
Identifying and Characterizing Class Clusters
to Explain Learning Performance

Ricardo Vilalta
Department of Computer Science, University of Houston

4800 Calhoun Rd., Houston, TX 77204-3010
vilalta@cs.uh.edu

Abstract

We stress that the field of machine learning would ben-
efit significantly if more work were focused on explain-
ing learning behavior by attending to the connection
between learning strategies and the different types of
example distributions. The goal of this paper is to ex-
emplify the benefits of such kind of studies through a
simple decomposition of classes into clusters. We show
how the decomposition process is instrumental in ex-
plaining the behavior of Naive Bayes. We then exploit
the same decomposition process to propose a new ap-
proach to learning that adapts to the characteristics of
the dataset under analysis. Specifically, the idea is to fit
models of different complexity over separate regions of
the input space.

Introduction
Despite the long and diverse array of available learning algo-
rithms, the reasons explaining why a particular algorithm is
more successful than others on specific tasks remains elu-
sive. A fundamental question awaits unanswered: what
works well where? (Vilalta, Oblinger, & Rish 2000). Learn-
ing algorithms are commonly compared by averaging their
performance (e.g., off-training set accuracy) over bench-
mark domains. But little work has been done to explain
performance based on the characteristics of the underlying
model and the example distribution (Rendell & Cho 1990).

Consider the following scenario. Learning algorithm LA′

is said to be superior to LA because the modification intro-
duced in LA′ conveys a more suitable form of bias1. As
an example, suppose a researcher decides that a neural net,
NNbp, trained via backpropagation, appears to provide the
best predictive accuracy over a certain class of tasks T . The
researcher decides to modify NNbp’s mechanism by using
a different sigmoid function (i.e., squashing function), even-
tually obtaining a significant average increase ∆acc in pre-
dictive accuracy (measured via some re-sampling technique,
e.g., n-fold cross-validation). The researcher then claims to

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1The term bias is used here as a preference of one hypothesis
over another; it is defined by the class of hypotheses or functions
H (i.e., by the hypothesis space –of possibly infinite cardinality).

have produced a better algorithm NNbp
′ over T . In this ex-

ample, the reason for the success of NNbp
′ is unclear (no

analysis is provided explaining the reason for the success
of the proposed improvement). Implicit assumptions are 1)
that there is no need to scrutinize the trained model —in this
case, a neural net trained via backpropagation— and 2) that
there is no need to characterize the data distribution from
which the training examples are drawn. The modification is
gladly accepted as long as ∆acc results in a positive signifi-
cant difference.

The example described above failed to provide answers to
two fundamental questions:
1. Algorithm Design. Why does the proposed change in

the algorithm design produced better performance on that
particular set of tasks? Using a different sigmoid function
leaves most components of the basic model unaltered: lin-
ear combinations of weighted inputs still form the basis
to fire each neural node; lower layer nodes serve as in-
put to upper layer nodes; error minimization (on the train-
ing set) is achieved by conducting a hill-climbing search
through a weight space, etc. What principled guidelines
exist to modify a learning algorithm to generate better per-
formance?

2. Data Characterization. What characteristics of a sam-
ple drawn from a fixed but unknown distribution over the
input-output space are more decisive in affecting the per-
formance of a learning algorithm? What kind of theory
can be generated to understand the relation between ex-
ample distributions and learning algorithms?
In this paper we discuss how the field of machine learn-

ing would benefit significantly by studying the connection
between learning strategies and data distributions. To nar-
row our research scope, we have given higher priority to the
second goal posted above. In particular, we show how even
a simple characterization of different example distributions
would stand as a major step towards understanding learning
performance.

