
Demonstration-Based Behavior and Task Learning

Nathan Koenig and Maja Matarić
nkoenig|mataric@cs.usc.edu

Computer Science Department
University of Southern California

941 West 37th Place, Mailcode 0781
Los Angeles, CA, 90089-0781

Abstract

To be truly useful, robots should be able to han-
dle a variety of tasks in diverse environments with-
out the need for re-programming. Current sys-
tems, however, are typically task-specific. Aim-
ing toward autonomous robots capable of acquir-
ing new behaviors and task capabilities, we de-
scribe a method by which a human teacher can in-
struct a robot student how to accomplish new tasks.
During the course of training, the robot learns both
the sequence of behaviors it should execute and,
if needed, the behaviors themselves. It also stores
each learning episode as a case for later general-
ization and reuse.

Introduction and Motivation
Recent years have witnessed a promising increase in the
prevalence of robotics in society. From vacuum clean-
ers to reconnaissance airplanes to autonomous vans
driving in the dessert, robots are slowly entering hu-
man environments. However compelling these devel-
opments have been, they have required elite groups
of highly skilled people to develop and maintain the
robots. In contrast, typical consumers tend to gravitate
towards technologies that work out of the box. Con-
sequently, multi-purpose and easily reprogrammable
robots will be the only economical and practical method
to meet our ever-growing demands for automation. An
easily programmable robot will allow domain experts to
instill it with their expertise, and users to customize it to
their personal needs.

While the benefits of such technology are obvious,
its implementation is not. Programming must be sim-
ple and intuitive, and the storage, retrieval, and use of
previous programming automatic. Creating a code li-
brary is not an option, as the human learning curve
would be much too steep. An alternative we propose is
demonstration-based behavior and task learning cou-
pled with case-based reasoning (Carbonell 1986). In

Copyright c© 2006, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

this approach, the robot is programmed much like an ap-
prentice watching a master. Knowledge gained in such
a manner is then stored in a case library for later use.

Learning new behaviors and tasks is not simple. Un-
derstanding and generalizing from observations of hu-
man actions or commands is a key requirement. The
student robot must present an affable interface to the
human teacher and still garner useful information from
the teaching process. Ideally no technical skill require-
ments should be placed on the teacher. The teacher-
learner interface must abstract away the details of the
robot’s sensors and actuators, while providing meaning-
ful feedback to the teacher.

The learning mechanism must also store and gener-
alize training instances for use in different future situa-
tions. After training, the robot will likely encounter dif-
ferent environments, component failures, and complex
goals that require composition of various components
of prior training examples. In all these cases the robot
must leverage its stored knowledge to gracefully handle
new situations.

This method of behavior and task learning presents
a unique opportunity for humans to instruct robots in a
manner not far removed from teaching other humans.
Through an intuitive interface, a teacher can easily in-
struct an autonomous robot. These capabilities allow
a robot to easily work with a human, while potentially
learning ever more complex tasks. Building on these
theories, one can move toward robot-robot teaching sce-
narios, and learning tasks that require multiple robots
and/or humans.

Related Work
Programming by demonstration is a well studied topic
for user interfaces, graphics applications, and office au-
tomation. Each of these systems attempts to learn ac-
tion sequences by observing user actions. These action
sequences are then applied when similar situations are
encountered. In the robotic domain, programming by
demonstration has been applied to industrial robotics
(Münch et al. 1994). In this work, focus was placed on



parameter learning of elementary operations. Besides
parameter learning, robots have also learned behavior
network representations for complex tasks. Nicolescu
& Matarić(2003) developed such a system by using an
interactive teaching methodology . Our work builds on
this through the use of behavior networks, and adds the
ability to learn completely new behaviors.

Imitation learning in humanoid robots is concerned
with learning parametric models and policies of motion
from human demonstrations. An articulated arm suc-
cessfully learned an appropriate policy to balance a pole
based on a reward function and task model (Atkenson &
Schaal 1997). Biped humanoids have learned to achieve
human-like locomotion through motion primitives of
demonstrated trajectories (Nakanishi et al. 2004). Gen-
eral formalisms for performance metrics on humanoid
imitation tasks has also been studied (Billard et al.
2004). This form of imitation allows articulated robots
to learn complex gestures and motions by observing a
human.

