
Leveraging Problem Classification in Online Meta-Cognition

Anita Raja, George Alexander, Verghese Mappillai
Department of Software and Information Systems

The University of North Carolina at Charlotte
Charlotte, NC 28223

{anraja,gralexan,vjmappil}@uncc.edu

Abstract

Open environments are characterized by their uncer-
tainty and non-determinism. This poses an inevitable
challenge to the construction of agents operating in such
environments. The agents need to adapt their process-
ing to available resources, deadlines, the goal criteria
specified by the clients as well as their current problem
solving context in order to survive. Our research fo-
cuses on constructing a meta-cognition framework that
will enable agents to adapt to their dynamic environ-
ment. This will include deciding which environmen-
tal changes to address, how quickly they should be ad-
dressed and which of the different planning, scheduling
and negotiation modes to use to address these changes.
In this paper, we also describe how the classification of
environmental changes plays a pivotal role in making
the meta-level decisions.

Introduction
Open environments are dynamic and uncertain. It is
paramount for complex agents operating in these environ-
ments to adapt to the dynamics and constraints of such en-
vironments. The agents have to deliberate about their local
problem solving actions and coordinate with other agents
to complete problems requiring joint effort. These deliber-
ations have to be performed in the context of bounded re-
sources, uncertainty of outcome and incomplete knowledge
about the environment. Deliberations may involve compu-
tation and delays waiting for arrival of appropriate infor-
mation. Furthermore, new problems with deadlines can be
generated by existing or new agents at any time. In this
paper, we describe our recent efforts in augmenting agents
with meta-cognitive capabilities to ensure good performance
in open environments. Meta-cognition (Russell & Wefald
1989), (Horvitz 1989), (Goldman, Musliner, & Krebsbach
2003), (Raja & Lesser 2004) of a resource-bounded agent
is the ability to efficiently trade-off the use of its limitedre-
sources between deliberations and the execution of domain
actions.

We make the following assumptions in our work. The
agents operate in a cooperative environment and can pursue
multiple goals simultaneously. An example of an agent goal

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

would be to appropriately handle a change in the environ-
ment, which is modeled as a problem in our framework. A
scenario is a set of problems. Each agent has a model of
its environment and is aware of the consequences of its ac-
tions, and those of collaborating agents, on the environment.
These consequences include costs and time-dependent re-
wards. There are several alternative options for deliberating
about a problem in a scenario and these options differ in
their performance characteristics, for e.g. quick and dirty,
low quality method versus a slow, high quality option. The
agent’s meta-cognitive capabilities will enable it to reason
about which problems need to be processed by the agent,
which deliberative actions to apply to the selected problems,
when to invoke these deliberative actions and how much
time to invest on these deliberative actions.

In this paper, we describe meta-cognition in the context
of the DARPA/IPTO Coordinators program using problem
classification techniques and Markov Decision Processes
(MDPs). This research is part of our efforts to develop ef-
ficient decision-making techniques to guide problem solv-
ing in complex agents when they are faced with uncertainty,
resource bounds and significant amount of interaction with
other agents. Meta-cognition in Coordinators is designed to
realize the following goals:

1. Given a set of problems, determine which problems to
solve and in which mode a solver, i.e. scheduler, planner
or coordination algorithm, should operate to maximize
expected quality constrained by limited time for cognitive
actions.

2. If a new problem arrives during schedule execution, de-
termine if the solver (rescheduling, replanning or re-
coordination) should be recalled, and if it is, determine
the best mode to use.

To achieve these goals, we equip agents with the ability
to predict the agent’s performance in various solver modes
when presented with a novel problem using Naive Bayes
Classification. We then use the performance information to
model a sequential decision making process using a MDP to
determine the optimal allocation of processor time and other
resources to each problem in the scenario. At a high-level
the meta-cognition module architecture is composed of a
problem classification/abstraction component and a decision
process component. The problem classification/abstraction

component will help control the complexity of the meta-
cognition decision process by weeding out superfluous in-
formation. The paper is structured as follows: We begin by
motivating the need for meta-cognition in the Coordinators
application and describe the TÆMS representation used to
model the problem solving activities of individual agents.
We then present our meta-cognition framework and use ex-
ample scenarios from the Coordinators domain to describe
the process of building of performance profiles, problem
classification and action selection. We then present a pre-
liminary evaluation of our approach, followed by a discus-
sion of the generalizability and limitations of the approach
and future next steps.