Data Characterization in Meta-Learning
The problem of characterizing data landscapes ia at the core
of meta-learning; the cental idea is that high-quality data
characteristics or meta-features provide enough information
to differentiate the performance of a set of given learning

0 2 4 6 8 10 12 14 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

X
2

X1

Decision Tree

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

X
2

X1

Linear Perceptron

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

X
2

X1

1-NN

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

X
2

X1

Naive Bayes

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12

X
2

X1

Neural Network

Figure 1: (top-left) A two-dimensional classification problem with 4 Gaussian models (2 for each class) distributed in an XOR
manner. (top-middle to bottom-right) Errors patterns for a decision tree, a perceptron, a 1-nearest neighbor, naive Bayes, and a
neural network.

algorithms (Aha 1992; Michie 1994; Gama & Brazdil 1995;
Brazdil, Soares, & Pinto da Costa 2003).

Much work in data characterization has concentrated on
extracting statistical and information-theoretic parameters
estimated from the training set (Aha 1992; Michie 1994;
Gama & Brazdil 1995; Engels et al. 1998; Sohn 1999).
Measures include number of classes, number of features, ra-
tio of examples to features, degree of correlation between
features and target concept, average class entropy and class-
conditional entropy, skewness, kurtosis, signal to noise ra-
tio, etc. This work has produced a number of research
projects with positive and tangible results (e.g., ESPRIT
Statlog (1991-1994) and METAL (1998-2001)).

In addition to statistical measures, other approaches in-
clude model-based characterization, where the idea is to
exploit properties of the induced hypothesis as a form of
representing the dataset itself (Hilario & Kalousis 2000;
Peng et al. 2002); and landmarking, where information ob-
tained from the performance of a set of simple learners (i.e.,
learning systems with low capacity) is used to identify ar-
eas in the input space where each of the simple learners can
be regarded as an expert (Pfahinger, Bensusan, & Giraud-
Carrier 2000).

Previous work in data characterization exhibits strong
limitations. Traditional approaches often denote a sharp dis-
tinction between the process of data characterization and the
process of mapping datasets to predictive models. Meta-
features are crafted without a strong justification that indi-
cates their relevance in explaining differences in learning be-
havior. In contrast, our goal is to produce new forms of data
characterization that can directly be used to explain the con-
nection between example distributions and learning strate-
gies.

A Simple Experiment
Before we present some preliminary ideas for the connection
between example distributions and learning strategies, we
show results from a simple illustrative experiment. To begin,
let us provide some basic notation. Let (A1, A2, · · · , An)
be an n-component vector-valued random variable, where
each Ai represents an attribute or feature; the space of all
possible attribute vectors is called the input space X . Let
{y1, y2, · · · , yk} be the possible classes or categories; the
space of all possible classes is called the output space Y . A
learning algorithm receives as input a set of training exam-
ples T = {(x, y)}, where x = (a1, a2, · · · , an) is a vector
or point of the input space and y is a point of the output
space. The outcome of the learning algorithm is a function
h (i.e., hypothesis) mapping the input space to the output
space, h : X → Y .

Now, assume a two dimensional input space where each
point x ∈ R2 can be assigned to one of two classes y ∈
{+,−}. We assume each class can be modeled as a mix-
ture of two Gaussians. Figure 1 (top-left) shows the class-
conditional probability distribution for both classes over the
plane. The classes are distributed in an XOR manner, each
Gaussian model being diametrically opposed to the Gaus-
sian model that belongs to the same class. Under an optimal
Bayesian classification, each class occupies two diametri-
cally opposed squares on the plane.

We trained different learning algorithms on a sample of
size two thousand (we generated five hundred examples for
each Gaussian model). We then tested each model on a sam-
ple of size five thousand drawn uniformly from the bounded
plane. Figure 1 shows the error patterns (i.e., the exam-
ples misclassified) for each model on our artificial prob-
lem. Our learning algorithms include Decision Trees, Per-

ceptron, 1-Nearest-Neighbor, Naive Bayes, and Neural Net-
work. One can conclude that different learning algorithms
are characterized by different error patterns over the input
space. In our example, the example distribution favors the
1-Nearest-Neighbor approach, as a local approach to classi-
fication attains almost optimal performance (provided a suf-
ficiently large training sample). Other algorithms like Naive
Bayes, Decision Tree2, and Perceptron perform close to ran-
dom guessing. What is important to understand here is the
connection between the learning strategy and the particular
example distribution. When is a global approach to learn-
ing expected to perform better than a local approach? How
can we identify this through a summarization of the example
distribution? We attempt to answer some of these questions
next.

