
Strangeness

Sashank Varma, Dan L. Schwartz W. Lawrence Neeley Jr.

Stanford Center For Innovations in Learning Center for Design Research, Mechanical Engineering Dept.
450 Serra Mall, Building 160 440 Escondido Mall, Building 530

Stanford, CA 94305-2055 Stanford, CA 94305-3030
sashank@stanford.edu wlneeley@stanford.edu

Abstract
Some systems are strange, near-bugs that turn out upon
deeper analysis to be absolutely fundamental. This paper
develops the notion of strangeness with respect to one class
of AI system, cognitive architectures. It describes the
detection of strange new architectures and their synthesis
with conventional architectures. It also inventories
strategies for the deliberate design of strange new
architectures. Claims are justified by examples drawn from
the history of (cognitive) science.

Introduction
Sometimes a system appears to have a bug, but upon
further examination, proves to be working correctly – just
not as expected. We call such systems (or such features of
systems) strange.

This paper is about strangeness. The first half focuses on
the process of detecting and acclimating to strangeness.
For example, consider the discovery of irrational numbers
by Hippasus. For this, he was drowned by his teacher
Pythagoras, who could not “square” them with the other
known numbers. Mathematicians did not acclimate to
imaginary numbers until the eighteenth century, when de
Moivre, Euler, and others established their mathematical
utility. The detection of and acclimation to the strange is a
general phenomenon that is not limited to technical
disciplines. For example, Gertrude Stein remarked of
modern art that it “looks strange and it looks strange and it
looks very strange; and then suddenly it doesn’t look
strange at all and you can’t understand what made it look
strange in the first place.”

The second half of the paper inventories a number of
strategies for the deliberate design of strange systems. One
strategy, which we will examine more closely below, is to
emphasize one aspect of a conventional system to an
incredible degree, to see how much it can carry. An
example of this is APL, the first programming language
designed for expressing mathematics. Dijkstra calls APL
“a mistake, carried through to perfection.” Once again, the
deliberate design of the strange is not limited to technical
disciplines. For example, van Gogh remarked of his
painting process that “[i]nstead of trying to reproduce
exactly what I see before my eyes, I use color more
arbitrarily, in order to express myself forcibly.”

To make the discussion tractable – our examples have
already wandered over mathematics, computer science, and
art – we focus on one class of system, cognitive
architectures. These are AI formalisms for expressing
computational models of cognition. Claims are justified
primarily by anecdotes from the history of cognitive
science (with Allen Newell playing a particularly
prominent role), mathematics, and science. We conclude
by introducing a metaphor for visualizing strangeness and
calling for the formalization and expansion of this
metaphor in future research.

Detecting and Acclimating to Strangeness
Consider the appearance of a strange new cognitive
architecture containing a strange new computational
mechanism, one that differs radically from the
conventional mechanisms of conventional architectures.
The strange mechanism will stand out against the field of
normalcy (von Restorff 1933). Researchers will
dishabituate to and take notice of it (Baillargeon, 1994). Its
presence will unsettle them, causing internal conflict
(Bruner & Postman 1949; Festinger, 1957; Petitto &
Dunbar, 2004). The tension felt by individual researchers
will grow to envelope the entire field (Kuhn 1977). Is the
strange mechanism a bug? Or is it something more – the
leading edge of a new paradigm?

There are two ways to relieve this tension. The logical
way is to view the new mechanism as an error, a
“contradiction” of a conventional mechanism, and to
conduct research that selects between the two. The
expectation, of course, is that the newcomer will be
falsified and the conventional mechanism corroborated
(Popper, 1963). The second, Hegelian response is to accept
that both the conventional mechanism (the thesis) and the
strange new mechanism (the antithesis) have value and to
find a synthesis that unifies them while preserving each as
a special case. It is in this way that strangeness spurs
scientific progress (McAllister, 1996).

