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Abstract 
Within the context of tele-operating the JSC Robonaut 
humanoid robot under 2-10 second time delays, this paper 
explores modeling and classifying human motions 
represented as six-dimensional (position and orientation) 
trajectories.  A dual path research agenda is reviewed 
exploring both deterministic and stochastic approaches 
using Hidden Markov Models.  Finally, recent results are 
shown from a new model that integrates these two research 
paths.  In future work it will be possible to automatically 
generate autonomous actions by reusing these same 
predictive models of human behavior to be the source of 
autonomous control.  This approach may change the role of 
tele-operation from being a stand-in for autonomy into the 
first step of mentoring generative models capable of 
autonomous robotic control.  
 

Introduction 

The contextual question for this research has been how to 
best issue remotely operated commands for the JSC 
(NASA Johnson Space Center) Robonaut platform given a 
2-10 second time delay.  Robonaut is a humanoid robot 
designed to have dexterous manipulation capabilities 
similar to those of a suited astronaut. This enables it to 
perform many of the construction and repair functions that 
would currently require an extra-vehicular activity (EVA) 
(Bluethmann et al. 2003).   Besides reducing the number of 
dangerous EVA’s that must be performed, Robonaut would 
also be able to perform emergency repairs.  Currently it 
takes an astronaut 4-5 hours to suit up for an EVA. If there 
is a critical emergency which must be repaired quickly, this 
delay may doom the astronauts.  Thus, if the Robonaut 
were able to deploy immediately it might be able to handle 
the emergency repair before a human could even start the 
EVA.  How should this robot be controlled? Fully 
autonomous control for such a high degree of freedom 
robot that is both verifiably robust and safe is a long term 
research goal and is unlikely to be flown soon.  Thus, 
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current and mid-range research objectives have been 
focused on controlling Robonaut through some form of 
tele-operation.  While success has been shown in the lab 
with fully immersive tele-operation, difficulties emerge 
when a time delay is introduced.  The 2-10 second time 
delays that this project is concerned with can occur if there 
is a human controller on the ground and the Robonaut is in 
LEO (up to two second delay) or on the moon (8-10 
second communications delay).  While these distances are 
not so great, it is the nature of the communications 
networks and topology which introduce such large time 
delays.  When a multi-second time delay is introduced, 
direct tele-operation slows down tremendously since, for 
safety reasons, the operator is forced to adapt a “bump and 
wait” strategy.   This entails making a small movement 
(the “bump”) and then waiting to get feedback on the 
results of that motion.  Controlling the robot with a “bump 
and wait” tele-operation strategy is slow and tedious, and 
does not optimize the speed advantage of deploying the 
robot for a critical emergency repair. 

Thus, in order to deal with the time delay a sliding scale 
of autonomy is proposed.  This is a hybrid human/robot 
control scheme that keeps a human in the loop (and 
ultimately in control for safety reasons), yet allows for and 
greatly increases operation speeds.  This is done by 
allowing small, well understood and conditioned tasks 
(which are often the routine tasks) to be performed 
autonomously.  The granularity of these autonomous tasks 
can vary from no autonomy (full teleoperator control), to 
simple motions such as positioning the hand close to (but 
still a safe distance away from) an object of interest, to 
compound tasks such as reaching towards a known object, 
and then grabbing and retrieving it. 

Once capabilities for these autonomous tasks exist, one 
must ask how they will be commanded.  As will be shown 
below, the operator engages in supervisory control of the 
Robonaut by operating in an immersive 3D virtual 
environment.  Thus, the specific goal of this work is to be 
able to recognize and predict when the operator is 
performing one of the pre-defined autonomous tasks so 



that the action can be triggered early and completed by the 
robot.  The control of these autonomous actions is 
purposefully kept in physical context (as opposed to 
developing some command grammar) to facilitate the 
seamless transition between direct tele-operation control 
and the varying levels of autonomous actions. 

Along side this goal of helping control the Robonaut 
under a time delay, we are also using this work to advance 
our research into automating the process of creating 
autonomous robotic actions by modeling human behavior.  
If we can accurately understand and model the methods 
humans use to solve certain problems, then it is possible 
that those very same models can be used to control a 
humanoid robot like Robonaut to accomplish similar tasks.  
Thus, we view tele-operation not simply as a means to 
accomplish a task in the absence of robust autonomy, but 
rather as the first step in building models of human action 
for the purpose of developing robust autonomous control 
(Peters et al. 2003). 