The Coordinators Application Domain
Coordinators are intelligent agents that address the prob-
lem of effective coordination of distributed human activities.
They assist their human counterparts to dynamically adapt
their plans to environmental changes. The problem solving
activities of the Coordinator agent are represented using C-
TÆMS which is derived from the TÆMS (Task Analysis,
Environment Modeling, and Simulation) (Decker & Lesser
1993) language. C-TÆMS models are hierarchical abstrac-
tions of multi-agent problem solving processes that describe
alternative ways of accomplishing a desired goal; they rep-
resent major problems, the decision points and interactions
between problems, but they do not describe the intimate de-
tails of each primitive action. Each agent has access only to
its subjective view of the task model. It describes the subset
of the global C-TÆMS model consisting of those parts of the
problem that affect and are are affected by the local agent.
C-TÆMS models have nodes representing complex actions,
calledtasksand primitive actions, calledmethods. Methods
are owned by agents and may have duration distributions, re-
lease times (earliest start times) and deadlines. Methods may
have multiple possible outcomes and each outcome are sta-
tistically characterized using a discrete model in two dimen-
sions: quality and duration. Quality is a deliberately abstract
domain-independent concept that describes the contribution
of a particular action to overall problem solving. Duration
describes the amount of time that the action modeled by the
method will take for the agent to execute. C-TÆMS mod-
els also capture the dependencies between methods in the
form of non-local effects (NLEs). These dependencies can
be modeled as hard constraints (Enables NLE) or soft con-
straints (Facilitates NLE) . Quality Accumulation Functions
(QAFs) define how the quality of a task’s children can be
used to calculate the quality of the task itself. For e.g. in the
case of thesumQAF the quality of the supertask is equal to
the sum of the qualities of its children, regardless of orderor
which methods are actually invoked. In C-TÆMS thesync-
sumqaf denotes a form of synchronization across agents and
the quality obtained is the sum of the qualities of all the sub-
taks that start at the same time as the earliest subtask.

A scenario consists of 1-10 concurrent problems linked
by a sum QAF. The arrival of a new goal or the modifica-
tion of an existing goal e.g. modified deadlines or modi-
fied performance characteristics of methods are tagged as
problems in this application. A window is defined by the

task release time and the deadline. Problems are expected to
be completed within their time windows to achieve quality.
The following are some parameters used to define problems:
Number of Windows (6-10), Window Tightness (VeryTight,
Tight, Loose). Window Overlap (Small, Medium, Large,
Complete), Number of Fallbacks (number of alternate meth-
ods an agent has for its tasks), NLE Loops (Number of
agents in the chain) etc. The complete list of parameters
can be found in (Decker & Garvey 2005).

Each Coordinator agent is composed of three modules to
handle planning/scheduling (Taskmod), coordination (Co-
ordmod) and communication with the human (Autonmod).
Some of these modules are computation-bound while oth-
ers are communication bound. The meta-cognition module
(Metamod) basically decides how much processor and wall-
clock time to assign to each module (Taskmod, Coordmod
and Autonmod) for each problem in a scenario. It is possible
for two problems to overlap resulting in resource contention.
These resources could include processing times of individ-
ual modules within an agent as well as availability of other
agents. In the worst case, processing for both problems may
not be feasible. Metamod would then be required to pick
one of the problems to work on. In addition to allocating
module times to subproblems, Metamod must choose the ap-
propriate problem solving settings (or modes) for the mod-
ules. With no problem overlap, Metamod could determine
the best combination of module problem solving settings
and time allocations for each problem, treating the problems
independently, and using the release times and deadlines of
each problem to determine the resource allocation to prob-
lem deliberations. However, even this relatively simple se-
quential presentation of problems poses difficulties for the
Metamod because modules may have unpredictable interac-
tions. For instance, better solutions might result in some
cases by having modules do some “quick and dirty” pro-
cessing first and use the results to focus subsequent process-
ing. When problems overlap, Metamod’s deliberation prob-
lem becomes more complicated. In this paper we present
a framework that will allow Metamod to efficiently handle
situations with both overlapping and non-overlapping prob-
lems.