Our research also relies heavily on case-based rea-
soning for storage and retrieval of past experiences for
use in new environments and tasks. More precisely, we
use case-based reasoning in conjunction with behav-
ior learning.Ram & Santamaria(1997; 1993) incorpo-
rated reinforcement learning with a case library to au-
tonomously learn and select appropriate behavior pa-
rameters. In a similar manner, Likhachev, Kaess, &
Arkin(2002) used gradient descent to tune behavior pa-
rameters that are stored in a case library indexed on en-
vironmental features. Both these techniques focus on
autonomously optimizing parameters of a static set of
behaviors for varying environmental conditions. Our
goal, on the other hand, focuses on learning the behav-
iors and their temporal ordering.

An essential component of many robotic systems is
a planning strategy. Our research takes a means-ends
analysis approach that was derived from Veloso’s work
on PRODIGY/ANALOGY (Manuela M. Veloso 1993).
That system relied on case-based reasoning and deriva-
tional analogy to create high-level robot plans using
means-ends analysis and backward chaining. A graphi-
cal user interface, GUI, was also developed that allowed
a user to interact with the planning process (Cox &
Veloso 1997). This incorporated human decisions into
the planning process. While we leverage human exper-
tise at the teaching phase rather than in the planning,
this work demonstrates the usefulness and practicality
of allowing a human to actively interact with an intelli-
gent system.

An important aspect of our research is the ability of
the robot to learn continually. This notion of lifelong
learning relies on past knowledge to achieve complex
and extended goals. Thrun(1994) successfully used Q-
learning with an explanation based neural network to
store, reuse, and modify prior knowledge to inductively

learn functions. In a similar vein, we store and reuse
past knowledge to improve performance and increase
the usefulness of a robot.

The work presented in this paper can be viewed as
merging teaching by demonstration, lifelong learning,
case-based reasoning, and behavior-based robotics. We
are strongly motivated towards increasing the useful-
ness of robots by improving their abilities to interact
with and learn from humans. Each of the above listed
components plays a vital role toward meeting this goal.
While successfully used independently, we believe if
properly combined in a hierarchical system they have
the potential to move intelligent agents from sterile re-
search environments into real-world scenarios with di-
rect human collaboration.

Overview
The method we employ is hierarchical in nature, incor-
porating teaching, behavior-based (Arkin 1998; Matarić
1997) learning, and case-based memory. Throughout
this paper, teaching (training) is assumed to be between
a single human teacher and a single robot student. The
teacher passes instructions to the student in the form
of commands to execute that are understandable by the
robot, such as “move forward 5m”.

A single training episode (see Figure 1) entails plac-
ing the robot at a pre-defined start state and instruct-
ing (controlling) it to a specific goal state. From this
training instance, the robot generates a set of behaviors.
Each behavior generalizes a portion of the task execu-
tion into a self-contained, time-extended, goal-oriented
controller.

The generated behavior network is stored in a case
library for later use. Each training example creates a
single behavior network which is encapsulated into a
case, and labeled by the start and goal states. Cases
are unique and indexed based on their label. Following
training, a stored case can be activated when the robot’s
current state and user-provided goal state match a label
in the case library (see Figure 2).

The above-described process allows a teacher to eas-
ily instill knowledge about a specific task. In this con-
text, we use the term “knowledge” to refer to the state
of knowing how to act in relevant situations, which is a
set of labeled and composable behavior networks. We
do not incorporate any “forgetting” into the system at
this time; thus the robot can learn up to the capacity of
its memory.

State Representation
The robot has access to two types of state information:
sensory and model-based. Sensory information con-
sists of data from local physical sensors on the robot.
Model-based information consists of processed local
sensor data as well as global data, such as a map of the

2



Figure 1: Information flow during training. The teacher instructs the robot how to act using a GUI interface, and receives feedback
in the form of robot’s state information. When salient features are indicated by the teacher, the robot classifies them or creates new
behaviors. New behaviors are added into a control network representing the learning trial, which is labeled and stored in a case
library for later use.

Figure 2: In autonomous mode, the robot receives a goal from the user and derives a strategy to achieve that goal by using its case
library. The strategy is a series of one or more cases. In situations when the robot is unable to derive a complete strategy, it will
notify the user of the error and await new instructions.

environment, portion of the map explored, and impor-
tant locations within the map. The amount and type of
model-based information available to the robot must be
decided prior to training.