The current method of controlling Robonaut involves 
the operator wearing two data gloves that are used to 
measure finger joint positions, and two magnetic trackers 
used to measure the x-y-z position and roll-pitch-yaw 
orientation of each hand (end effector). The position and 
orientation information is then transmitted to the robot as 
end effector position commands. The number of degrees of 
freedom in the elbow and shoulder are constrained to 
enable this position while maximizing strength. For safety 
considerations, the rate of movement of the arms is limited; 
thus the operators are trained to match or move slower than 
this rate. Most of the feedback to the operator comes from 
the stereo cameras mounted in the head of Robonaut and 
transmitted back to the tele-operator’s head mounted 
display. An operator will reach for an object so that his 
view from the head mounted cameras is not obscured by 
the hand. This results in some simple tasks taking a very 
long time to accomplish. For example, in grasping a hand 
rail (as a rung of a ladder) the operator must make sure that 
the fingers can safely wrap around the rail using the stereo 
visual cues. This action typically takes several seconds for 
an experienced operator.  
 
Experiments  
We chose two basic tasks, retrieving a hand rail mounted 
vertically and dropping it into a box, and retrieving a hand 
rail mounted horizontally and dropping it into a box. The 
hand rails are mounted with Velcro on a board, affixed to a 
stationary wall. The target box is a flexible cloth box that is 
open but is not within the same field of view as the hand 
rails. These tasks were chosen as a first step towards 
automating climbing on a space habitat or operating a 
drawer pulling sequence. 
 

The tasks consist of the following steps:  
1. Start in initial position/state  
2. Look down at hand (substitute for proprio-

receptive feedback) and then at hand rails  
3. Reach for specified hand rail (either vertical 

or horizontal according to plan)  
4. Grasp hand rail  
5. Remove hand rail from wall (pull)  
6. Move hand rail over box  
7. Drop hand rail into box  
8. Return to initial position  

The Robonaut can be operated via a simulated 
environment, so that the operators can perform tasks 
without regard for the time-delay normally associated with 
long distance operations.  The motion commands generated 
in the simulated environment are then sent to the actual 
robot for execution. For this experiment, inexperienced 
operators tended to have greatly varying behaviors, 
whereas the variance in the data was negligible for the 
most experienced tele-operator.  Fig. 1 shows the simulated 
environment in which the experiments discussed in this 
paper were conducted. These experiments were conducted 
on many different days over six months.  Initial conditions 
varied noticeably from day to day.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – Top: Simulation based experiment. 
Bottom: The operator’s view from the left and right 
cameras of the simulated hand rails.  

 



Technical Problem 
While there are a number of technical and design 
challenges to the larger problem we are solving, the core 
problem is modeling and classification of the six 
dimensional trajectories. 

Each trial can be cut into a sequence of trajectory 
segments.  In this work we focus on the first segment, 
which goes from the start position to one of the possible 
graspable objects.  These trajectories are a time-stamped 
sequence of the X, Y, Z, location of the operator’s hand 
and the associated rotation matrix, which we cast into a 
roll, pitch, yaw representation.  Thus, the trajectories are a 
time sequence of six-dimensional data points with messy 
initial conditions.  Since the operator starts in 
approximately the same location for every motion, the 
initial segments of all the trajectories are heavily 
overlapped, making it difficult to clearly separate them in 
the early part of the motion (Fig. 2).  Furthermore, this is 
compounded by a large day-to-day variance on the 
operator’s start position. (Within a single day’s trials the 
trajectories tend to cluster fairly nicely).  This non-
stationarity means that there is a wide variance on the 
motion and location of the trajectories, and that in some 
cases the initial motions towards different objects end up 
looking very similar (Fig. 3). 

Our task is: given a set of example six-dimensional 
trajectories to certain known points in space, develop 
meaningful models of the different trajectories, and then 
use those models to classify a new trajectory in real time, 
as soon as possible (i.e. while having seen only some initial 
segment of the trajectory), and with no false alarms (i.e. it 
is better to not classify than to give the wrong 
classification). 

Notice that the solution to this problem, which was 
motivated by tele-operation and user intent prediction, can 
be used in other ways.  Specifically, it really is about 
classifying and predicting human gestures.  Thus, if a robot 
were working side by side with a human, and assuming 
there was a good solution for visually capturing the motion 
of the human’s hand or arm, this trajectory classification 
method could be used to comprehend the intent behind the 
human’s motions, such as for which object the human was 
reaching.  And, as mentioned earlier, we hope that the 
same models could be reused to generate autonomous 
control. 