There has been important previous work in meta-
cognition. Russell and Wefald (Russell & Wefald 1989) de-
scribe an expected utility based approach to decide whether
to continue deliberation or to stop it and choose the cur-
rent best external action. They introduce myopic schemes
such as meta-greedy algorithms, single step and other adap-
tive assumptions to bound the analysis of computations. We
too model the meta-control problem as a decision theoretic
problem where the goal is to perform the action with the
highest expected utility. Our work can be viewed as a com-
plete implementation of their probabilistic self modelingap-
proach where the agents estimate the probabilities of tak-
ing certain actions in certain states. Hansen and Zilber-
stein (Hansen & Zilberstein 1996) extend previous work on
meta-level control of anytime algorithms by using a non-
myopic stopping rule. It can recognize whether or not mon-
itoring is cost-effective, and when it is, it can adjust the
frequency of monitoring to optimize utility. The monitor-

Problem Classifier
and Learner

Performance
Profiles

Policy

Environment

MDP Generator

MDP Solver

Context
Handler

Policy
Execution

5. State Features

1. Incoming Problems

2. Expected
Performance

3. Meta Alternatives
Taems Structure

4. Meta MDP Policy

7. Action Set

6. Current State

Figure 1: Control-flow in the Meta-Cognition Module (Metamod)

ing work has significant overlap with the foundations of the
meta-level control reasoning framework described here. It
deals with the single meta-level question of monitoring, con-
siders the sequential effects of choosing to monitor at each
point in time and keeps the meta-level control cost low by
using a lookup-table for the policy. The work described
in this paper handles multiple inter-dependent meta-level
questions. It extends the meta-level control architecturede-
scribed in the context of multi-agent systems (Raja & Lesser
2004). However there is a crucial difference. The Meta-
mod framework in this paper does not make any assumptions
about prior knowledge of the performance characteristics of
the different deliberation actions on problems. The prob-
lem classifier component makes real time predictions about
these performance characteristics. (Raja & Lesser 2004) as-
sumes that knowledge about performance profiles of the var-
ious problems using the different deliberation componentsis
readily available ahead of time, which is not feasible in the
Coordinators domain.

Meta-Cognition Framework
We now present a high-level description of the control flow
within the Metamod component using Figure 1. When a
problem modeled as a C-TÆMS task structure arrives at
an agent, Metamod parses the structure to obtain problem
features in order to classify the scenario into pre-defined
performance types (Step 1). The classifier then uses the
performance profile information corresponding to these per-
formance types to build a TÆMS task structure of alterna-
tive solutions, calledMetaAlternatives task structure(Steps
2 and 3). We use the TÆMS representation since it con-
cisely captures the agent’s problem solving from the meta-
cognitive point of view. Details of the problem classifica-
tion step are described in theProblem Classificationsection
below. The TÆMS task structure is then translated into a
Markov Decision Process (Puterman 1994). This is ac-
complished by passing the task structure to the MDP sub-
component which consists of the MDP Generator and MDP
Solver. Details of this sub-component are described in the
Action Selectionsection below. The MDP is evaluated to
determine the best action to be taken by Metamod given the

current environmental state (Step 4 in Figure 1). Metamod
will determine the current state of the agent using the Con-
text Handler (Step 5). The action corresponding to the cur-
rent state is obtained from the optimal policy by the Policy
Execution (Steps 6 and 7).

We now delve into greater detail of the control flow. When
Metamod first receives a scenario, theProblem Classifier &
Learnersub-component creates performance profiles of the
problems in the scenario using various solver modes. A per-
formance profile is a triplesolver mode, expected quality
(EQ), and expected duration (ED), that describes the ex-
pected performance characteristics of an entity under the
various solver modes1 in the form of statistical distributions.
In the case of schedulers, EQ is the expected quality of the
highest-rated schedule and may be continuous. ED is the
expected time required to generate the schedule, not the ex-
pected duration of the schedule itself. The values of EQ and
ED are placed into coarse buckets calledperformance types
which are obtained by the conversion process described be-
low. We also store a distribution of values across sub-ranges
within a bucket which are used to build the MetaAlternatives
task structure as described in theBuilding the MetaAlterna-
tives Task Structuresection.

Figure 2 describes an example MetaAlternatives task
structure. The MetaAlternatives task structure describesal-
ternate solver modes characterized by quantitative quality
and duration distributions obtained from the performance
profiles. In this task structure, the high-level taskMetaAlter-
nativeshas a sum QAF meaning it can accrue quality by ex-
ecuting one or both of its subtasksModuleAction1andMod-
uleAction2and adding the qualities. Each ModuleAction
subtask has a max QAF, allowing it to accrue quality by suc-
cessfully completing one or more of its subtasks and taking
the maximum of the qualities obtained. In determining the
performance profiles, we wish to avoid making assumptions
about the ranges of quantitative performance characteristics

1Our discussion will focus on alternate modes for scheduling
e.g., SchedulerA, SchedulerB, SchedulerC, etc. However the ap-
proach discussed is applicable to reasoning about alternate modes
for other deliberative actions like coordination and planning