The state space for the robot is large. Therefore, a
subset of the state data is used by the robot during learn-
ing. The subset is composed of the most important, i.e.,
salient features used by the teacher when a control deci-
sion is made. A feature refers to an individual element
of the complete state description, such as the robot’s po-
sition or the current laser range scan.

Salient features are recognizable either directly or in-
directly. Direct feature recognition occurs when the
robot actively asks the teacher to indicate important fea-
tures in the state space. When posed this type of ques-
tion, the teacher must select a subset, ideally a minimal
one, of the current state information used to make the
particular control decision. Indirect feature recognition
occurs when the robot has seen a particular state and

action pairing before. It can then determine the similar
features between the previous and the current instances.

The work in this paper is applied to (but not limited
to) the domain of mobile navigation. In that context,
we make a few assumptions concerning what state in-
formation is available to the robot. Specifically, a map
of the environment is provided, and the robot is capable
of localizing itself within the environment.

Human Robot Interface
Our method of teaching a robot requires an intuitive in-
terface between the teacher and the student. The in-
terface must inform the teacher of the robot’s current
state, allow the teacher to instruct the robot, and be sim-
ple to use. In order to meet these demands we rely on
a standard personal computer running a graphical user
interface, GUI, that processes raw state information and
displays it in a meaningful way.

The GUI must be able to render all the state informa-

3



tion either as an image or text. The rendering method is
dependent on the feature type. In many cases, a feature
is represented as an image or animation. For example
position information and range data are displayed on a
map, battery levels as a bar meter, and camera data as
images.

A mechanism must also exist for controlling the robot
during teaching. In this case the robot actuators must
map to user input in an intuitive way. Since we have as-
sumed the robot has a map of the environment which
is displayed by the GUI, the user can easily control
the robot’s position by indicating map locations. These
global positions are interpolated into a trajectory for the
robot to follow. This abstraction allows the teacher to
ignore the dynamics and kinematics of the robot hard-
ware, and instead focus on the learning task. Similarly,
grippers can be controlled by a set of buttons that in-
dicated opening, closing, and lifting. Such interfaces
must be designed for each actuator the robot possesses.

The final requirement of the interface involves a
method by with the robot can query the teacher for
salient features. When this query occurs, the user is
shown a standard message indicating a request to se-
lect a set of features currently visible on the GUI. In
response to this message, the user highlights the most
important features and acknowledges a completed re-
sponse to the query.

Learning
Our method of learning is focused on two important
issues. The first is understanding demonstrations pro-
vided by a human teacher. A suitable mechanism is
required to accurately translate actions performed by a
human into knowledge understandable by a robot. Such
a mechanism must be transparent to the instructor and
general enough to capture relevant information across a
significant spectrum of domains.

The second and related point lies in generalizing the
knowledge gained from a teacher, efficiently storing
the knowledge, and reusing it at appropriate occasions.
This must also take place in real time without human
intervention.

These two issues can be labeled as knowledge acqui-
sition and knowledge understanding. In both cases min-
imal burden is placed upon the teacher. This attempts
to maximize the ease of teaching without reducing its
effectiveness, thus creating more intuitive and natural
method of collaborating with a robot.

Behaviors
We take a behavior-based approach throughout our
work. Behaviors are time-extended actions that achieve
or maintain a set of goals. These behaviors can describe
fairly basic concepts such as avoid-obstacles and
follow-wall, as well as more complex such as
find-box and locate-target. They provide a

suitably general definition to classify demonstrated ac-
tions, and can be specific enough to achieve meaningful
tasks.

The robot starts with a set of basic behav-
iors, such as avoid-obstacles, localization,
follow-wall. This set does not define all the behav-
iors the robot will require, but rather gives the robot a
rudimentary set of skills to bootstrap the training pro-
cess.

Every behavior starts with a set of preconditions and
ends with a set of postconditions. Preconditions and
postconditions consist of one or more state features.
The precondition defines a certain state that the robot
must be in before the behavior is activated. The post-
condition defines the state to reach or maintain.The be-
haviors are organized into a behavior network (Nico-
lescu & Matarić 2002), where links between behaviors
specify their temporal ordering within a well-defined
temporal logic. A behavior cannot activate unless its
predecessor behavior has been active. The resulting be-
havior network represents the complete strategy (plan)
used by the teacher to move from the start state to the
goal state.

