
Lessons Learned: Automated Event Recognition  
in Distributed Data Environments  

M.B. Hudson, D. Schreckenghost, and C. Thronesbery 
 

NASA Johnson Space Center, 2101 Nasa Road One, Houston, TX 77058 
 
 
 

Abstract 
We investigated issues with recognizing events when 
monitoring large amounts of live data coming from 
distributed systems. We did this by reporting on a system 
that was deployed in NASA/JSC’s Water Research Facility. 
The system included complex event recognition software 
that recognized significant events and anomalies when 
monitoring the Water Recovery System. We share our 
experiences and lessons learned after running the system for 
a year and a half. We discuss the issues that were brought 
about by operating in a distributed data environment. We 
believe that these issues will need to be addressed by any 
system that performs complex event recognition in such an 
environment. This is partly due to the fact that recognizing 
events is sequential by nature, and operating in a distributed 
data environment is parallel by nature. In this paper we 
discuss our solutions to these issues and point out areas that 
require further research for future growth of this 
technology. 

Introduction to the Problem 
1We investigated the problem of automated event 
recognition in distributed environments by developing a 
system to monitor data coming from NASA’s Water 
Research Facility (WRF). Using automated event 
recognition software, we developed a system that, upon 
recognition of an event, automatically notified appropriate 
personnel to take action. The notification was done via 
pager or email. This approach provided two benefits. First, 
we were able to capture the knowledge of domain experts 
when defining the events that needed to be recognized and 
addressed. Second, automated monitoring relieved the 
necessity of using people to monitor 24 hours/day, 7 
days/week and allowed them to focus their attention on 
problem solving and other jobs rather than on data 
monitoring.  
 
The use of event recognition in live distributed data 
environments is particularly interesting because it is a 
relatively new use of technology that addresses a very 
common problem in a broad range of industries. The 
problem of monitoring large amounts of distributed data 
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exists in government and commercial arenas, including 
hospitals, chemical plants, offshore drilling rigs, nuclear 
plants, military environments, and air and naval stations. In 
short, any environment that requires vigilant non-invasive 
monitoring of people and processes in order to maintain a 
safe state for operations is a candidate application.  
 
Data monitoring is often done manually. For instance, at 
NASA, telemetry data are streamed from the shuttle or the 
space station to mission control and mission control is 
manned around the clock to ensure that all systems are 
operational. At the NASA/JSC we are investigating ways 
to automatically monitor data to detect important events 
and notifying people when predefined events or anomalies 
occur. 
 
We have developed an automated event recognition system 
for monitoring the water recovery system in the WRF at 
JSC.  This application combines signals from four different 
subsystems and uses complex pattern recognition software 
to recognize events traditionally distinguishable only by 
human expertise. To do this, we employed complex event 
recognition software developed by a third party and 
modified by them to fit our environment. But even with the 
added benefit of customizing this software to conform to 
our environment, issues arose that we did not foresee. It 
was not until we put the system into operational use that 
many problems surfaced. 
 
While we used the Complex Event Recognition 
Architecture (CERA) (Fitzgerald, Firby, and Hanneman., 
2003) developed by Dr. James Firby and Dr. William 
Fitzgerald for event recognition, we believe that the 
lessons learned in deploying this software are of general 
interest to the pattern recognition community. This paper 
describes the issues arising from the characteristics of the 
distributed data environment that will need to be addressed 
by any automated monitoring system operating in such an 
environment. By making the research community aware of 
these problems and the solutions we found effective, we 
hope to promote further growth in the area of automated 
event monitoring. 
 