 
Development Approach 

We explored in parallel different approaches to solving this 
problem.  One track continued with previous work by 
applying stochastic methods, such as using Hidden Markov 
Models to classify the trajectories.  The other track looked 
at more deterministic methods and ended up exploring 
different spatial representations of the data.  This research 

approach has been very successful, with the two different 
tracks starting to converge and borrow techniques from 
each other.   

In the following section we will try to present the 
evolution of our thoughts on these two different tracks, and 
show how they have influenced each other. 

Figure 2 - This is a plot of the XYZ position information 
of many trajectories to two different handles.  The start 
location on the right shows how the initial conditions for 
the different trajectories are heavily overlapped. 

Figure 3 - This is the same data as figure 2, but viewed at 
a different angle to highlight the spatial variance of the 
start positions. 
 

Deterministic Approach 
At first we thought that predicting which object an operator 
was reaching for would be easy to solve using some simple 
heuristic.  It turned out to be a much more interesting 
modeling problem than we anticipated. This section will 
give a high-level outline of our exploration of the solution 



space, and will show how we developed our newest 
algorithms. 

Our first thought was to calculate which object the 
operator was “moving towards the most” -- i.e. find the 
first derivative of the motion, using position information 
exclusively.  The major lesson from this approach was the 
importance of orientation.   We found examples in which 
the operator was positioning the hand to be in the correct 
orientation to grab the target handrail, yet the motion to do 
this involved moving towards some other object.  

Our next step was to combine instantaneous orientation 
and motion vectors, but we still ran into problems.  
Looking at instantaneous minimum values is similar to a 
minimal path approach (greedy algorithm).  It turns out 
that operators do not follow a minimum-distance path in 
either position or orientation space.  The operators have 
been trained to move in such a way as to avoid 
singularities, self contact and other hazards for the robot.  
Also, since control is purely visual (they use no force-
feedback information), they always move so as to maintain 
visual contact with both the object and the hand.  This 
leads to a preference for underhand grasps so that the 
operator can see when the object is properly grasped.  An 
overhand grasp would occlude the object being 
manipulated.   All these constraints result in motion paths 
that are not necessarily the shortest distance or most direct 
motion towards the goal. 

While it might be possible to enumerate all the 
competing optimization constraints that the operator is 
solving (occlusions, singularities, collision avoidance, etc), 
we started modeling the trajectories following our belief 
that good models can be used to create autonomy. We 
started by explicitly modeling the gesture trajectories in 
six-dimensional space (X,Y,Z, Roll, Pitch, Yaw).  To make 
this a proper spatial model that was independent of time 
(and thus independent of the speed at which the operator 
moved), we normalized along the length of the trajectory 
itself.  In other words, we recast the data into a new set of 
data points which were a known distance apart along the 
piecewise linear direction of travel.  The overall shape of 
the plotted trajectory stayed the same, but the actual data 
points which represent the trajectory were now equidistant 
along the trajectory itself.   

Using this new representation an “average” trajectory 
was computed for each graspable object.  A method of 
comparing two trajectories was developed by calculating 
the average distance error and then novel trajectories were 
compared to these canonical averages.  The weakness of 
this is that the high degree of variance and overlap, 
especially in the early part of the trajectories, caused many 
false alarms (i.e. matching to the wrong trajectory).  

In order to capture this variance a memory based 
approach was experimented with where all the trajectories 
in the training set were kept in memory and the novel 

trajectory was compared to all of them to find the best 
match. A variety of different distance metrics were 
experimented with. Under certain conditions this was 
found to work fairly well, but was fragile to the inclusion 
of outlier examples in the training set.   

We decided that for a general solution involving models 
of many different grasp trajectories, this memory based 
approach would bog down.  Thus we started looking at 
statistical methods to represent clusters of trajectories.  
This is where we really started to converge with the 
stochastic methods which were being explored in parallel.  
We will discuss that line of research next, and then discuss 
the new converged algorithms in the last section. 
 
