with in-
creasing number of agents. Each scenario had 1 problem, 1
window, and CTasks with redundant methods, meaning that
each CTask could be accomplished by at least two agents.
Also, the failure probability was set to 50% which meant
that 50% of the methods would fail 50% of the time. This
was added to test the system’s ability to deal with changes
online. The data suggest that GPGP scales well in this type
of scenario as the number of agents increases.

Figure 5: Effect of number of agents on solution quality
on domains with 50% failure probability and 1
fallback method per CTask.

Figure 6 shows GPGP’s response to scenarios with in-
creasing probabilities of failure in both 3 agent scenariosand
6 agent scenarios. The data suggest that GPGP performance
may degrade in cases where there are higher failure rates.
The slightly better performance in 6 agent scenarios can be
attributed to the redundancy available in those problems.
Another note is that this comparison is between the maxi-
mum quality reported by the Centralized Scheduler, which
makes some assumptions about the performance of methods
that may be violated during the simulation.

Conclusion and Future Work
We have described a new implementation of the JAF ar-
chitecture and Honeywell GPGP protocol that makes use
of a domain-independent proxy method coordination con-
text management technique, that retains real-time response
time despite its reliance on a soft real-time scheduler, and
that provides a generalization of previous implementations
of GPGP that were targeted to specific domains.

One of the most obvious areas for future work is improv-
ing the responsiveness of the underlying scheduler technol-
ogy. The performance of the current GPGP-DTC-Executive
triad will degrade significantly on problems that cause
DTC’s processing time to explode, since either no sched-
ule will be produced initially or none will be generated in
a timely fashion on a rescheduling action once the existing

Figure 6: Effects of failure probability in (a) 3 agent sce-
nario and (b) 6 agent scenarios.

schedule has been invalidated by some event. A separate in-
vestigation lead by Honeywell into an anytime MDP-based
task analysis system as part of the Coordinators program
promises to be a more fitting basis for future work on these
types of problems.

Another area of future work is improving the way that
agents negotiate commitments on shared tasks. Whereas
currently, agents simply pick one of the agents capable of
performing a shared task to provide a commitment in a pair-
wise fashion, a more sophisticated solution would approach
this from a global constraint optimization perspective.

Acknowledgments

This material is based upon work supported by the
DARPA/IPTO COORDINATORs program and the Air
Force Research Laboratory under Contract No. FA8750–
05–C–0030. The views and conclusions contained in this
document are those of the authors, and should not be inter-
preted as representing the official policies, either expressed
or implied, of the Defense Advanced Research Projects
Agency or the U.S. Government.



References
Decker, K. 1995.Environment Centered Analysis and De-
sign of Coordination Mechanisms. Ph.D. Dissertation, Uni-
versity of Massachusetts, Amherst.
Graham, J. R.; Decker, K. S.; and Mersic, M. 2003. Decaf
- a flexible multi agent system architecture. InAutonomous
Agents and Multi-Agent Systems.
Horling, B. 1998. A Reusable Component Architecture for
Agent Construction. Computer Science Technical Report
1998-49, University of Massachusetts.
Lesser, V.; Horling, B.; and et al. The taems whitepaper.
http://mas.cs.umass.edu/research/taems/white/.
Raja, A.; Alexander, G.; and Mappillai, V. 2006. Lever-
aging problem classification in online meta-cognition. In
Working Notes of the AAAI 2006 Spring Symposium on
Distributed Plan and Schedule Management.
Vincent, R.; Horling, B.; and Lesser, V. 2001. An Agent
Infrastructure to Build and Evaluate Multi-Agent Systems:
The Java Agent Framework and Multi-Agent System Sim-
ulator. In LNAI: Infrastructure for Agents, Multi-Agent
Systems, and Scalable Multi-Agent Systems, volume 1887,
102–127. Wagner and Rana (eds.), Springer,.
Wagner, T., and Lesser, V. 2001. Design-to-criteria
scheduling: Real-time agent control.Lecture Notes in
Computer Science 1887:128.
Wagner, T.; Phelps, J.; Guralnik, V.; and VanRiper, R.
2004. COORDINATORS - Coordination managers for first
responders. InAAMAS-04.
Wagner, T.; Guralnik, V.; and Phelps, J. 2003a. A key-
based coordination algorithm for dynamic readiness and re-
pair service coordination. InAAMAS-03, To Appear. ACM
Press.
Wagner, T.; Guralnik, V.; and Phelps, J. 2003b. Taems
agents: Enabling dynamic distributed supply chain man-
agement. InJournal of Electronic Commerce Research and
Applications. Elsevier.
Wagner, T. 2005. TheDARPA/IPTO COORDINATORSpro-
gram. http://www.darpa.mil/ipto/ programs/coordinators/.