 
 



Application – Detecting Autonomous Control 
Events  

We used CERA to provide the event recognition capability 
in the Water Research Facility at NASA/JSC. The WRF is 
used to evaluate new hardware for purifying water (called 
water recovery). The Water Recovery System (WRS) is an 
example of such hardware tested in the WRF.  The WRS 
consists of four systems: a biological water processor 
(PPBWP), a reverse osmosis system (RO), an air 
evaporation system (AES), and a post-processing system 
(PPS). The WRS is operated by autonomous control 
software (Bonasso, et al., 2003).  Control engineers are 
responsible to keep an eye on the autonomous controller 
and intervene should problems arise.  Thus, control 
engineers look for events indicating anomalous conditions 
in the WRS, such as a shutdown of one or more of the 
systems, an unsuccessful slough (which is supposed to 
unclog a filter), or a loss of communications with other 
systems. The Distributed Collaboration and Interaction 
(DCI) System was deployed in the WRF to assist control 
engineers in interacting with the automated WRS 
(Schreckenghost, et al., 2005).  Complex event detection 
software (i.e., CERA) was deployed as part of the DCI 
system. Recognizers for events of interest to control 
engineers were defined using the CERA event definition 
language. CERA monitored data from the WRS and 
compared it to these definitions.  When a predefined event 
of interest occurred, CERA exported the event to the DCI 
agent system, which notified the responsible control 
engineers.   
 
We deployed the DCI System January 28, 2004.  It 
supported testing in the WRF until August 30, 2005.  
During much of that time, CERA successfully recognized 
the predefined events. The appropriate control engineers 
were automatically notified by pager, email or fax when a 
predefined event occurred. The event was sent and 
supporting data were made available so that the user could 
quickly assess the situation and determine what was 
happening in the WRF. This allowed the engineers to 
spend most of their time working on other projects, 
knowing that if anything important happened they would 
be alerted immediately. The DCI Event Detection System 
based on CERA provided 24 hour/day, 7 day/week 
monitoring without requiring human presence in the WRF 
to do the monitoring. 
 
CERA patterns are defined in event recognizers.  A user 
describes an event to be captured by defining a recognizer 
for that event. A recognizer is a pattern of sub-events and a 
clause telling what actions to take when the event is 
recognized. The pattern consists of a list of sub-events 
connected by a relation.  CERA supports the following 
relations: 

• ALL – all signals must be seen for the event to be 
recognized 

• ONE-OF  – only one signal in the group must be 
seen for the event to be recognized 

• IN-ORDER – a sequence of signals must be seen 
for the event to be recognized. 

• WITHIN – a sequence of signals must be seen 
within a specified time period for the event to be 
recognized 

• WITHOUT – a period of time must pass without 
a specified signal being seen for the event to be 
recognized 

• James Allen’s 13 Interval Relations (Allen, 1983) 
– an event can be described using any of James 
Allen’s definitions given two signals. 

 
Events are signaled when the pattern is observed. For 
example, a WRS-Shutdown is an event that can be 
described by the successful shutdown of its four sub-
systems. The recognizer for a WRS Shutdown might look 
like this: 
 
  (define-recognizer  WRS-Shutdown 
     (pattern ‘(ALL 
                      (PPS-Shutdown-complete) 
                      (PPBWP-Shutdown-complete) 
                      (RO-Shutdown-complete) 
                      (AES-Shutdown-complete))) 
     (on-complete 
          (Signal ‘(WRS-Shutdown complete)start end)))   
 
The start time and end time of the signal is calculated from 
the start and end times of events in the pattern.   
 
The patterns can be hierarchical, that is, there can be 
relations nested within the relation. Sub-events are 
modeled as separate recognizers that send a signal when 
they complete. These signals can be used by a higher level 
recognizer. For example, PPS-Shutdown might be defined 
like this: 
 
  (define-recognizer PPS-Shutdown 
     (pattern ‘(In-Order 
                        (Air-and-water-flow halted) 
                        (UV-lamps off) 
                        (Decreasing-water-pressure))) 
     (on-complete) 
       (Signal ‘(PPS-Shutdown-complete) start end))) 
 
When CERA receives the signals showing all three sub-
events in the PPS-Shutdown pattern have completed, the 
recognizer completes and it issues a signal “PPS-Shutdown 
complete”. This signal satisfies one of the steps in the 
WRS-Shutdown recognizer. This is how low level 
recognizers can be linked to higher level recognizers to 
form a hierarchy of events. 