The Case of Naive Bayes
To continue our discussion, we focus on a particular study
that involves the Naive Bayes classifier (Vilalta & Rish
2003). Although the behavior of Naive Bayes has been ex-
plained from different perspectives (Domingos & Pazzani
1997; Zhang & Ling 2001; Garg & D. 2001; Jaeger 2003),
an understanding of the degree of match between different
target distributions and the set of assumptions or bias em-
bedded by the algorithm remains unclear. In this section we
identify a kind of distributions for which the product approx-
imation of Naive Bayes may result in multiple misclassifica-
tions; we name this problem the class-dispersion problem.

Specifically, Naive Bayes is a probabilistic classifier that
assumes feature independence given the class. For each
class yj , Naive Bayes uses the following discriminant func-
tion:

g(x) = P (yj)
n∏

i=1

P (ai|yj) (1)

where P (yj) is the a priori probability of class yj and
P (ai|yj) is the class-conditional probability on a single fea-
ture value. Following our research goal we pose the ques-
tion: what is the effect of the product-approximation com-
ponent of Naive Bayes on generalization performance under
different distributions?

To answer the question above we need to recall that Naive
Bayes is a maximum entropy approximating distribution
(Lewis 1959). It can be shown that the maximum entropy
approximating distribution of Naive Bayes tends to flatten
out class distributions over regions of examples for which
the set of low order components is identical. This assump-
tion is inappropriate under distributions where clusters of ex-
amples that belong to the same class are dispersed through-
out the input space (i.e., under the class-dispersion problem).
In cases when instances of the same class are scattered (Fig-
ure 1 top-left), computing marginals (i.e. single-dimensional
projections) of the data may result in significant loss of in-
formation. In this case, clusters are hard to identify because
a single-dimensional projection of the data loses their spatial

2A close examination reveals a poor feature discretization is the
cause for the low performance of the decision tree.

-

6

A
AAAAA
A - {(x, y′)|y′ = (A, 1))}

B
BBBBB

B BB
- {(x, y′)|y′ = (B, 1))}

A
AAAAA

A - {(x, y′)|y′ = (A, 2))}

Figure 2: The mapping process relabels examples to encode
both class and cluster.

information. This is related to the small disjunct problem in
classification (Holte & Porter 1989), where the existence of
many small disjuncts (i.e., class-uniform clusters covering
few examples) may account for a significant amount of the
total error rate. Our focus, however, is based on the distribu-
tion of clusters rather than their coverage.

This leads directly to our conjecture that Naive Bayes per-
forms better on domains where the examples of one class are
clustered together. We have shown how probability distribu-
tions having almost all the probability mass concentrated in
one example are well approximated through a product dis-
tribution (see (Vilalta & Rish 2003) for theorem and (Rish,
Hellerstein, & Jayram 2001) for complete proof).

Decomposing Classes Into Clusters
Our solution to the class-dispersion problem can be summa-
rized through a two-step process:
1. Identify class-uniform clusters of examples in the training

set, and
2. Relabel each cluster as a new class of examples.

The new dataset differs from the original training set in
the class labelling: there is now an additional number of
classes. Naive Bayes is then trained over the new dataset.
During classification, performance can be assessed by sim-
ply assigning each example back to its original class. A gen-
eral description of our approach follows.

Let T = {(x, y)} be the input dataset. Our first
step is to map T into another dataset T ′ through a class-
decomposition process. The mapping leaves the input space
X intact but changes the output space Y into a (possibly)
larger space Y ′ (i.e., |Y ′| ≥ |Y|, where | · | is the cardinality
of the space).

The second step is to train Naive Bayes on T ′ to obtain hy-
pothesis h′. The hypothesis acts over the transformed output
space h′ : X → Y ′. The classification of a new input vector
x is obtained by applying a function g over h′(x) that will
essentially bring the class label back to the original output
space, g : Y ′ → Y .