MetaAlternatives
QAF: Sum

ModuleAction 1
QAF: Max

ModuleAction 2
QAF: Max

Solver Mode C
Q:100% 10
D:100% 12

Solver Mode B
Q:100% 6

D:10% 7, 90% 9

Solver Mode A
Q:100% 4
D:100% 3

Solver Mode C
Q:5% 16, 95% 19

D:100% 14

Solver Mode B
Q:100% 15
D:100% 8

Solver Mode A
Q:80% 11, 20% 13

D:75% 2, 25% 4

Figure 2: MetaAlternatives before MDP policy execution
begins

of previously unseen problems. For example, a schedule
with expected quality 100 would be considered high qual-
ity if it were part of a group of schedules ranging in quality
from 25-110, but it would be low quality if it were part of a
group of schedules where quality ranged from 90-250. We
achieve this by doing the following:

1. Representing EQ as a ratio of achieved quality vs. qual-
ity upper bound to eliminate the need to make assump-
tions about the range of numerical values of quality in the
problems while allowing us to estimate the optimality of
various scheduling algorithms applied to a given problem.

2. Multiplying the distribution of EQ ratios associated with
a problem’s performance type by the quality upper bound
computed for that problem in order to compare the ex-
pected numerical quality across several problems we may
be considering taking action on.

For a given problem we derive an upper bound on the
achievable quality in the following way:

1. Each task is assigned the mean of the quality distribution
of its highest quality method.

2. Quality propagates upwards through the task structure ac-
cording to whichever QAFs are present.

3. The final quality assigned to the root task is considered
the “upper bound” for the problem.

In our current implementation, we define our performance
types based on tenths of the quality upper bound. A topic of
future research is determining how changing these divisions,
for instance to fifths of the quality upper bound, will affect
the performance of Metamod.

Unlike quality, which can vary greatly in numerical value
without changing the complexity of a problem (for instance,
by multiplying all quality values in a given problem by 100),
scheduling timeis related to problem complexity; and we as-
sume that, for a given scheduling algorithm, it will not vary
greatly over our problem space. Letti denote the time spent
by a particular scheduling algorithm to compute schedulei.

We may computeRt = tmax − tmin, the range of values
over all schedules in a given training set. Then for the per-
formance profiles, we have

EDi =







low, ti < tmin + Rt

3

medium, tmin + Rt

3
≤ ti < tmin + 2Rt

3

high, tmin
2Rt

3
≤ ti

Thus low, medium, and high ED represent the lower, mid-
dle, and upper thirds of scheduler runtimes, respectively.To
convert these to quantitative values, we simply add the ap-
propriate multiple (.33, .66, or 1.0) ofRt to tmin.

Problem Classification
We define our performance types based on the expected per-
formance of the problems in a particular mode. Thus in our
current implementation, performance profiles are implicit,
and we have NxM possible performance types (N schedul-
ing modes times M types per mode). Also, each prob-
lem will correspond to exactly N performance types, one
for each scheduling mode. Thus, we would need N clas-
sifiers to fully classify the problem (classifiers for Sched-
ulerA, SchedulerB and SchedulerC). The problem features
are characteristics obtained by examining the hierarchical
structure of a problem that are relevant for differentiating
among problems based on differences in performance char-
acteristics. We determine performance types using Naive
Bayes classification (Mitchell 1997)2 This machine learn-
ing algorithm infers the type of a new problem based on the
performance types of previously learned training problems
with similar features.

In the Coordinators application, the MetaMod has to rea-
son about scenarios where each scenario may contain one
to ten problems. We use the following problem features for
classification:

F1: Average # of fallbacks per task: This is the average
number of methods available to execute a task.

F2: Average window tightness: This is the ratio of the
width of a window compared to the expected duration of
its tasks. The expected duration of a task is computed as
the expected duration of its highest quality method.

F3: Average window overlap: Overlap between two win-
dows is expressed as the overlap amount divided by the
width of the wider window.

F4: Average problem overlap: This is computed for the
problem in a similar way to how window overlap is com-
puted.

F5: Percentage of problems with non-local effects (NLEs):
This is the simple percentage of problems in the scenario
that contain NLEs.

2other classification methods (such as C4.5 (Quinlan 1993))
could perhaps be used with varying degrees of success in other do-
mains. The advantage of Naive Bayes method is that it is amenable
to incremental updates. Also note that, in practice, the indepen-
dence conditions do not necessarily have to hold for the algorithm
to be successful(Domingos & Pazzani 1996).