The System Architecture 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Architecture of Distributed Software System 

Supporting Event Detection for the WRS 
 
The architecture of the distributed software system 
supporting event detection is shown in Figure 1.  The 
controls software had the only direct link to the controlled 
water recovery system hardware.  The low-level controls 
that provided data to both CERA and to the logging 
software did not have easy access to the current time of 
day, so timestamps were not affixed to the data until it 
reached CERA and the logging software.  Since these two 
software processes were running on separate computers, 
there was an occasional mismatch of system time affixed 
to the data.  This became a problem when a situation 
captured by CERA was displayed with CERA timestamps 
and then low level data plots were displayed from the 
logged data (with logger timestamps) to illustrate to the 
end user precisely what CERA had seen.  When times 
were out of synch on the two computers, CERA could 
appear either very sluggish or prescient. We had an 
alternate, test-harness mode for running CERA directly 
from the data logs rather than from the live data directly 
from the controls software.  In this test-harness mode, 
CERA recognition times were less perplexing. 
 
In the architecture illustrated in Figure 1, the low-level 
controls software would bundle the data into batches and 
publish a complete batch of data every twenty seconds.  
Any change that took place during the last twenty seconds 
would be reflected in the new batch of data.  On the 
receiving end of this batch of data, any changes must be 
considered to have been simultaneous.  However, CERA 
was built to consider incoming data values sequentially.  

When CERA received a set data values in a single batch, it 
would process them sequentially rather than as a batch of 
simultaneous values.  Within a single twenty second 
interval, it would be possible for a sensor value (pressure 
reading) to exceed a critical value and for a resulting 
control to respond (turn off a pump).  The batching of data 
would cause these two events to appear as simultaneous 
events.  Unfortunately, the serial processing of individual 
data values by CERA could occasionally cause the 
ordering of these events to be reversed.  If the data 
representing the pump command appeared higher in the list 
of data values in the batch, then it would appear that the 
pump was commanded before the pressure reached critical 
value. 
 
During the year and a half that the system was in use in the 
WRF we encountered a number of issues related to the 
handling of data and the modeling of events by the event 
recognition software.  We describe these issues and how 
we solved them for the WRF application in the next 
sections. 

Data Handling Issues    
The first set of issues that need to be addressed arise from 
the fact that event recognition software must collect and 
process data from multiple, distributed data sources (such 
as the water recovery subsystems described above).  
Because of this, timing issues may arise - not only in the 
discrepancies in clock times among the multiple systems, 
but also in the lag time between the time the data was 
sampled and the time the data are processed. There is also 
the potential of a bottleneck when sampling data at too 
high a rate or losing information when sampling data at too 
low a rate. 

Issue #1: Multiple Signals Same Timestamp  
In distributed systems many data items are sampled at the 
same time. Therefore, event recognition software that 
processes data signals one at a time can introduce an 
artificial ordering on the data. We need to be able to 
process a group of multiple signals in the data queue that 
were sampled at the same time (which we call a 
timestamp), as if they were a single signal. 
 
We encountered this problem using CERA, which assumes 
one signal per timestamp. This is due to the fact that the 
software evolved from the world of natural language 
processing where there is no notion of time stamped data. 
Instead, words are parsed in the sequence in which they 
occur. Although timing constraints were added to the event 
recognition software, they serve primarily to keep track of 
the start and finish time for each event. Timestamps for the 
start and finish of sub events are propagated to determine 
the start and finish of parent events.  
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Solution for the WRF Application: We had to be careful 
in how we created our recognizers to avoid this problem. 
Often we changed the relation of a recognizer from an “In-
Order” (events must happen in a sequential order) to an 
“All” (all events must occur, but no order is specified) 
because we could not guarantee the order of the signals 
coming in. We considered reissuing signals, and trying to 
order the signals in the data queue to match the order 
found in recognizers, but none of these ideas really 
worked.  
A better solution would have been to timestamp each data 
element and consider time as an integral part of the data. 
This requires the recognition software to reason over 
multiple simultaneous timestamps. In our case we didn’t 
have this option since we didn’t have this reasoning 
capability and it was not possible to change the way the 
data was being broadcast 

Issue #2: Data Sampling Rates Affect Recognition 
Definitions     
Typically data from hardware instrumentation is sampled 
and distributed at some fixed rate.  If the sampling rate is 
too frequent, it can slow down the system – the system 
needs to process the data at least as fast as it is sampled. If 
the sampling rate is too low, it can cause the recognition 
software to miss the details of the event because they are 
not revealed in the data. 
 
