
Constraint Programming for Distributed Planning and Scheduling

Carla P. Gomes and Willem-Jan van Hoeve and Bart Selman
Cornell University, Department of Computer Science

4130 Upson Hall
Ithaca, New York 14853–7501

{gomes,vanhoeve,selman}@cs.cornell.edu

Abstract

We present a constraint programming-based solver for
distributed planning and scheduling problems with a hi-
erarchical objective function. The solver produces prov-
ably optimal centralized solutions. Preliminary compu-
tational results show the efficiency of our approach.

Introduction
Distributed planning and scheduling problems arise in many
contexts such as supply chain management, coordinating
space missions, or configuring military scenarios. Such
problems usually consist of several agents that need to per-
form tasks in order to achieve a common goal.

Depending on the application at hand, a distributed plan-
ning problem may be subject to several uncertainties: the
actual outcome and duration of executing a task, changing
environmental conditions, etcetera. Consequently, adaptive
solution methods must be able to quickly compute possible
alternatives in order to update the schedule, if necessary. In
this work we present an efficient method to compute such
(alternative) solutions.

We will focus on particularly difficult planning problems;
those for which the common goal of the agents consists of
a hierarchical objective function. Because these problems
are not easily modeled and solved by traditional solvers for
planning and scheduling, we propose to useconstraint pro-
gramming instead. Our approach can be used to (re-)com-
pute individual agent’s schedules, or to compute a solution
from a centralized perspective. An important consequence
of our approach is that it enables us to computeprovably
optimal solutions.

Problem Specification
The problems we consider aretask structures, based on the
C TAEMS language (Boddyet al. 2005). Due to practical
reasons we consider a restricted version of CTAEMS in this
work, which we will describe below. An example of such
(restricted) CTAEMS task structure, is presented in Figure 1.

A C TAEMS task structure is a tree-like structure, com-
posed oftasks and methods. Each method is owned by,

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Task6

QAF: max

Task7

QAF: max

qual: 3
dur: 2

Method10

ag: A

qual: 8
dur: 7

Method11

ag: B

Task8

QAF: max

qual: 4
dur: 3

Method13

ag: C

qual: 9
dur: 8

Method12

ag: A

QAF: sync_sum
TW: [11,19]

Task3

QAF: sum

TaskGroup1

en
ab
le

de
la
y:
 0

enable

delay: 0

qual: 8
dur: 6

ag: A

Method5

qual: 6
dur: 4

Method6

ag: B

qual: 5
dur: 3

Method7

ag: B

Task1

QAF: min
TW: [1,10]

Task2

QAF: max
TW: [7,12]

Task5

QAF: max

Task4

QAF: max

qual: 6
dur: 4

Method8

ag: B

qual: 6
dur: 4

Method9

ag: C

qual: 6
dur: 6

Method3

ag: A

qual: 5
dur: 4

Method4

ag: C
qual: 5
dur: 4

Method2

ag: B

qual: 7
dur: 6

Method1

ag: A

Figure1: Example of a C TAEMS task structure. For each method,
ag denotes its agent, qual its quality and dur its duration. Tasks
may be subject to a time window TW and accumulate quality of
their subtasks via a quality accumulation function QAF.

and may be executed by, an agent. The resulting quality
of execution contributes to the quality of its parent task by
means of a quality accumulation function (QAF). The par-
ent task in turn contributesagain to the quality of its parent,
all the way up to the root of the task structure (in this case
TaskGroup1). There are four different QAFs: min, max,
sum and sync sum. The first three QAFs respectively de-
note the minimum, maximum and sum of the quality over
the subtasks. The latter QAF, sync sum, denotes the sum
of the quality of all subtasks that start at the same time; it
is a synchronized sum. The overall goal is to maximize the
quality of the root task. Temporal restrictionson the execu-
tion of the tasksare imposed by release timesand deadlines
(indicated by a time window TW), and by enabling relations
between tasks or methods (depicted as bold arcs). Finally,
each agent is restricted to execute at most one method at a
time. For a more detailed description we refer to (Boddy et
al. 2005).

Approach
Several candidate solution methods exist to compute a so-
lution to (deterministic) distributed planning problems. For
example, onecan useamixed integer programmingsolver, a
satisfiability solver, or aplanning solver. We havechosen to



useconstraint programming (CP) for the following reasons.
The most important reason is that constraint programming
has a rich modeling language which is very convenient to
express the problem. Moreover, the underlying CP solver
is relatively robust with respect to the addition of new con-
straints, and the search can be controlled entirely by the user.

In contrast, although the problem can be modeled to fit a
mixed integer programming or satisfiability solver, we ex-
pect the respective solvers to suffer from the time granular-
ity of the problem. This is not the case with a CP model.
Finally, most planning solvers do not offer an easy way to
model more complex objective functions.