Dissonance
The first problem is deciding whether a new mechanism is
an error, and should therefore be falsified, or whether it is
strange, and should therefore be synthesized with a



conventional mechanism. Because the former, logical
response is usually appropriate, on those rare occasions
when a strange new mechanism appears, problems will
arise. Most researchers will dismiss it as “unscientific” and
pay it no heed; others will attempt to falsify it, and when
they fail, will brand it as “anomalous” (Barber, 1961; Kuhn
1996; Mahoney, 1977; Mitroff, 1974; Peters & Ceci,
1982). For example, when Stephen Grossberg’s
dissertation on artificial neural networks first appeared at
Stanford in the mid 1960s, David Rumelhart remembers
that:

[W]e spent a great deal of time and effort trying to
figure it out and failed completely, I should say, to
understand what it was that Grossberg had actually
done. […] There were those who thought that, well,
‘There is something very deep here, and it’s beyond
us. We just can’t figure it out.’ And there were those
who thought that this was just a story, and it meant
nothing, and we shouldn’t pay any attention to it.
(quoted by Anderson & Rosenfeld, 1998, p. 271)

Ten years later, when Grossberg was an established
scientist, Paul Werbos showed him the backpropagation
algorithm, which he had just developed for his dissertation.
Ironically, Grossberg’s response was to dismiss it.

The bottom line is, this stuff you’ve done, it’s already
been done before. Or else it’s wrong. I’m not sure
which of the two, but I know it’s one of the two.
(Werbos quoted by Anderson & Rosenfeld, 1998, p.
343)

These incidents illustrate the extent of the dissonance that
strange new mechanisms cause.

However, some researchers will immediately recognize
the value of a strange mechanism. For example, Newell
describes his first exposure to Pandemonium in 1955 as a
conversion experience:

Oliver [Selfridge] had developed a mechanism that
was so much richer than any other mechanism that I’d
been exposed to that we’d entered another world as
far as our ability to conceptualize. And that turned my
life. I mean that was the point at which I started
working on artificial intelligence. Very clear – it all
happened one afternoon. (quoted by McCorduck,
1979, p. 134)

Synthesis
When a strange new mechanism is recognized and granted
scientific standing, the work has only begun for now it
must by synthesized with conventional mechanisms. This
is a difficult and creative process. Researchers “must live
in a world out of joint” (Kuhn 1996), attempting to
reconcile seemingly contradictory mechanisms.
Eventually, the surface differences will fade and a higher-
order principle that subsumes them will emerge. Returning
to the previous example, after learning about
Pandemonium, Newell and Simon set about reconciling its
parallel pattern-matching control structure with their own
mechanisms for heuristic problem solving (Newell &
Simon, 1972, p. 992; Simon, 1993, p. 255). The result was

a series of strange new architectures culminating in the
development of production system interpreters.

Another example comes from DARPA’s funding of
multiple speech understanding systems in the 1970s. Only
two systems, Hearsay and Harpy, came close to meeting
the program’s ambitious goals (Cole 1980). Hearsay was
an incremental advance on conventional production system
architectures of the time. Harpy, by contrast, was a strange
new architecture – what we might today call a probabilistic
network. Newell was as an advisor on the Hearsay project.
Although it would have been tempting to dismiss Harpy’s
success as anomalous, he did not. Instead, he attempted a
Hegelian synthesis of the two systems. The result was the
HPSA77 architecture, which matches Hearsay–like
productions using a Harpy-like network (Newell 1980).
This synthesis yielded new insights into cognition, such as
the interpretation of working memory limitations as
bottlenecks in the application of procedural knowledge.

Designing Strangeness
Strangeness is not just discovered; it can also be
deliberately designed. In this sense, it differs from the
serendipitous bugs that led Curie to radium and Fleming to
penicillin. In this section, we describe a number of
strategies for designing strange new cognitive architectures
and computational mechanisms.

Empirical
Anomalous data are one source of strangeness. Although
most experiments in cognitive science are Popperian
exercises, a small number reveal aspects of cognition –
unsuspected capacities and limitations – that cannot be
explained by conventional architectures. When
“[c]onfronted with an anomaly,” the courageous researcher
will be willing “to try anything,” and will “transition from
normal to extraordinary research” to do so (Kuhn 1996, p.
91).

One example of how anomalous data can spur the design
of strange new architectures is the demonstrations of
Bransford and his colleagues (e.g., Bransford & Johnson,
1973) of the construct ive  nature of language
comprehension – that the meaning of an utterance is jointly
constructed from the meanings of its constituent words and
from the reader’s schematic knowledge. These data were
inconsistent with the then-dominant interpretive view,
which focuses exclusively on word meanings. The
Bransford data were initially dismissed, but eventually
proved too compelling to ignore.

What was interesting is the extent to which people
picked up on it. They didn’t believe it at first; then
they were run as subjects in it, saw what happened,
and said, My God, how could I ever have been so
stupid as to not believe this? (Walter Weimer quoted
by Baars, 1986, p. 306)

These anomalous data demanded the development of
strange new architectures, such as the script systems of



Schank and Abelson (1977), that focus on the
representation of schematic knowledge and its application
during comprehension (and cognition more generally).