An illustration of the transformation above is shown in
Figure 2. We assume a two-dimensional input space where
examples belong to either class A or B. Let’s suppose a clus-
tering algorithm separates class A into two clusters, while
class B is grouped into one single cluster. The transforma-
tion relabels every example to encode class and cluster label.
As a result, dataset T ′ has now three different classes.

0 5 10 15 20 25

0

5

10

15

20

25

30

Domains Ordered by Mean Number of Clusters

A
cc

ur
ac

y−
D

iff
er

en
ce

(N
B

’,
N

B
)

0 2 4 6 8 10
0

2

4

6

8

10

Mean Number of Clusters

F
re

qu
en

cy

Figure 3: (left) Accuracy difference between Naive Bayes with the transformation and Naive Bayes standard. (right) A his-
togram of domains based on the mean number of clusters per class.

The decomposition process aims at eliminating the cases
where a class spreads out into multiple regions. As each
cluster is transformed into a class of its own, the class-
dispersion problem vanishes. The result is a new input-
output space where each class sits in a tight region. By
reducing the class-dispersion problem, the conditional prob-
abilities estimated by Naive Bayes better conform with the
assumption of a product distribution (i.e., of a maximum-
entropy distribution).

Experiments using the Class-Decomposition
Experiments on real-world domains show how the trans-
formation process improves the accuracy of Naive Bayes,
particularly on those domains with many clusters per class.
Our datasets (26 domains) can be obtained from the Univer-
sity of California at Irvine repository. Predictive accuracy
on each dataset was obtained using stratified 10-fold cross-
validation, averaged over 5 repetitions. The clustering al-
gorithm follows the Expectation Maximization (EM) tech-
nique (McLachlan & Krishnan 1997); it groups examples
into clusters by modeling each cluster through a probability
density function. Each example in the dataset has a prob-
ability of class membership and is assigned to the cluster
with highest posterior probability. The number of clusters is
estimated using cross-validation.

Our results show accuracy improvement in most of the
datasets used for our experiments. Where no improvement
is observed the difference is not statistically significant; in
the extreme case where each class is grouped into one single
cluster, the performance of our proposed approach is iden-
tical to Naive Bayes. In some other domains, the improve-
ment is evident. Figure 3 (left) shows the difference between
our approach (NB′) and Naive Bayes (NB) (y-axis) where
domains are ordered according to the mean number of clus-
ters per class (x-axis). Most significant differences corre-
spond to domains with many clusters per class (we note the
increase is not monotonic).

In addition, our results shed some light on the compet-
itiveness of Naive Bayes in real-world domains. Figure 3
(right) shows a histogram of the mean number of clusters

per class for each dataset. Most datasets exhibit a distribu-
tion characterized by few clusters per class, a situation that
favors the assumption behind a product distribution. Few
datasets exhibit many clusters per class, which explains why
Naive Bayes often appears at the same level of performance
as other (more sophisticated) algorithms.

In summary, our study identified a class of input-output
distributions where the product-approximation component
of Naive Bayes classifier exerts a negative impact on per-
formance. Our data characterization captures the number of
clusters per class as an approximation to the degree of class
dispersion.

Global and Local Learning
We now try to answer the following question: how can
we generalize the results obtained from the study of Naive
Bayes to a more general set of classifiers? Giving answer
to such question is important to 1) understand poor per-
formance on certain tasks, and 2) propose new approaches
to learning that combine the strengths of current learning
strategies.

To begin, let us provide a rough categorization of learning
algorithms. A criterion to differentiate learning strategies
can be related to the kind of information used in computing
class posterior probabilities; we can either employ all avail-
able training examples (i.e., global strategy) or give higher
weight to those training examples in the neighborhood of
the query example (i.e., local strategy). Both global and lo-
cal learning strategies sit at two extremes of a large spectrum
of possible compromises that exploit information from clas-
sified examples.