Behavior Matching
The human teacher does not need to understand what
behaviors are or how they work in order to instruct a
robot. The teacher simply commands the robot to per-
form the necessary actions to complete a task. During
such a demonstration, the robot must learn the impor-
tant features in the state space and how to respond to
them. The approach we take decomposes the contin-
uous action and sensory information during a demon-
stration into discrete behaviors that are organized into a
network representing the complete task plan.

The first step in the decomposition process is to rec-
ognize salient features in the state space. We are only
concerned with features punctuated temporally by a
user command. An instruction from the teacher is sig-
nificant, as it marks a point in time when a strategic de-
cision was made. This decision must have been based
on a subset of the robot’s state space, i.e., a set of fea-
tures. It is therefore incumbent upon the robot to deter-
mine what features the teacher used during their deci-
sion process.

The second step involves matching behaviors to the
time period between salient features. We make the as-
sumption that actions between salient feature sets are
similar enough to group into a single behavior. This as-
sumption allows the robot to reduce a continuous task
into a significantly smaller discrete behavior represen-
tation.

Matching behaviors to time periods is done by select-
ing a behavior whose preconditions and postconditions
match the first and second salient feature sets delim-
iting the time period. The behaviors are further con-

4



strained by the order in which they were encountered
during training. For example, if behavior B occurs af-
ter behavior A, then B has the constraint that A must be
active immediately before B.

These rules allow the robot to generate a behavior
network, thereby describing a continuous training ex-
ample as a discrete set of behaviors. Each node in this
network is a single behavior generated from the training
example. Links between the nodes define the activation
preconditions and postconditions.

Behavior Creation

A robot that is only capable of behavior matching is
limited to learning tasks that can be composed of pre-
programmed behaviors. This is a major constraint on
the robot’s breadth and depth of learning. We approach
this problem by allowing the robot to autonomously
generate new behaviors.

The process by which new behaviors are generated is
similar in many respects to behavior matching. When
behavior matching fails, the robot defines a new behav-
ior with the preconditions and postconditions of the start
and ending salient features of the non-matching period.
With the conditions established, the new behavior now
requires a controller.

The controller’s role is to execute actions necessary
to achieve the goals of the behavior. Typically, a behav-
ior’s controller is pre-programmed and remains static.
However, we require the robot to autonomously create
a controller. In order to accomplish this the robot must
know how its actions affect its state and the order in
which the actions should be executed.

For the robot to know the affects of its actions, it must
have a model of its state/action mapping i.e., its con-
troller. Such a model should be learned, rather than hard
coded, as a separate process prior to teaching due to its
complexity and dependence on the structure and capa-
bilities of the robot. Pierce & Kuipers(1997) presented
a solution to this problem through the use of a sequence
of statistical and generate-and-test methods to learn a
hierarchical model of the robot’s sensorimotor appara-
tus . Alternatively, Schmill et al.(1998) learned context
dependent decision trees that related primitive actions
to changes in sensor readings. We will look to these
works as inspiration for our learning method, which is
not the core of our approach.

The order in which actions should be executed is de-
scribed by the changes in features seen during teaching.
A complete history of the features is logged between
the start and end of the behavior. This history describes
the sequence of changes in the state features. With this
information a function can be fit to each salient fea-
ture. The functions are assumed to be linear, and can be
approximated using standard techniques such as least
squares.

With the preconditions and postconditions, a con-
troller model, and a means to generate a behavior, the
robot has enough information to compose a completely
new behavior. Pre-programmed and new behaviors are
treated identically. The former are inserted into the be-
havior network according to the same rules, and can be
reused as appropriate.

Case-based Memory
When the behavior network is generated, the training
instance must be stored in memory. A memory compo-
nent allows a robot to store, reuse, and adapt previous
learning.

The robot’s memory relies on a case-based knowl-
edge library. Each training instance is considered a sin-
gle case and is stored in the case library. Cases in the
library are stored and retrieved via an index. The ini-
tial start state of the training example combined with
the final, or goal, state form the index for a case. The
case contains the behavior network generated from the
training data. With a library of cases, a robot can use its
current state and goal information to select an appropri-
ate case and execute the associated behavior network.