F6: Percentage of problems with sync pointsThis is the
percentage of problems in the scenario that contain an ex-
plicit synchronization point

F7: Percentage of problems with Min QAFs This is the
percentage of problems that acquire quality by a Min
QAF.

F8: Percentage of problems with Sum QAFsThis is the
percentage of problems that acquire quality by a Sum
QAF.

A particular configuration of some or all of these features
describes aproblem class, for example, 2 fallbacks per task,
tight windows, small window overlap and small problem
overlap describes a problem class. The following is the al-
gorithm used by the Problem Classifier sub-component.

1. Define performance types as mentioned above.

2. Generate X random problems, and solve the problems us-
ing all N scheduling modes.

3. For each problem, generate a table listing its problem fea-
tures, as well as its performance characteristics for each
scheduling mode.

4. Based on the performance characteristics for each mode,
assign each of the problems N corresponding performance
types.

5. Train Bayesian classifiers to associate the features of the
training problems with their respective assigned types (In
fact, we will need to train a separate classifier for each
scheduling mode).

6. When a new problem arrives, Metamod invokes the
Bayesian classifiers to determine its expected types, given
its problem features. Metamod then looks up these types
in the performance profile table, and uses these perfor-
mance profiles to build the MetaAlternatives task struc-
ture, which gets passed to the MDP Generator.

7. Based on the problem’s actual performance, Metamod
re-assigns the performance type corresponding to the
scheduling mode we used and uses the problem features
and the re-assigned type as a new training instance for the
corresponding Bayesian classifier.

One question we are studying with this approach is to
determine how small changes in problem features affect a
problem’s behavior, and how we can incorporate this infor-
mation into the classifiers. We are also running empirical
studies to determine the size of the initial training set that
will ensure good performance by the classifiers.

To further illustrate the problem classification process,
consider an example Coordinators scenario with three prob-
lems, P1, P2, and P3. We run the Bayesian classi-
fiers (SchedulerAClassify, SchedulerBClassify, andSched-
ulerC Classify) on each of the three problems and obtain the
results shown in Figure 3.

We assume that performance profile information of the
different problem scenarios using the various solver modes
have been obtained offline ahead of time. We now look up

SchedulerA SchedulerB SchedulerC
Classify Classify Classify

P1 A 25 B 12 C 02
P2 A 14 B 12 C 15
P3 A 24 B 17 C 11

Figure 3:Classification Results using 3 Different Schedulers

Scheduler Name Performance Type EQ ED
SchedulerA A 14 60% Medium
SchedulerA A 24 80% Medium
SchedulerA A 25 90% High
SchedulerB B 12 60% Low
SchedulerB B 17 60% High
SchedulerC C 02 20% Low
SchedulerC C 11 60% Low
SchedulerC C 15 60% Medium

Figure 4:Performance Profile Information

the performance profile information for each of the perfor-
mance types that result from the above classification pro-
cess. Figure 4 describes the predicted performance charac-
teristics of each type using the relevant solver modes.

Building the MetaAlternatives Task Structure
This section describes how we build the MetaAlternatives
TÆMS task structure, once we have classified the incoming
problem.

Suppose the above scenario S consisting of 3 problems
P1, P2 and P3 has been assigned to an agent. For each
problem i, we construct a subtask (ModuleActioni) that uses
a Max QAF because it accumulates quality only from the
schedule that it actually executes. the top-level task accrues
the maximum of the qualities accrued by any of the child
tasks. The methods used to accomplish this task correspond
to the scheduler modes, for example SolverMode A, Solver-
Mode B, SolverMode C, etc. The task structure for scenario
S has a root task called MetaAlternatives with two subtasks,
one for each problem, combined together by a Sum QAF,
meaning quality accrued is the sum of the qualities accrued
by the individual problems. Figure 2 is the MetaAlterna-
tive task structure for a scenario having 2 problems. The
MetaAlternative task structure is sent to the Markov Deci-
sion Process (MDP) sub-component as described in the next
section, and the meta-level control policy is then computed.

Now suppose the MDP policy indicates that we should
solve scenario S using SolverMode A, and we have already
begun executing this when a new scenario arrives. The
changed scenario is calledS′. We classifyS′ and evalu-
ate the resulting MDP. If the value of the new MDP differs
significantly from the value of the original MDP, we drop
the original policy and begin rescheduling according to the
new MDP.

Performance Profile Learning and Improving
Metamod Problem Classification
A perfect Metamod would be able to classify an incoming
problem with 100% accuracy, and the expected performance
indicated by the performance profiles would always be the

actual performance. However, when Metamod falls short of
this ideal, we would like it to learn from its mistakes.