Solution for the WRF Application: To recognize events 
when the data rate was low and observations came in a set 
instead of sequentially, we had to make distinctions in the 
events based on our confidence in the recognition.  We 
defined observed events to be those where we saw data for 
every event in the expected sequence of events.   We 
defined inferred or confirmed events to be those where we 
saw a partial data set that verified the effects of the 
expected sequence of events (e.g., the system was 
observed in the desired state but we did not observe the 
transition to that state) and were thus confident the events 
had occurred.  We defined possible events to be those 
where we saw data for some events in the expected 
sequence of events, but these events were not sufficient for 
us to be confident the event had occurred.   
 
In the following example, we show event definitions for 
each of these event categories.  In all these events, we are 
looking to recognize a slough event.  A slough is a 
maintenance event on a bioreactor in a water recovery 
system.  In this event, air is blown through a tube lined 
with bacteria to strip off the outer layer of bacteria that can 
clog the flow of water through the tube. 
 
In the “observed” manual slough, we observed the tube 
clogged, we observed a slough, and then we observed the 
tube unclogged.  
 

 
   (define-recognizer (manual-slough-observed) 
       (pattern '(IN-ORDER 
        (tube ?n clogged) 
        (tube ?n slough) 
        (tube ?n unclogged))) 
     (on-complete  
        (signal ‘(Manual-Slough-Observed tube ?n)  
                                                               start  end))) 
 
In the “inferred” manual slough, we did not observe a 
slough, but we did see the tube was clogged and then 
unclogged. So we assumed a slough occurred to unclog it. 
 
   (define-recognizer (manual-slough-inferred) 
       (pattern '(IN-ORDER 
        (tube ?n clogged) 
        (tube ?n unclogged))) 
     (on-complete  
        (signal ‘(Manual-Slough-Inferred tube ?n) start end))) 
 
In the “possible” manual slough, we’re not sure the tube 
was really clogged. The difference between a possible clog 
and a clog is that when there is a clog, the tube sustains a 
high pressure for an extended amount of time, whereas in a 
possible-clog there is high pressure briefly in the tube. 
 
   (define-recognizer (possible-manual-slough) 
       (pattern '(IN-ORDER 
        (tube ?n possible-clog) 
        (tube ?n unclogged))) 
     (on-complete   
        (signal ‘(Possible-Manual-Slough tube ?n) start end))) 
 
Similarly, we recognized the need for these event 
distinctions when looking for Post Processing System 
(PPS) safe state. The PPS Safing could take a few data 
samples to complete or it could complete in just one data 
sample. Observing the PPS safe state requires that the 
pump feeding water to the system be seen to change from 
on to off, the lamp relays be seen turning off, and either 
the air flow or water flow drop below operating levels. 
Confirming the PPS safe state does not require seeing the 
pump or relays transition from on to off, but just 
confirming that their current state is off.   

Issue #3: Time Synchronization and 
Representation 
Time synchronization is key for distributed systems such 
as the DCI application in the WRF.  Unless time is 
synchronized, data processing can be done out of order and 
erroneous results concluded.  To synchronize time, it is 
necessary to provide for a common time source and a 
consistent time representation.  Since tools often make 
assumptions about the default time representation used 
internal to the tool, translators are needed between these 



internal representations and the common time 
representation.  The different time representations used for 
this application include absolute times (such as GMT, time 
since 1970, etc) and relative times (the amount of time 
between two events).    
 
Solution for the WRF Application: To ensure time 
synchronization, we provide two capabilities: (1) a time 
server that was available for use by all processes in the 
distributed system, and (2) automatic updating of local 
computer time using an NTP time server serving atomic 
clock time.  Additionally we provide translators between 
different time representations (such a GMT, time since 
1970, etc.).  Event recognition required three different 
versions of time.  We had to be diligent in keeping track of 
which time formats were being used where. 