We focus our study on the differences between global and
local learning. On the one hand, global learning algorithms
fit a single model to the whole training data, even when the
complexity of the model results inadequate on different re-
gions of the input space. For example, a simple global model
(e.g., linear combination of feature values, Naive Bayes, sin-
gle logical rules, etc.) is often inadequate under regions of
high example density if Bayes error is low and higher flex-

ibility in the decision boundaries lowers the empirical risk
(Bottou & Vapnik 1992). Here the final hypothesis is drawn
from a small class of approximating functions; the poor
repertoire of functions produces high bias (since the best ap-
proximating function may lie far from the target function)
but low variance (since there is little dependence on local
irregularities in the data). The alternative is to increase the
degree of complexity by drawing a hypothesis from a large
class of approximating functions (e.g., neural networks with
a large number of hidden units); here the hypothesis exhibits
flexible decision boundaries (low bias) but becomes sensi-
tive to small variations in the data (high variance). This is
inadequate if data is sparse or a function with lower variance
achieves the same empirical risk. In both cases the final hy-
pothesis is simply averaged altogether, prone to overshoot
the bias or variance component of error as example densities
vary throughout the input space.

At the other extreme of the spectrum sit local learning al-
gorithms (Bottou & Vapnik 1992; Vapnik & Bottou). These
algorithms fit a different model around each query exam-
ple and so pay attention to local irregularities in the data
at the expense of using biased estimates of class (posterior
or conditional) probabilities (e.g., k-nearest neighbor classi-
fiers with small values for k). Reducing the degree of local-
ity (e.g., by increasing k or the width of a kernel function)
improves the probability estimates but loses sensitivity to
small variations in the data. Estimating class probabilities
by gathering statistics around a query example fails to cap-
ture how class clusters distribute throughout the input space.

Learning Strategies that Adapt
to the Example Distribution

We claim one reason explaining poor learning behavior lies
on the bias toward strategies that are purely global or purely
local. In a pure global strategy the complexity of the model
may turn inadequate on certain regions of the input space. In
a pure local strategy, too much emphasis is commonly paid
to local irregularities in the data.

To test our claim, we have proposed a learning strategy
that fits models of different complexity over separate re-
gions of the input space (Vilalta, Achari, & Eick 2004).
The idea borrows from the class decomposition process de-
scribed above. First, locality is achieved by decomposing
each class into different clusters, each cluster representing
a local characterization of the class-conditional distribution.
Instead of modeling this distribution as a mixture of compo-
nents (Jacobs et al. 1991), we treat each cluster as a subclass
that must be learned independently of the rest. This hier-
archical representation of classes where each class divides
into clusters enables us to fit models of varying complexity
on different regions of the input space, while retaining most
available examples for training.

Specifically, our compromise between global and local
learning strategies is to increase the number of discrimi-
nant functions by assigning each an easier task, narrowing
the location of its decision boundaries to a more confined
region of the input space. The idea is to exploit the class-
decomposition process explained before to identify natural

A1

A2

Figure 4: A high-order polynomial (dashed line) improves
the classification of a linear model (bold line) at the expense
of increased variance. A local classifier (circle) fails to iden-
tify cluster membership information.

clusters in data. Each corresponding cluster represents a lo-
cal characterization of the class-conditional distribution.

As an illustration, Figure 4 shows a two dimensional in-
put space with two classes. The distribution of examples
precludes a simple linear model attaining good performance
(Figure 4 bold line). One way to increase the complexity of
the model is to enlarge the original space of linear combina-
tions to allow for more flexibility on the decision boundaries,
for example by adding higher order polynomials (Figure 4,
dashed line). But this comes at the expense of increased
variance and possibly data over-fitting.

A different solution is to follow a local learning strategy
by tracing a graded circular area around the query example
(Figure 4 circle). This is normally achieved by placing a ker-
nel around the query example (e.g., a Gaussian kernel) that
dictates how much weight is assigned to neighbor examples.
This method pays too much attention to irregularities in the
data (often resulting in high variance). In addition, it disre-
gards the location of the query example with respect to dense
areas of high posterior probabilities. Figure 4 (circle) shows
a scenario where the query example is assigned class nega-
tive, despite it having a higher degree of cluster membership
on class positive.