To illustrate the performance profile learning, we refer
back to the example described in Figure 3. Suppose the
meta-control MDP indicates that we should use SchedulerA
in all three cases. We run SchedulerA on all 3 problems and
we obtain the following actual results:

Quality Duration
Problem 1 80% Medium
Problem 2 60% Medium
Problem 3 60% Medium

From Figure 4, we see that the classifier for SchedulerA
correctly predicted the type of Problem 2 but was wrong
about the other problems. The actual performance results
indicate that Problem 1 was really of type A24 and Prob-
lem 3 was really of type A14. We do not know whether the
classifiers for SchedulerB or SchedulerC correctly classified
these problems, because we only got actual results from the
scheduling mode specified by the meta-control MDP, which
in this case is SchedulerA. In order to improve the accuracy
of the SchedulerA classifier, we can next use the actual re-
sults as training instances, i.e:

Train SchedulerA Classifier(Problem 1
features, A24)

Train SchedulerA Classifier(Problem 2
features, A14)

Train SchedulerA Classifier(Problem 3
features, A14)

An alternate learning method is that instead of learning
performance profiles after every simulation, we would do
batch learning by retaining information about problems and
execution results to use in updating the performance pro-
files and classification algorithm and doing the updates in
stages. We would store the following information: prob-
lem features, scheduler mode used, quality achieved, quality
upper bound, time spent scheduling. Then after determining
the true performance type of the problem based on our actual
results, the problem features and performance type would be
used to update the appropriate classifier.

Action Selection
As described earlier, the MetaAlternatives task structuregets
sent to the MDP sub-component. The MDP generator in the
MDP subcomponent generates the MDP corresponding to
the MetaAlternatives task structure and a policy is created
by the MDP Solver. This MDP generation is based on the
TÆMS to MDP translation algorithm (Raja, Lesser, & Wag-
ner 2000).

A Markov Decision Process (Puterman 1994) is a prob-
abilistic model of a sequential decision problem, where
states can be perceived exactly, and the current state and
action selected determine a probability distribution on fu-
ture states (Sutton & Barto 1998). Specifically, the outcome
of applying an action to a state depends only on the cur-
rent action and state (and not on preceding actions or states).
Formally a MDP is defined via its state setS, action setA,
transition probability matricesP, and reward matricesR. On

executing actiona in states the probability of transitioning
to stateś is denotedP a(sś) and the expected reward as-
sociated with that transition is denotedRa(sś). A rule for
choosing actions is called apolicy. Formally it is a mapping
π from the set of statesS to the set of actionsA. If an agent
follows a fixed policy, then over many trials, it will receive
an average total reward known as thevalueof the policy. In
addition to computing the value of a policy averaged over
all trials, we can also compute the value of a policy when it
is executed starting in a particular states s. This is denoted
V π(s) and it is the expected cumulative reward of executing
policy π starting in state s. This can be written as

V π(s) = E[rt+1 + rt+2...|st = s, π]

wherert is the reward received at time t,st is the state at
time t, and the expectation is taken over the stochastic results
of the agent’s actions.

For any MDP, there exists one or more optimal policies
which we will denote byπ ∗ that maximize the expected
value of the policy. All of these policies share the same op-
timal value function, written asV ∗ The optimal value func-
tion satisfies the Bellman equations (Bertsekas & Tsitsiklis
1996):

V ∗(s) = max
a

Σś P (ś |s, a)[R(ś |s, a) + V ∗(ś)]

whereV ∗(ś) is the value of the resulting stateś.
The MDP generated from the MetaAlternatives task struc-

ture is defined as follows: state in the MDP representation
is a vector which represents the TÆMS methods that have
been executed in order to reach that state along with their ex-
ecution characteristics (quality and duration). The MDP ac-
tion set is the set of TÆMS methods (executable leaf nodes).
MDP actions have outcomes and each outcome is character-
ized by a 2-tuple consisting of discrete quality and duration
values obtained from the expected performance distribution
of the MDP action. The transition probabilities are obtained
from the probability distributions of the corresponding MDP
action as described in (Raja, Lesser, & Wagner 2000). The
rewards are computed by applying a complex criteria evalu-
ation function of the quality, cost and duration values ob-
tained by the terminal state. The output from the MDP
Solver will be an optimal policy that solves the MDP . Once
the optimal policy is obtained, Metamod will determine the
current state of the agent using the Context Handler and the
action corresponding to the current state is obtained from the
optimal policy. When the action completes execution, Meta-
mod will be notified; it will then recompute the current state
and determine the current best action. This process contin-
ues until a terminal state is reached in the MDP or a new
problem arrives that requires Metamod’s attention.