The robot maintains a single case for each start and
goal state pair. In other words, the robot maintains only
a single strategy for a case. After initial instruction,
the teacher is able to overwrite and modify the previous
training through re-training. This simplifies the case li-
brary based on the assumption that humans intend to
teach the robot the best strategy. It is also possible to
have the robot learn multiple alternative strategies; our
continuing work will address that extension.

Planning
When the robot is presented with a new task to perform,
it must plan a strategy for reaching the task goal given
its start state. A strategy is formed by first decompos-
ing the task into a set of subgoals. This decomposi-
tion is achieved using means-end analysis based on the
case-library. The selected cases are executed in order,
as long as they remain valid. If during execution a case
becomes invalid, either by the goal changing or the state
changing, the robot must replan.

It is probable that the robot will encounter situations
where it will be unable to decompose a task into a set
of subgoals. This will occur whenever the robot has not
received sufficient training to reach the goal. In these
situations the robot will inform the user that it has insuf-
ficient knowledge to complete the task, and will await
further instruction.

Even with a complete plan, the robot will likely en-
ter error states where it is unable to reach a subgoal.
This can result from improper training, changes in the
environment, and device failures. In situations where
the robot is still functional, it will stop and regenerate
a plan. If it is unable to successfully create a new case

5



plan, the robot will backtrack to the last case’s goal state
and attempt to replan. The robot will continue to back-
track until it can successfully create a new case plan, or
reach the start state, at which point the robot will declare
a general failure.

Algorithm 1 Runtime Algorithm
Require: start state, goal state

1: current state = start state
2: case plan← backward chaining
3: while current state! = goal state do
4: current case = top(case plan)
5: sub goal state← current case
6: if current state! = sub goal state then
7: behavior ← behavior network
8: execute behavior
9: else

10: pop(case plan)
11: end if
12: end while

Teaching
Teaching begins by placing the robot in the relevant en-
vironment with a given set of starting state features. The
teacher sends commands to the robot using the GUI un-
til it reaches the desired goal feature set.

It is important for the robot to recognize salient fea-
tures in the environment. These features indicate im-
portant events, and occur when the teacher instructs the
robot. The robot capitalizes on this fact by recording
when the teacher sends instruction to it, and may ask
the instructor what subset of the total current state fea-
tures was used to make the instructional decision.

Salient features are difficult for a learning agent to au-
tonomously recognize. Rather than guess an appropri-
ate feature set and risk learning incorrect behavior, the
robot will query the instructor. The robot will simply
ask the teacher to indicate the most important features
used to decide what action the robot should take. These
salient features are stored along with the commanded
action.

Constantly questioning the instructor is bothersome.
To help alleviate this problem, the robot first attempts
to select the salient features automatically. The robot
searches its history of received commands and salient
features. If a similar command is found paired with a
similar features, then the same feature set is applied to
the current situation.

The robot processes new salient features by matching
behaviors. All feature information between the previous
and current salient feature sets are classified as a behav-
ior. The behavior’s preconditions and postconditions
are set to the two boundary feature sets, respectively.
Finally, the behavior is inserted into the network by cre-

ating a link from the previous behavior to the newly
matched behavior. This behavior network maintains a
certain probability of correctly modeling the teacher’s
actions. Upon the completion of training, the behav-
ior network has essentially reduced the continuous state
information into a discrete set of behaviors that condi-
tioned on a few salient features.

We make a few assumptions concerning the training
process. First, training should be incremental in task
complexity. The robot should be taught simple tasks
before complex ones. The robot uses previous training
knowledge during new training instances. It is likely
that a complex task can be decomposed into a series of
sequential simple tasks. By teaching the easier tasks
first, there may be no need to teach the complex task as
the robot’s planning mechanism can produce the neces-
sary task plan. Also, the simple tasks can be combined
in numerous ways, whereas a complex task is unlikely
to be generally applicable.

It is also assumed the teacher will never purpose-
fully provide incorrect instructions. The learning mech-
anism does not attempt to detect malicious behavior.
The teacher is also required to indicate salient features
when requested. Failing to do so will result in the robot
learning potentially incorrect behaviors.