Figure 5 shows an example distribution identical to Fig-
ure 4, but with the new goal of fitting three models corre-
sponding to the different clusters into which class positive
can be decomposed. Each resulting function is in charge of
distinguishing between examples within the cluster from ex-
amples outside the cluster. By increasing the number of de-
cision boundaries per class we enable the learning algorithm
to choose models of different complexity according to vari-
ations in example density. This hierarchical representation
where each class divides into multiple clusters adds locality
to the classification problem while retaining all examples for
training.

Our algorithm (Figure 6) fits models of varying complex-
ity to the relabeled data (i.e., the data obtained after clus-
tering examples of same class and relabeling each cluster as
a new class), and selects the function that is most accurate

A1

A2

Figure 5: Learning clusters in a piece-wise manner using
models of varying complexity; class positive decomposes
into three clusters.

Algorithm 1: Model-Fitting Process
Input: dataset T ′
Output: set of discriminant functions G
MODEL-FITTING(T ′)
(1) foreach class-uniform set T ′j in T ′

(2) Relabel all examples outside T ′j as (−)
(3) foreach model M of increasing complexity
(4) Learn function gj using model M in Tj

(5) Assess gj on validation set
(6) Keep track of most accurate function g∗j
(7) end
(8) end
(9) return G = {g∗j }

Figure 6: The process to fit models of varying complexity
on each of the original clusters.

on a validation set. Fitting models of varying complexity
can be achieved in different ways. Our experiments use a
support vector machine with a polynomial kernel; the de-
gree of the polynomial is varied from one to three; the final
degree is based on the best accuracy obtained on a valida-
tion set. Since we favor local models of low complexity,
ties are broken by selecting the polynomial with lowest de-
gree. The rationale behind this idea is twofold: 1) learning to
classify each cluster does not necessarily assume a paramet-
ric model, and 2) the use of local models allows to increase
model complexity in finer steps.

Experiments on twenty real-world domains (see (Vi-
lalta, Achari, & Eick 2004) for details) show our proposed
strategy outperforming a local learning algorithm (Nearest
Neighbor) and performing similarly to a global learning al-
gorithm (Neural Network). Results are consistently above or
close to the best of the global or local learning algorithms,
which points to an interesting balance between both strate-
gies. In addition, the average degree for the polynomial ker-
nel on each dataset shows most clusters can be learned with
simple linear or quadratic models which facilitates their in-
terpretation.

Summary and Conclusions
We have shown the importance of extracting relevant charac-
teristics about example distributions to understand learning
behavior. Our research has simply focused on capturing the

number of clusters per class as an approximation to the de-
gree of class dispersion. This was instrumental in explaining
the behavior of Naive Bayes. Essentially, the performance of
Naive Bayes is expected to degrade as the number of clusters
per class increases. We then exploited the class decomposi-
tion process to propose a new learning algorithm that fits
models of varying complexity to the data.

Future research in meta-learning needs more complex
forms of data characterization that can be used to explain
learning performance. Previous work has shown how char-
acterizing example distributions is a difficult task in machine
learning (Michie 1994; Gama & Brazdil 1995). Most exist-
ing measures adopt a general view of the example distribu-
tion under analysis; meta-features are obtained by averaging
results over the entire training set, implicitly smoothing the
actual example distribution (e.g., class-conditional entropy
is estimated by projecting all training examples over a sin-
gle feature dimension). We claim a need exists to attain more
specialized descriptors of the example distribution in a form
that can be related to learning performance. Our data char-
acterization based on quantifying the number of clusters (or
groups of clusters) per class is still a crude approximation
to the degree of class dispersion. We need data structures
able to characterize properties of the class-conditional data
landscape concisely and accurately, in a way that relates to
learning behavior.