Event Modeling Issues 
This section describes some of the data modeling issues 
that came up as a result of trying to accurately depict 
events in the domain of automated control of space 
systems. 

Issue #4: Event Persistence    
Persistent events are events that are continuously evaluated 
to determine if they still hold true.  Transient events are 
events that are observed true at some point in time, but do 
not necessarily continue to be true at later times.  We 
found it necessary in the space domain to recognize both 
persistent events and transient events.  For example, we 
need persistent events when recognizing complex state 
changes where later events are preconditioned on earlier 
events (only see water flow increase after you turn on the 
water pump).  In other cases, we observed systems move 
through a sequence of transient states (such as changing to 
a standby state until the system warmed up). CERA 
supported the recognition of transient events but did not 
support the recognition of persistent events. 
 
Solution for the WRF Application: In cases where we 
needed persistence, we used a technique involving name-
value pairs and mutually exclusive states. For example, we 
could use name-value pairs to model the water pump in 
both the on and off positions.  Then, when we needed the 
water pump to stay in the on position while waiting for 
another event, we would model it as below: 
    
      (pattern ‘(In-Order 
                         (Water-pump ON)   
                         (Waterflow-increased))) 
 
In this example, if we see the water pump turn on, the 
recognizer waits until it sees the waterflow increase before 
completing. In the meantime, if the pump is turned off a 
(Water-pump OFF) signal is issued and CERA’s 

contradiction mechanism causes this recognizer to fail. 
(The contradiction mechanism will cause a recognizer to 
fail if all elements except the last in a signal, match all 
elements except the last in the pattern. If the last elements 
do not match, the signal is said to “contradict” the pattern 
item.) When the recognizer fails, all the information about 
recognizing this event is deleted and it starts over as if 
nothing has been recognized yet.  
 
If we did not need persistence, we would model the water 
pump event as a simple event (Water-pump-on), rather 
than modeling it as a name-value pair. This way any event, 
even a “Water-pump-off” event, would not affect it. (This 
is because CERA’s contradiction mechanism only works 
when a state is modeled using two or more elements, e.g. a 
name-value pair. A single element such as “(Water-pump-
on) “cannot be contradicted.) 

Issue #5: State Transitions 
We discovered when modeling events about system 
control that we need to recognize state transitions.  We 
define a transition as observing the state of a device 
change from the expected initial state to the expected final 
state.  This is similar to detecting an event sequence; that 
is, looking for one event state followed by another event 
state. But, in the CERA sequence operator (which we 
believe is typical of other models of sequence), each event 
is considered to have occurred the first time it was 
observed.  For a transition, we are interested in the last 
time the initial state is observed and the first time the final 
state is observed.  This temporal distinction made it 
difficult to use the standard sequence operator when 
detecting transitions. 
 
Solution for the WRF Application: We added a new 
Transition operator that reflected the last time the initial 
event was observed and the first time the final event was 
observed.  This operator was useful in detecting the 
initiation of mode changes in systems (such as startup, 
shutdown, or standby), since they often start with a state 
transition.  Without this operator, it was impossible to 
detect the time at which a system began a mode change.  

Issue #6: Failure to Observe an Expected Event 
For system control, recognizing the failure to observe an 
expected event can be as important as recognizing an 
event.  Specifically, we need to recognize when an 
observed triggering event is not followed by a response 
event within a specified period of time.  For example, in 
the PPS we expect for the automated controller to safe the 
PPS within 15 minutes of a bed breakthrough (an event 
requiring PPS maintenance).  If this safing does not occur 
within 15 minutes, we want to issue an alarm (e.g., PPS 
bed breakthrough with no PPS safe).  Detecting the 
absence of an event during some time period is not 
commonly supported in event recognition software.   



 
Solution for the WRF Application: Detecting the 
absence of an event required a new CERA operator.  Jim 
Firby modified CERA’s core capabilities to add the After-
Without operator. The After-Without operator looks for 
the first event and then looks for a second event for a 
specified amount of time. If the second event is found, the 
operator fails. If the second event is not found, the operator 
succeeds. Thus, the operator succeeds only when it sees 
one event, followed by the absence of another. 