Stochastic Approach 
The research group has a strong body of experience in 
applying Bayesian techniques to gesture recognition 
problems (Wheeler and Jorgensen, 2003).   The techniques 
used for this work have its roots solidly grounded in formal 
probabilistic graphical modeling. Using the junction tree 
algorithm, DBN’s (dynamic bayes nets) can easily meet 
the needs of any number of inferential or parameter 
learning problems. In this case, the parameters we would 
like to learn are those of a Gaussian mixture model, or 
multi-modal Gaussian distribution which would describe a 
cluster of example trajectories. In this approach we assume 
that human motion, at a coarse level, is Markovian in 
nature and can be broken down into discrete chunks – such 
as a “start phase,” a “reaching phase,” and a “grasping 
phase.” In turn, we hypothesize that each of these chunks 
can be characterized probabilistically by the 
aforementioned Gaussian mixture model. This is very 
similar to what is done in voice/speech recognition, where 
words are broken down into phonemes. The use of the 
Hidden Markov Model (HMM) encapsulates all of these 
ideas (DBN’s, Markov chains, Gaussian mixture 
emissions), and is ubiquitous in the voice/speech 
recognition community. However, these techniques have 
also been applied by other researchers interested in the 
field of motion classification and detection for video 
sequences. This field is related closely to our problem of 
motion trajectory classification, and they use similar 
intuitive arguments for applying formal probabilistic 
methods (Porikli  2004), (Bregler 1997), (Zhou, Gong, and 
Tao 2005), (Makris and Ellis 2002), (Fablet and Bouthemy 
2001).  

Much of the Bayesian approach applied to the current 
problem of modeling and classifying 6-D trajectories for 
tele-operation under a time delay has been documented in 
previous work (Wheeler et al. 2005). The common theme 
has been the use of the HMM as the fundamental modeling 
paradigm.  



Feature selection has proven to be a very important 
factor in how well the models characterize the 
experimental motion trajectory-based data. Additionally, it 
has played an important role in how consistently the 
models and real-time recall thresholds can be optimized to 
achieve the goals of no false alarms, minimum missed 
detections and time to prediction. Feature selection refers 
to the choice of several different combinations of feature 
vectors that can be used (i.e. what comprises yt - the 
observation vector at time t having dimension n). These 
feature vectors act as templates for the observation 
sequences used to train and recall the hidden Markov 
models. “Recall” is a term that often refers to the use of the 
Viterbi algorithm, but can also be used to describe any 
algorithm that is used during the model testing phase, after 
the models have already been trained. During real-time 
recall of the models, HMMs trained on all tasks of interest 
(reaching for a particular object) are arbitrated based upon 
an algorithm to determine the “winning model,” or which 
model best describes the streaming data. 

Example feature vectors include subsets of the pose 
vector, which provides point of resolution (POR) data, a 
4x4 homogeneous transform matrix representing the 
commanded position and orientation of the back of the 
robot’s hand decomposed into position (x-y-z) and 
orientation (roll-pitch-yaw). Euclidean distances to the 
objects of interest being reached for can be used to form 
the feature vector as well. In addition to feature selection, 
the tradeoffs, advantages, and disadvantages of applying 
different recall methods were studied in detail, including 
their optimizations. Concerning the feature vectors, 
initially we considered looking only at Y and Yaw, which 
were discovered to provide good discrimination between 
the different types of trajectories to distinct objects. 
However, there were some problems with inconsistent 
initial conditions across multiple tele-operation sessions 
and multiple operators that biased the final error statistics. 
Optimization has not completely resolved this problem, 
which may in part be due to the small size of the validation 
sets. 

We’d also like to determine whether we can maximize 
the robustness of our final error statistics (% false alarms 
and missed detections) to minor variations in the 
experimental setup. In doing so, we’ve found that 
processing and testing new datasets based upon HMM 
prediction models trained on previous sessions are not 
sufficiently robust to changes in the experimental setup to 
yield reasonable error statistics. As a result, this gives us 
incentive to converge to a hybrid solution between the 
Bayesian approach and the deterministic approach that 
incorporates the best features of both. The first step in this 
process is to study and test a new approach that takes 
advantage of the spatial characterization of the trajectories 
rather than their time dependence. As such, we become 

much more reliant on distance to the objects of interest as 
not only an element within the feature vector, but as a 
method for discretizing the trajectory space, as one would 
discretize pixels in a video sequence. 
 
Converged Method 
Our previous efforts to model tele-operator movements 
directly resulted in fragile prediction systems that were 
sensitive to relatively minor changes in the experimental 
setup. The models performed well for known experimental 
configurations but did not generalize to new situations. 
Modifications to initial conditions, target object position 
and orientation, or speed of tele-operation would result in a 
significant increase in missed detections or false positives. 
It became clear that massive amounts of data would have 
to be collected in order to train enough models to 
sufficiently cover the tele-operator's working area. 
Additionally, it was unclear how well the models would 
adapt to new tele-operators and how the models could be 
extended to deal with non-stationary coordinate frames. 
With this in mind, we have started to explore an alternate 
approach which attempts to model manipulator approach 
trajectories in a manner which is invariant to tele-operator 
speed as well as object position and orientation.  