Acknowledgments
References

Aha, D. W. 1992. Generalizing from case studies: A case
study. In Proceedings of the Ninth International Workshop
on Machine Learning. 1–10.
Bottou, L., and Vapnik, V. 1992. Local Learning Algo-
rithms. Neural Computation 4(6):888–900.
Brazdil, P.; Soares, C.; and Pinto da Costa, J. 2003.
Ranking learning algorithms: Using ibl and meta-learning
on accuracy and time results. Machine Learning Journal
50(3):251–277.
Domingos, P., and Pazzani, M. 1997. On the optimality of
the simple bayesian classifier under zero-one loss. Machine
Learning Journal 29:103–130.
Engels, R.; Theusinger, C.; Gama, J.; and Brazdil, P. 1998.
Using a data metric for offering preprocessing advice in
data-mining applications. In Proceedings of the Thirteenth
European Conference on Artificial Intelligence.
Gama, J., and Brazdil, P. 1995. Characterization of clas-
sification algorithms. In 7th Portuguese Conference on Ar-
tifical Intelligence, EPIA, 189–200.
Garg, A., and D., R. 2001. Understanding probabilistic
classifiers. In European Conference on Machine Learning,
179–191.
Hilario, M., and Kalousis, A. 2000. Building algorithm
profiles for prior model selection in knowledge discovery
systems. Engineering Intelligent Systems 8(2).
Holte, R. C., and Porter, B. W. 1989. Concept learning

and the problem of small disjuncts. In International Joint
Conference on Artificial Intelligence, 813–824.
Jacobs, R.; Jordan, M. I.; Nowlan, S. J.; and Hinton, G. E.
1991. Adaptive Mixtures of Local Experts. Neural Com-
putation 3:79–87.
Jaeger, M. 2003. Probabilistic classifiers and the concepts
they recognize. In Proceedings of the Twentieth Interna-
tional Conference on Machine Learning.
Lewis, P. 1959. Approximating probability distributions
to reduce storage requirements. Information and Control
214–225.
McLachlan, G., and Krishnan, T. 1997. The EM Algorithm
and Extensions. John Wiley and Sons Ellis Horwood.
Michie, D. 1994. Machine Learning, Neural and Statistical
Classification. Ellis Horwood.
Peng, Y.; Flach, P.; Brazdil, P.; and Soares, C. 2002.
Decision tree-based characterization for meta-learning. In
ECML/PKDD’02 Workshop on Integration and Collabora-
tion Aspects of Data Mining, Decision Support and Meta-
Learning, 111–122.
Pfahinger, B.; Bensusan, H.; and Giraud-Carrier, C. 2000.
Meta-learning by landmarking various learning algorithms.
In Proceedings of the Seventeenth International Confer-
ence on Machine Learning.
Rendell, L. A., and Cho, H. 1990. Empirical learning as a
function of concept character. Machine Learning Journal
5(3):267–298.
Rish, I.; Hellerstein, J.; and Jayram, T. 2001. An analysis
of naive bayes on low-entropy distributions. In IBM T.J.
Watson Research Center, RC91994.
Sohn, S. Y. 1999. Meta analysis of classification algo-
rithms for pattern recognition. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 21(11):1137–1144.
Vapnik, V., and Bottou, L. Local algorithms for pattern
recognition and dependencies estimation. Neural Compu-
tation 5(6):893–909.
Vilalta, R., and Rish, I. 2003. A decomposition of classes
via clustering to explain and improve naive bayes. In Eu-
ropean Conference on Machine Learning, 444–455.
Vilalta, R.; Achari, M.; and Eick, C. 2004. Piece-wise
model fitting using local data patterns. In Sixteenth Euro-
pean Conference on Artificial Intelligence.
Vilalta, R.; Oblinger, D.; and Rish, I. 2000. What works
well where in inductive learning? In Workshop: What
Works Well Where? as part of the 2000 International Con-
ference on Machine Learning.
Zhang, H., and Ling, C. 2001. Geometric properties of
naive bayes in nominal domains. In European Conference
on Machine Learning, 588–599.