We next give a brief overview of the core of our CP model.
The key variables of our model are the variables that con-
trol the execution of the methods. They are represented
by a variablemethodi for every taski that has methods as
its leafs. The domain of this variable is given by its leafs
(methods) and the no-execute option (denoted by method
0).1 Hence, ifmethodi = j, then taski is executed using
methodj. To infer the agent, quality and duration of task
i, we use so-called “element” constraints. Let the agent,
quality and duration of a respective methodj of task i be
given byttag[i][j], qual[i][j] anddur[i][j]. We introduce
variablesagent

i
, quality

i
anddurationi and impose the

constraints:

agent
i
= ag[i][methodi],

quality
i
= qual[i][methodi],

durationi = dur[i][methodi].

For the temporal relations we introduce variablesstarti

andendi for each taski to indicate its start and end time.
Then the release time and deadline constraints are easily
modeled. The ‘enabling’ relationships need a bit more care,
as they depend on the activation time of the task, i.e. the first
moment it receives positive quality.

Although the above description is very brief, it reflects the
core of our CP model. In fact, the search space is only de-
fined by the variablesmethod and start. By constraint
propagation, all other variables are instantiated automati-
cally once these variables are set.

Computational Results
As a case study we use problem instances from the COOR-
DINATORs project, which are available from the authors on
request. The instances represent real-life problem instances
of medium to large size. The instances are typically de-
signed for a dynamic multi-agent environment. It means
that for most methods, the duration time and the quality are
drawn from outcome distributions rather than being single
values. Moreover, certain methods have a chance of failure.
In our experiments we have replaced the outcome distribu-
tions by expected quality and maximum duration to make
the problem deterministic. We further neglect methods that
have a chance of failure. Our model can be easily adapted
however, to change these settings.

1For simplicity we assume that each such task can execute at
most one method. Task structures can be transformed to meet this
assumption, however.

Table 1 presents computational results on a number of test
problems. As constraint programming solver we have used
ILOG Solver, version 6.0. The experiments were performed
on a Pentium III 550MHz, 4GB RAM, with a time limit of
300 seconds per instance.

instance #tasks #methods #enables optimum time (s)
CExample3min 16 43 5 20 0.02
CExample3max 16 43 5 60 0.05
CExample3sum 16 43 5 138 0.08
ten1 116 160 21 ≥31.6 limit
test1a 21 42 5 33 0.02
test1 21 42 5 37 0.07
test2 30 21 15 45.8 0.03
test3 85 288 11 ≥74.4 limit
test4 104 89 25 95.4 0.44
testa 21 56 5 36.8 0.03
testb 21 42 5 36 0.04
testc 21 70 5 33.6 0.06
sgp-50920-213447 23 28 4 20 0.02
sgp-50920-213845 63 144 82 ≥30 limit
sgp-50920-214347 23 56 5 18 0.04
sgp-50920-214707 29 60 8 28 0.04
sgp-50920-214737 36 81 15 30 0.05
sgp-50920-214829 40 90 20 40 0.07
sgp-50920-214847 48 152 32 40 0.09
sgp-50920-215026 23 28 6 20 0.02
sgp-50920-215507 26 48 11 13.6 0.09
sgp-50920-215553 26 80 13 10 0.06
sgp-50920-221059 38 112 10 32 0.13
sgp-50920-221139 53 160 10 36 0.09

Table 1: Computational results on a number of C TAEMS task
structures. All instances are solved to optimality, unless the time
limit (300s) has been reached. Here ‘problem’ denotes the name
of the instance, ‘#tasks’, ‘#methods’ and ‘#enables’ denote respec-
tively the number of tasks, methods and enabling relations of the
instance, ‘optimum’ denotes the optimal quality found, or the best
solution found in case the time limit is reached, and ‘time’ denotes
the total solution time in seconds.

Although most instances are solved very quickly, some
instances were not solved to optimality within 300 seconds.
This is probably due to the large number of methods present
in these instances. As a result, the domains of themethod
variables are also large, which typically has a negative effect
on the performance of a CP solver. On the other hand, some
other instances with large domains are solved very quickly,
which motivates the need for a closer investigation of the
hardness profile of these problems.

Conclusion and Future Perspectives
We have shown that constraint programming can be a very
efficient tool to model and solve distributed planning and
scheduling problems with a hierarchical objective function.
As our approach produces provably optimal (centralized) so-
lutions, it will be particularly useful to evaluate the perfor-
mance of problem-specific decentralized solvers. Further-
more, we intend to investigate the hardness profile of these
problems in more detail, for which an efficient solver is in-
dispensable.

References
Boddy, M.; Horling, B.; Phelps, J.; Goldman, R.; Vincent,
R.; Long, A.; and Kohout, B. 2005. CTAEMS Language
Specification — Version 1.03.