Issue #7: Combinatoric Explosion due to Partial 
Recognition 
One of the challenges we experienced in the domain of 
automated control was not completing an event as soon as 
expected. In these cases we would observe some but not all 
of the necessary sub-events, resulting in CERA monitoring 
for the final sub-events for a long period of time.  In these 
cases where an event is partially recognized, CERA 
recognizes and bookkeeps all instances of these partial 
solutions, which incurs considerable overhead for extended 
periods of time.  Bookkeeping and cleaning up these 
instances can bog down the system because it is necessary 
to store all possible combinations for satisfying the 
recognizer until the recognizer completes. 
 
Solution for the WRF Application: During operations in 
the WRF, we observed CERA detect the partial solutions a 
number of times. In one case, the second event of the PPS 
startup (i.e., turning on the UV lamps) occurred 4 hours 
late.  As a result, the PPS_Startup_Confirmed recognizer 
was partially recognized with each set of data (sampled 
every 15 seconds).  This caused the PPS Startup 
Confirmed recognizer instance to increase in size as it 
stored every matching instance in this four hour period.  
By the time the UV lamps were turned on, state history had 
grown to 220,000 combinations.  The resulting delay in 
processing was around 5 hours.  To fix this problem in the 
short-run, we stopped using operators that stored partial 
solutions. We have not found an easy solution to the 
combinatoric problem in the long term.  However, we have 
found no cases for this domain in which it was necessary 
to keep all possible combinations of events that occur 
during a lengthy transition period.  Thus, for this 
application, it would be useful to provide operators that 
only store the first time a match occurs or the latest time a 
match occurs. 

Issue #8:  Reusable Event Definitions 
In modeling an application domain, it can be useful to 
define reusable recognizers for recurring events (such as 
mode changes). For example, a PPS Safe is a common 
mode-change event that is a sub-event in many other 
events. Rather than duplicating software for these common 
events each time they occur in a recognizer, it is more 
efficient to code these sub-events as separate recognizers 

and compose larger recognizers from them. We had 
difficulty defining separable reusable events within CERA 
because it does not fully implement event abstraction and 
encapsulation.  While separate recognizers can be encoded, 
there is no way of describing relations among multiple 
recognizers (i.e., no way to indicate one event contains 
another). 
 
Solution for the WRF Application: To provide a 
capability to create reusable event definitions, we 
implemented a simple extension to the CERA 
representation for relations among multiple recognizers.  
We stored all information about a recognizer and its parent 
linkage in a hash table and used this to reconstruct the 
larger recognizers. While helpful, this approach incurs 
additional overhead and does not provide true hierarchy 
among the recognizers.  

Lessons Learned 

We learned that in a near-real-time distributed data 
environment, reasoning over time becomes a central issue. 
This is especially important in a distributed environment 
because multiple signals can be received having the same 
timestamp. As such, an event recognition system has to 
manage more than just the order in which events arrive - it 
needs to explicitly reason about the time the data was 
sampled. It needs to be able to treat multiple signals 
simultaneously as if they were a single signal, otherwise an 
artificial ordering can be introduced. Currently we do not 
know of any event recognition software that reasons about 
time. 
 
Data from distributed sources can be received out of order 
due to transmission delay. The event recognition software 
should handle signals being slightly out of order due to 
transmission delay by processing based on the time the 
data were sampled instead of the time the data were 
received.  This approach constrains the minimum response 
time of the system, since the software must wait until 
signals from all sources have been received before 
processing a data set.   
 
Because selecting the data sampling rate is often not an 
option when fielding applications, knowledge of the data 
sample rate must be considered when developing and 
integrating the event recognition software If the system 
cannot keep up with a high data rate, it may be necessary 
to build bridge software between the data source and the 
event recognition software that reduces the data rate.  
Additionally, recognizers for the same event may be 
written differently for different data sample rates. For 
example, events that occur in sequence with a high data 
rate may all be recognized at the same time with a low data 
rate.  As a result, if the sampling rate changes, the pattern 
to describe the event may need to be changed as well. 