The environment in which robots are taught can be
either in simulation or the real world. Simulated envi-
ronments are desirable for teaching simple tasks that re-
quire simple worlds. Simulations also reduce the com-
plexity of the teaching scenario by eliminating potential
hardware problems. They however present an idealized
world to the robot. Therefore, tasks that require com-
plex and dynamic worlds should be taught in real envi-
ronments. In these, the teacher will also receive impor-
tant feedback on sensor and actuator noise and how the
robot behaves in dynamic environments. With this data,
the teacher can alter the training process to better match
what the robot is likely to encounter in the future.

Teaching is accomplished by providing a teacher with
a mechanism to control the robot through which the
robot can be moved towards a desired goal. This control
mechanism is an interface through which the teacher
can visualize the current state of the robot and issue
commands. It is important that the teacher uses only
information also available to the robot. If the teacher
uses other information from the environment, for ex-
ample from the human vision system, the teacher will
likely make control decisions that the robot is incapable
of understanding and learning. Based on this constraint,
the teacher must use a GUI that displays the robot’s sen-
sor and model-based state information.

Example
The purpose of this example is to illustrate the goal of
this research and how the proposed system will func-
tion. For simplicity, we have chosen an exploration task

6



Algorithm 2 Teaching Algorithm
Require: start state, goal state

1: current state = start state
2: salient features = {φ}
3: while current state! = goal state do
4: if !new instruction then
5: continue
6: end if
7: salient features ⊂ current state
8: if salient features == {φ} then
9: query instructor for salient features

10: end if
11: behavior =
12: classify(salient featurest−1...t)
13: if behavior == {φ} then
14: behavior =
15: create(salient featurest−1...t)
16: end if
17: network insert(behavior)
18: end while

in which the robot’s objective is to maximize the ob-
served area of a rectangular enclosed area. The robot
is a two wheeled mobile base with a scanning laser
range finder, and makes use of preprogrammed obsta-
cle avoidance and localization algorithms.

The first step involves teaching the robot how to ex-
plore. This is accomplished by first placing the robot at
a start location, observing the robot’s state information,
and then passing commands to the robot. As commands
are received, the robot may query the user as to which
features are currently salient. The teacher responds via
the GUI by selecting which features most heavily in-
fluenced their command choice. Teaching proceeds un-
til the robot has sufficiently explored the enclosed area.
Sufficiency is determine by the teacher.

Upon completion of the training exercise, the robot
processes logged information. The sequences of data
are matched to known behaviors through behavior
matching. If a sequence can not be matched a new be-
havior is created through behavior creation. During this
process of matching and creation the behavior network
is created based on the order in which the behaviors
were encountered. The final network is stored in the
robot’s case library with an index corresponding to the
start state and goal.

For our example of exploration of an enclosed area,
we will assume the teacher used a wall following strat-
egy. With this strategy, the teacher commanded the
robot to move towards the first corner indicating the
salient features include distance to the wall parallel to
the direction of travel and distance to the corner. This
process is repeated for the next three corners. Once the
robot has again reached its starting location, the teacher
indicates that training is complete.

Using the logged information, the robot is able to
break the data into four sequences, one for each side of
the room. With no matching behaviors, the robot cre-
ates a new behavior for the first sequence. The robot
is now able to match the next three sequences with the
newly created behavior. The resulting network consists
of a single behavior that follows a wall to a corner, a
link from the behavior back to itself, and a stopping
condition when the current state again equals the start
state. This behavior network is then inserted into the
case library. When the robot next encounters a situation
where it is next to wall with a corner in sight and a goal
of exploration, it can use this stored case.

Future Work
This research has important limitations that will be ad-
dressed in our continuing work. The first of these is the
constraint of a single strategy per case. We currently
maintain a case library where each case is unique and
each case has only one behavior network. With these
constraints, a robot is capable of learning only one solu-
tion for a case. Ideally the robot would store numerous
labeled solutions for a case, selecting the one which is
most appropriate.

Secondly, we have defined the teaching interface to
be composed solely of robot state information. We
would eventually like to display this information on a
portable device. This would give the teacher a better
understanding of the environment, and make the teach-
ing process more personal and interactive.

Conclusion
This paper has described a novel method of interactively
teaching robots how to perform complex tasks. With
this architecture, the human teacher takes on a more
personal and intuitive role in “programming” a robot.
This is meant to improve the effectiveness of the robot,
increase its usefulness and longevity, and allow for a
maximal number of teachers to impart knowledge into
the robot.