Another example where data spurred the design of
strange new architectures dates back to the beginning of
the cognitive revolution. Newell and colleagues developed
the IPL family of programming languages to capture two
fundamental characteristics of human cognition: the
flexibility of problem solving and the associative nature of
the memory (Newell, 1963, p. 87). These characteristics
did not find natural expression in assembly language and
Fortran, the programming languages of the time. To
capture the first characteristic, they designed a new
mechanism, dynamic memory allocation, that enables the
construction of new data structures at runtime. This
mechanism was necessary for implementing the LT, GPS,
and NSS Chess programs, which progressively articulate
problem spaces through search. To capture the second
characteristic, they designed another mechanism: the
linked list data structure and attendant functions for
accessing it associatively, by content rather than by
address. This mechanism was necessary for implementing
the discrimination network at the heart of the EPAM model
of verbal list learning (Simon, 1998).

Anomalous data have also spurred the design of
strangeness in other fields. One example from mathematics
is Weierstrass’s discovery of an everywhere-continuous-
but-nowhere-differentiable function: This pathological
object prompted a reformulation of differentiation based on
the strange new notion of “limit”, which replaced older
notions such as Newton’s “fluxion” and Leibniz’s
“infinitesimal”. Another example comes from chemistry,
specifically “inversions” in the original periodic table
(Kragh, 2000). Mendeleev’s original periodic law was
predicated on the atomic weights of elements. Although it
worked well for most elements, there were a few
anomalies, such as the fact that tellurium comes before
iodine based on its chemical properties even though it has
the higher atomic weight. This mystery was solved with
Soddy’s discovery in 1910 that the same element could
exist in different isotopes and Moseley’s demonstration in
1914 that the X-ray spectra of different isotopes of the
same element possessed the same frequency, and that this
frequency increased by a constant amount between
consecutive elements in the periodic table. This physical
property of an element, which came to be called its atomic
number, was soon recognized as a better architectural
principle for organizing the periodic table, and replaced
atomic weight. (This change  correctly orders tellurium and
iodine.)

Methodological
A related source of strangeness is the development of new
experimental methods and apparati. These enable the
collection of new classes of data, data that usually escape
conventional architectures and prompt the development of
strange new architectures in which they are commensurate
with existing data.

For example, consider the development of protocol
analysis. In this experimental method, subjects “talk aloud”
as they perform a complex cognitive task such as problem
solving and discourse comprehension. As Newell
remembers:

As soon as we got the protocols [of thinking studies
run at RAND in 1955-6] they were fabulously
interesting. They caught and just laid out a whole
bunch of processes that were going on. (Newell
quoted by McCorduck, 1979, p. 212)

Protocol analysis differed from other methodologies of the
time, such as the rapid presentation of stimuli using
tachistoscopes, which were more appropriate for simple
forms of cognition such as visual perception and memory
retrieval. The resulting protocol data demanded new
architectural accounts. In fact, they rather directly
suggested what these accounts should be.

My recollection is that I just sort of drew GPS right
out of subject 4 on problem D1 – all the mechanisms
that show up in the book, the means-end analysis, and
so on. (p. 212)

The resulting computational models were far stranger  than
the statistical and mathematical models that dominated
cognitive psychology at the time.

A more recent example is the development of functional
magnetic resonance imaging, which has produced an
explosion of data on the brain bases of cognition. These
data demand new architectural accounts. Some are taking
the conservative route of adapting existing architectures to
this task. For example, Anderson, Bothell, Byrne,
Douglass, Lebiere, and Qin (2004) have decomposed the
ACT-R production system architecture into functional
components (i.e., declarative memory, matcher, goal stack)
and mapped each component to a different brain area (i.e.,
the hippocampus, striatum, and dorsolateral prefrontal
cortex, respectively). Others are taking the more radical
route of developing strange new architectures that place
behavioral and neuroimaging data on equal footing. For
example, the 4CAPS architecture (Just & Varma, 2005)
casts cognition as the emergent product of collaborative
processing among a confederacy of brain areas, each
modeled as an encapsulated production system with its
own knowledge sources and resources for fueling
computation.