Preliminary Results
In this section, we describe our preliminary efforts towards
evaluating the meta-level control mechanisms described in
this paper. The experiments were performed in a distributed
simulation environment called GMASS which was devel-
oped by Global Infotech Inc. (GITI) for the purpose of
evaluating technologies built for the Coordinators program.

Agents are initiated in GMASS with a local view of problem
solving and have access to the initial schedule of actions.
The simulation time is mapped to the wall clock time by a
parameter that is controlled by the evaluator. Each scenario
also has a certain amount of simulation ticks allocated for
deliberation. Each agent would use this initial allocationof
deliberation time to determine its course of domain-level ac-
tions and begins execution of domain activities at the end of
the deliberation period.

The solvers that we used for this evaluation are
four variations of the current implementation of the
DTC/GPGP (Phelps & Rye 2006) coordination mechanism.
This implementation of the GPGP protocol makes use of
an abstraction-based domain-independent context manage-
ment technique. The heuristic scheduler (DTC) can be run
in simple (DTC1) versus complex (DTC2) modes, where
the schedule search process is defined by parameters and is
more extensive in the latter case. Similarly the coordina-
tion component (GPGP) can be run in NoNegotiation versus
ProposeCommitments mode, where GPGP in the NoNegoti-
ation mode optimistically assumes commitments in the cur-
rent schedule can be established as needed at run time. In the
ProposeCommitment mode, GPGP executes a negotiation
algorithm to establish commitments during the deliberation
process. The four solvers used in the evaluation are the cross
product of the various modes of DTC and GPGP and are
called DTC1/NoNegotiation, DTC1/ProposeCommitments,
DTC2/NoNegotiation and DTC2/ProposeCommitments.

Combinations of the following parameters were used to
generate 100 problem scenarios: Number of problems = 1
to 3; Overlap = Small to Medium; Number of fallbacks = 0
to 5 and QAFs at the highest level were sum and min. Each
scenario allocated 100 ticks of deliberation time to the agent.
We trained our system on 75 of the 100 scenarios and used
the remaining 25 scenarios as test cases. The classification
process took 10-15ms on average for each problem.

We first compare the performance of the four solvers
on the training scenarios. Figure 5 compares the qualities
obtained by running the scenarios through each of the 4
solvers. The quality value for each problem class is the av-
erage of the qualities obtained from the scenarios belonging
to that class. We can see that the best solver modes, i.e.
solver mode resulting in highest quality, varies with prob-
lem classes. This shows that no single solver mode can be
considered the best option for all problem classes, thus mo-
tivating the need for the dynamic decision making afforded
by the Metamod component.

We now describe experiments to evaluate the accuracy
of the Naive Bayes classifier in predicting the performance
characteristics of new scenarios. The classifier for each
solver mode was trained using the 75 training instances. The
quality of the scenarios from the test set as predicted by the
classifiers were then recorded (PredictedQuality). In addi-
tion, the quality upper bound of each scenario in the test
set was computed (TaskQualityUpperBound) and the actual
quality obtained by running the solver on each scenario was
also recorded (ActualQuality). The classification error isde-
fined as follows:

Figure 5: Comparison of four solver modes

(PredictedQuality − ActualQuality)

TaskQualityUpperBound

Figure 6 shows the classification error averaged over the
scenarios belonging to each problem class. It can be ob-
served that the predicted expected quality values by the
problem classification component were within 10% of ac-
tual quality values in most cases. This shows that MetaMod
predicts qualities of these scenarios with a high rate of accu-
racy.

Figure 6: Accuracy of MetaMod’s predictions
We are currently testing the effectiveness of meta-

cognition for various problem classes by comparing the re-
sults to approaches that don’t use meta-cognition. In other
words, we would compare the performance of the agent that
uses Metamod to the performance of the agent when it uses
deterministic approaches to handle new problems, for e.g.
when the solver with the best expected quality (independent
of duration) is always chosen or the solver with the lowest
duration is always chosen for every new problem. The goal
of this empirical study is to identify the scenarios for which

meta-cognition is advantageous and scenarios where meta-
cognition does not produce any obvious advantage. This
would give us a deeper understanding of the relationship be-
tween meta-cognition and the scenario characteristics in the
context of the Coordinators program.