Ideally we see this research aiding in the transition of
robots from single purpose and highly specialized ma-
chines toward general purpose tools that are useful and
simple. In the short term, this work creates interesting
opportunities for robots to work closely with and aid
humans in specialized fields such as search and rescue,
exploration, and construction.

References
Arkin, R. C. 1998. Behavior-Based Robotics. CA:
MIT Press.
Atkenson, C. G., and Schaal, S. 1997. Robot learning
from demonstration. In Douglas H. Fisher, J., ed., Ma-
chine Learning: Proceedings of the Fourteenth Inter-

7



nation Conference (ICML ’97), pp. 12–20. San Fran-
cisco, CA: Morgan Kaufmann.
Billard, A.; Epars, Y.; Calinon, S.; Cheng, G.; and
Schaal, S. 2004. Discovering optimal imitation strate-
gies. Robotics and Autonomous Systems 47:2-3.
Carbonell, J. G. 1986. Machine Learning, An Artificial
Intelligence Approach, volume II. Morgan Kaufman.
chapter Derivational analogy: A theory of reconstruc-
tive problem solving and expertise acquisition., 371–
392.
Cox, M. T., and Veloso, M. M. 1997. Supporting com-
bined and human and machine planning: An interface
for planning by analogical reasoning. In Leake, D.,
and Plaza, E., eds., Case-Based Reasoning Research
and Development, Proceedings of ICCBR-97, the Sec-
ond International Conference on Case-Based Reason-
ing, 531–540. Providence, Rhode Island: Springer
Verlag.
Likhachev, M.; Kaess, M.; and Arkin, R. 2002. Learn-
ing behavioral parameterization using spatio-temporal
case-based reasoning. In IEEE Intl. Conf. on Robotics
and Automation (ICRA), volume 2, 1282–1289. Wash-
ington, DC: IEEE.
Manuela M. Veloso, J. G. C. 1993. Derivational anal-
ogy in prodigy: Automating case acquisition, storage,
and utilization. Machine Learning 10(3):249–278.
Matarić, M. 1997. Behavior base control: Exam-
ples from navigation, learning, and group behavior.
Experimental and Theroretical Artificial Intelligence
9(2-3):323–326.
Münch, S.; Kreuziger, J.; Kaiser, M.; and Dillmann,
R. 1994. Robot programming by demonstration (rpd)
- using machine learning and user interaction meth-
ods for the development of easy and comfortable robot
programming systems. In 25th International Sympo-
sium on Industrial Robots (ISIR ’94), 685–693.
Nakanishi, J.; Morimoto, J.; Endo, G.; Cheng, G.;
Schaal, S.; and Kawato, M. 2004. Learning from
demonstration and adaptation of biped locomotion.
Robotics and Autonomous Systems 47(2-3):79–81.
Nicolescu, M., and Matarić, M. J. 2002. A hierar-
chical architecture for behavior-based robots. In Inter-
national Joint Conference on Autonomous Agents and
Multiagent Systems.
Nicolescu, M., and Matarić, M. J. 2003. Natural
methods for robot task learning: Instructive demon-
stration, generalization and practice. In International
Joint Conference on Autonomous Agents and Multia-
gent Systems.
Pierce, D., and Kuipers, B. J. 1997. Map learning
with uninterpreted sensors and effectors. Artificial In-
telligence 92(1-2):169–227.
Ram, A., and Santamaria, J. C. 1993. A mul-
tistrategy case-based and reinforcement learning ap-

proach to self-improving reactive control systems for
autonomous robot navigation. In Second International
Workshop on Multistrategy Learning.
Ram, A., and Santamaria, J. C. 1997. Continuous
case-based reasoning. Artif. Intell. 90(1-2):25–77.
Schmill, M. D.; Rosenstein, M. T.; Cohen, P. R.; and
Utgoff, P. 1998. Learning what is relevant to the ef-
fects of actions for a mobile robot. In AGENTS ’98:
Proceedings of the second international conference on
Autonomous agents, pp. 247–253. Minneapolis, Min-
nesota, United States: ACM Press.
Thrun, S. 1994. A lifelong learning perspective for
mobile robot control. In IEEE/RSJ/GI Conference on
Intelligent Robots and Systems, 23–30.

8