 
When operating in domains with distributed processing, 
time synchronization among processes is essential to avoid 
processing data in the wrong order.  The time 
representation and synchronization techniques should be 
part of the initial system design and should be handled 
consistently throughout the system.  Since internal time 
representations can vary among software, it is suggested 
that techniques for translating between different time 
formats be defined early in development.  It is also 
important to model time as data available to the systems 
for reasoning.  Object-oriented techniques are particularly 
suited to such modeling, since they can encapsulate 
conversion functions and provide a clean interface to 
different time formats 
 
We found that usually the event descriptions (patterns to 
be recognized) evolved the more they were used. We 
added new recognizers as we realized we needed to detect 
slightly different versions of the same event. Many of these 
variations arose because of limited data availability due to 
low data sample rate.  We added recognizers to distinguish 
“confirmed”, “observed”, “inferred” and even “possible” 
events in order to show the confidence we had that the 
events actually occurred. 
 
Even when using expressive event definition languages 
such as CERA provides, complex applications like the 
WRF event detection software can require language 
extensions.  For detecting control events, we added new 
relations (e.g., Transition, After-Without).  We identified 
needed customization of existing relations (e.g., 
bookkeeping of instances in the All relation).  And we 
developed techniques for adding new types of events, such 
as persistent events.  Event recognition software should 
provide a regular means of extending the language. 
 
We found that the ability to define reusable recognizers 
reduced implementation time and reduced the potential for 
inconsistencies among recognizers.  Such a capability also 
is needed to aid users in specifying events, since it enables 
defining event libraries that can be composed by users into 
customized events.  Reusable event definitions require the 
ability to describe relations among a set of recognizers.  
Sub-events must be able to signal the containing event 
when they are recognized and sub-events must persist until 
the containing event is recognized.     
 
We became aware of a combinatorial problem when trying 
to keep track of all possible solutions that might solve a 
pattern. This arose when the event recognition software 
was in a state of partial recognition (i.e., recognized some 
but not all of the necessary sub-events in an event) for a 
lengthy time period.  However, we have found no cases for 
the space system control domain in which it was necessary 
to keep all possible combinations of events that occur 
during a lengthy period with partial recognition.  Thus, for 

this application, it would be useful to provide operators 
that only store the first time a match occurs or the latest 
time a match occurs.  While these extensions would help 
for our domain, we understand that under certain 
circumstances it is necessary to track all possible solutions. 
We recognize this is a research issue for the community. 

Conclusions 
The domain of space system control where we deployed 
our event recognition application has characteristics, such 
that, even when using a tool as flexible as CERA, we still 
ran into unforeseen issues. The ability to easily capture 
expert knowledge and rapidly test the system in 
operational use is needed to identify and resolve issues 
quickly. We found that accurately defining complex 
patterns for event recognition relies heavily on evolution 
through use.  New events were required when test 
objectives changed.  Modified events were needed as test 
configurations changed, or our understanding of operations 
improved.  As a result, defining event recognizers proved 
to be one of the more costly aspects of using this software.  
To make event detection software viable for operational 
use requires that end-users define recognizers instead of 
software experts, as done in this test.  It also will require 
standardizing the process of event definition so that 
different users can define events consistently within a 
domain.  But the richness of the event detection language 
makes it difficult for non-experts to use without assistance.  
We propose that ease of use of the event language and 
event consistency within a domain would be improved by 
providing the following capabilities as part of a 
development environment for end users: 
• domain ontologies that define a common language for 

specifying events, 
• event libraries that define reusable recognizers for 

common control concepts, such as latching or bang-
bang control, 

• input data filters that compute and signal statistics on 
parameters in the data stream,  and 

• a test harness that supports executing recognizers over 
imported data sets. 

 
We were able to find workarounds for most of the issues 
described in this paper.  Solving issues with time and 
combinatorial explosion, however, are the most 
challenging problems. In the end, we delivered what we 
had promised – a system that recognizes significant events 
in a distributed environment and automatically alerts the 
appropriate people to handle them. This was due in part to 
the flexible and robust event recognition software provided 
by INET and to the generous support of its creators. 
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