The new method, which we call the approach manifold 
method, takes an object-centric view of an approaching 
manipulator. Whereas previous approaches attempted to 
answer the question "Which object is the tele-operator 
reaching for?” this approach asks each object in the scene 
"Do you think the tele-operator is reaching for you?" 
Central to this approach is the idea that there are a limited 
number of ways an object can be grasped and that as the 
manipulator moves towards a target object the trajectory 
will eventually fall into the approach manifold. Intuitively, 
the manifold is shaped somewhat like a funnel with the 
narrow end at the object's grasp site. As the distance 
between manipulator and object decreases, the range of 
possible position and orientation values collapses. The 
approach manifolds are object dependent and further 
constraints can be added depending on scene construction. 
As an example, a sphere floating in mid-air can be 
approached from any direction, so it is possible that any 
spherical object is the target as long as the manipulator 
maintains an open pose and is moving in the general 
direction towards the sphere. The approach trajectory for a 
drill lying on a table would be considerably more 
constrained. At a distance of 30cm, one would expect the 
manipulator to be above the table, moving toward the 
object, and be open or opening. At a distance of 10cm, one 
would expect the manipulator to be directly behind the drill 
handle, hand open, with index finger extended. Because 
hand pose values are parameterized on distance rather than 
time, tele-operator speed is irrelevant.  



Because the full manifold is defined over many 
dimensions (X, Y, Z, Roll, Pitch, Yaw – and could include 
things like hand shape), it is somewhat difficult to 
visualize.   In figures 4 and 5 we show a histogram based 
distribution on two of the axis, Roll and X, for the 
horizontal handrail target.  In the Roll distribution there is 
a multi-modal distribution at greater distance, which 
collapses to a single clean distribution as the hand gets 
closer to the object.  The X distribution is interesting 
because is stays tightly focused over all distances, which is 
not surprising because X is the major contributor to the 
distance metric. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 - Distribution of Roll values versus distance. 
 
 

 
 
 
 

Figure 5 - X versus distance 
 

This approach is still under development, but has 
already shown robust results.  In its current implementation 
the manifolds are built by grouping together all trial data 
for a certain target object.  Then, for discretized distances 
from the hand to the object, the mean and variance of each 
variable of the hand pose is calculated.  During runtime 
recall, object models are selected based upon the object 
types recognized by the computer vision system. Then, the 
hand pose is transformed into each object’s local 
coordinate system and compared to the statistics for the 
object model.  Each object is scored based how well the 

trajectory matches the object manifold.  Scores above a 
heuristically determined threshold are considered 
candidates for grasping.  All candidate objects then 
calculate a confidence score based on their raw score and 
the stability of the prediction over time, weighted by linear 
distance to the manipulator. 

We have started to explore replacing this binning 
approach with a more general mixture of gaussians to 
describe the manifold.  Yet, early experiments indicate that 
performance may actually degrade in this more general 
approach.  As is often the case, it may be that the simple 
approach is superior.   The current approach is producing 
good results with no false positives.  It has also shown 
itself to be robust to changes in handrail position and novel 
experimental setups not encountered in the training data. 
 

Results 
As noted above, we have not yet fully implemented the 
Approach Manifold Method (AMM), and already we are 
getting some good results.  Since this is still under 
development, we have not yet performed rigorous 
variational testing.  However, not only are the results good 
on their own terms (100% correct predictions), they also 
compare favorably against previous results using the 
optimized HMM’s. 

Table 1 shows the results of three different tests with 
collection dates of 6/16 and 10/7.  In all these results, the 
models were trained on other data sets and then validated 
with either the 6/16 or the 10/7 data set.  The Avg. Time 
Delta metric is the number of seconds from when the 
classification was made until the handrail was grasped.  
Thus, the larger the value the better the algorithm did.  For 
example, if the Delta were zero that would mean the 
classification was made only after the operator had made 
the entire gesture and was grabbing the handrail. The tests 
shown in Table 1 are as follows: 
HMM: The Optimized Hidden Markov Models described 
in the Stochastic section, and in earlier papers, is tested 
against the 6/16 data set. 
AMM: The Approach Manifold Method, using binning to 
approximate a distribution. 
 