Conclusion and Future Work

We have presented a single agent meta-cognition framework
that can make decisions about whether to process a new
problem and if so, how to do it and how much time to allo-
cate for processing the problem. This framework leverages
a problem classification approach that predicts the expected
performance of the new problem based on the performance
characteristics of problems encountered before. This ap-
proach makes no a priori assumptions about the nature of the
new problem and our hypothesis is that the effectiveness of
the approach improves incrementally with experience. We
have currently implemented the Metamod framework, in-
cluding the problem classifier sub-component and the MDP
sub-component and have provided preliminary results using
various modes of the DTC/GPGP solvers in the context of
the Coordinators program.

Our next step is to extend the MetaMod reasoning process
to include other deliberative solvers (including one basedon
MDPs) in its decision process. This would give us greater
understanding about the role of MetaMod in switching con-
trol from one deliberative solver to another as problem solv-
ing proceeds. We also plan to implement an online learn-
ing process such that runtime performance information can
be part of a feedback loop that will assist Metamod im-
prove its performance in realtime as it gains more experi-
ence. We also plan to study the role of meta-cognition from
a multi-agent perspective. Specifically we are considering
the advantages and costs of having meta-cognition modules
in the multiple Coordinator agents collaborate to enhance
problem solving We hope that the problem abstraction and
learning techniques developed in this project will eventually
contribute to a generalized framework for meta-cognition in
agents operating in resource-bounded multi-agent environ-
ments.

Acknowledgement

We would like to thank Dr. David Musliner for discus-
sions on the design of the meta-cognition component in
the context of the Coordinators agent. We also thank
the two anonymous reviewers for their helpful comments.
We also acknowledge the contributions of John Stamper
in the initial design and implementation of the MDP sub-
component. This material is based upon work supported by
the DARPA/IPTO COORDINATORs program and the Air
Force Research Laboratory under Contract No. FA87550-
05-c-0030. The views and conclusions contained in this doc-
ument are those of the authors, and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the Defense Advanced Research Projects Agency
or the U.S. Government.

References
Bertsekas, D. P., and Tsitsiklis, J. N. 1996.Neuro-Dynamic
Programming. Belmont, MA: Athena Scientific.
Decker, K., and Garvey, A. 2005. Scenario generation:
Automatically generating domain-independent coordina-
tion scenarios. Unpublished.
Decker, K. S., and Lesser, V. R. 1993. Quantitative mod-
eling of complex environments.International Journal of
Intelligent Systems in Accounting, Finance, and Manage-
ment2(4):215–234.
Domingos, P., and Pazzani, M. J. 1996. Beyond indepen-
dence: conditions for the optimality of the simple bayesian
classifier. InProceedings of the Thirteenth International
Conference on Machine Learning, 105–112. Morgan Kauf-
mann.
Goldman, R.; Musliner, D.; and Krebsbach, K. 2003. Man-
aging online self-adaptation in real-time environments. In
LNCS, volume 2614. SV. 6–23.
Hansen, E. A., and Zilberstein, S. 1996. Monitoring any-
time algorithms.SIGART Bulletin7(2):28–33.
Horvitz, E. 1989. Rational metareasoning and compila-
tion for optimizing decisions under bounded resources. In
Proceedings of Computational Intelligence.
Mitchell, T. M. 1997.Machine Learning. WCB/McGraw-
Hill.
Phelps, J., and Rye, J. 2006. Gpgp - a domain-independent
implementation. InWorking Notes of the AAAI 2006 Spring
Symposium on Distributed Plan and Schedule Manage-
ment.
Puterman, M. L. 1994.Markov decision processes - dis-
crete stochastic dynamic programming.Games as a Frame-
work for Multi-Agent Reinforcement Learning. New York:
John Wiley and Sons, Inc.
Quinlan, J. R. 1993.C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann Publishers Inc.
Raja, A., and Lesser, V. 2004. Meta-level Reasoning in De-
liberative Agents.Proceedings of the International Confer-
ence on Intelligent Agent Technology (IAT 2004)141–147.
Raja, A.; Lesser, V.; and Wagner, T. 2000. Toward Ro-
bust Agent Control in Open Environments. InProceedings
of the Fourth International Conference on Autonomous
Agents, 84–91. Barcelona, Catalonia, Spain: ACM Press.
Russell, S., and Wefald, E. 1989. Principles of metareason-
ing. In Proceedings of the First International Conference
on Principles of Knowledge Representation and Reason-
ing, 400–411.
Sutton, R., and Barto, A. 1998.Reinforcement Learning.
MIT Press.