 
HMM 
6/16 

AMM 
6/16 

AMM 
10/7 

Total Trials 28 28 20 
Classified Correct 26 28 20 

Failed to Classify 2 0 0 

Classified Wrong  0 0 0 

Avg. Time Delta 6.9 7.2 5 
 

Table 1:  Results Metrics 



 
As can be seen from this table, the new Approach 

Manifold Method does a better job of classifying the trials, 
and does so faster than the previous HMM method.  What 
the chart doesn’t show is even more impressive.  A special 
dataset was collected where the handrail orientations were 
reversed: the vertical and horizontal handrails positions 
were swapped.   The models were trained on earlier data, 
and then shown this reversed data and they were still able 
to correctly classify all the trials.  Since one of the goals of 
the Approach Manifold Method was to let the models be 
more independent of position and orientation, these early 
results show that we are working in the right direction. 
 

Future Work & Discussion 
One feature that all these approaches share is that a single 
model is not general for any arbitrary location of the 
object.  This makes sense since a trajectory is 
fundamentally the path from some known point in space, to 
some known point in space.  That being said, it is clear that 
the different models being produced are valid for some 
amount of deviation from the points they were trained on.  
The approach manifold method explicitly attempts to get 
away from this limitation and encode the approach 
manifold of a hand towards the object from any arbitrary 
location.  Yet even in this case there are limitations to how 
general a single model can be because unusual approaches, 
while valid, may also look like outlier data and will be 
given low score.  Thus, for all these approaches it can be 
said that, at some granularity, there is a region for which a 
specific model is valid.  Thus, in order to have a complete 
solution which could recognize grasp attempts anywhere in 
the workspace of the robot, one would need a number of 
models to account for all the possible positions of objects.  
This is a reasonable approach, though it comes at the 
expense of requiring large amounts of example data.  One 
thing we would like to look at in the future is how to 
automatically generate appropriate models for any arbitrary 
object location by having the models be parameterizable by 
the object location.  The approach manifold approach is 
already taking steps in the direction of location 
independence by looking at relative positions between the 
object and the hand.   

This greater independence from initial conditions is 
important for the next phase of our project.  Until now the 
overall experimental setup has been fairly static – the robot 
has been mounted to the floor, so the objects were 
generally in well known location relative to it.  Next we 
will be moving to a mobile base for the Robonaut, so we 
will not be able to make a strong assumption about the 
object positions relative to the robot. 

Another common first thought for achieving position 
independence is to create a path planner which can 

generate paths to any arbitrary location.  The problem with 
this approach is that it is not clear that a path planner will 
generate a trajectory that looks like what a human would 
decide to do.  The goal here is not optimal path generation, 
but rather the goal is interpreting human gesture.  Thus, 
what we would like to do is to develop enough models of 
human motion that we can start automatically generating 
motion models that mimic human gestures. 

One of the philosophical bases represented within this 
work is the notion that we should bootstrap autonomous 
behaviors through a mentoring relationship between 
humans and robots.  In the case of humanoid robotics, we 
are capable of symbolically wearing robots by tele-
operating them as a means to exemplify desired behaviors.  
To this end, we are endorsing that one of the goals of 
researchers in humanoid robotic automation should be to 
develop systems that automate the process of automation, 
rather than developing the automation itself.  This does not 
mean that we should not use available prior information 
(such as inverse kinematic models), but that whenever we 
are faced with a decision as to how to proceed, we take our 
cues from human behavior. 

This leads us back to one of our original questions: Is it 
possible to automatically generate autonomous behavior by 
modeling human action?  An important, and unanswered, 
question is: given two different models which both predict 
the human action equally well, will one of these models be 
better at generating autonomous control?   What are the 
properties of a good generative model?  And, finally, how 
can you verify that a model is robust enough that its 
autonomous control will be safe and reliable?  This is a 
long term research agenda, which, if successful, could have 
a huge impact on lowering the barrier to the creation of 
autonomous control. 

Our current and future activities are focused upon 
principles consumed and derived from research in 
neurophysiology.  This does not mean that we need a 
computer or algorithm based upon sodium ion channels or 
spiking neurons, but rather that we are interested in the 
underlying information theoretic principles involved in, 
among other things, robust pattern recognition and pattern 
generation.  Currently we are developing the methods 
necessary for closing the loop between sensory and motor 
control within a Bayesian framework. 

We would like to close by thanking the members of the 
Dexterous Robotics Laboratory at Johnson Space Center 
for their hard work and ongoing support of this research.  
Without them, we would have no data. 
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