Theoretical
Strangeness can also be generated from within, without
pressure from external sources such as anomalous data and
new experimental methods. Doing so requires researchers
to adopt the persona of designers and to employ methods
that encourage exploration and promote divergent thinking.
One such method, synectics,  was invented by William
Gordon (1961). One move of synectics is to make the
familiar strange; another is to make the strange familiar.
We consider three examples of the former and one of the
latter.
Emphasis. One strategy for making the familiar strange is
to emphasize one aspect of cognition to an incredible



degree and to see how much of cognition it can carry.
Sometimes, the answer is more than one would otherwise
suspect, the result strange accounts of seemingly very
different aspects of cognition. One example is Newell’s
ongoing attempt, beginning with GPS and continuing
through Soar, to construe all of cognition as problem
solving. The result has been a number of unexpected
successes, such as Miller and Laird’s (1996) model of
categorization, which operationalizes concepts as
collections of exemplars, each a chunked production
acquired during a previous categorization episode. That
exemplar-based categorization can be treated as an
instance of problem solving is strange.

A variant of emphasis is used when an architecture
proves problematic in some way. The natural response is to
add a new mechanism that directly solves the problem.
Another approach is to use emphasis: to look hard at the
current repertoire of mechanisms and to generalize and
compose them to solve the problem in an unexpected way.
The result can transform a conventional architecture into a
strange one. For example, the development of large
production system models in the 1970s raised the problem
of conflict resolution, or how to select which of the
multiple matching productions to fire next. A number of
new mechanisms were proposed to solve the problem, each
implementing a different conflict resolution scheme (i.e.,
principled policy for making selections). For example, the
MEA scheme of the OPS5 architecture selects in a way
that produces means-ends problem solving. However, none
of the proposed schemes proved to be sufficiently general.
Newell was of the opinion that when a problem arises,  “if
you look at the architecture hard enough it will tell you
how to solve that problem” (quoted by Agre, 1993, p. 447).
Soar therefore made the strange decision to not include a
conflict resolution scheme (Newell, 1990). Instead, it
emphasizes conventional mechanisms, combining
productions and declarative elements in a recursive manner
to select which of the matching productions to fire next.

Researchers in other disciplines have also used emphasis
to generate strange solutions to problems. For example,
Jack Cowan, a pioneer in artificial neural networks,
describes the following exchange between the physicist
Paul Dirac and a graduate student:

Then another student asked him, ‘How did you
discover antimatter?’ Dirac said, ‘Oh, that was easy.
In relativity, energy’s the square of a quantity, so I
just took the square root.’ (p. 124 of Anderson &
Rosenfeld, 1998)

What could be stranger than antimatter? As Steven
Weinberg has observed, “This is often the way it is in
physics – our mistake is not that that we take our theories
too seriously, but that we do not take them seriously
enough.”
Negation. Another strategy for making the familiar strange
is to take a conventional architecture and to negate one of
its assumptions. The result is typically internally
inconsistent, but sometimes it is a strange new architecture.
This is an example of Feyerabend’s (1988, p. 14) dictum

that “given any rule, however "fundamental' or 'rational',
there are always circumstances when it is advisable not
only to ignore the rule, but to adopt its opposite.” For
example, consider again the problem of conflict resolution
in production system architectures. As we just saw, most
architectures solve this problem by including a mechanism
– a conflict resolution scheme – for selecting which
matching production to fire next, and Soar uses the
emphasis strategy to solve this problem in a strange way.
By contrast, 4CAPS (Just & Varma, 2005) and EPIC
(Meyer & Kieras, 1997) have adopted the negation
strategy, denying that a conflict resolution scheme is
necessary at all. Instead, they simply fire all matching
productions in parallel. (To prevent combinatorial
explosion, 4CAPS constrains the supply of computational
resources whereas EPIC relies on bottlenecks on
perceptual inputs into and motor outputs out of the
system.) In this regard, these architectures are strange.

The canonical use of the negation strategy to generate
strangeness is the formulation of non-Euclidean geometry:
For centuries, mathematicians attempted to deduce the fifth
of Euclid’s postulates – for a given line and point not on
that line, there is exactly one line parallel to the given line
that passes through the given point – from the other four
postulates, which seem simpler by comparison. Around
1800, mathematicians began asking a different question: If
the fifth postulate is negated, is the result still a valid
geometry? The answer, surprisingly, is “yes”. The result: a
number of non-Euclidean geometries, including the
Riemannian geometry that undergirds Einstein’s general
theory of relativity.
Cross-Pollination. A third strategy for making the familiar
strange is cross-pollination: When the mechanisms of
seemingly inconsistent architectures are juxtaposed, the
result is sometimes a strange new architecture. For
example, there were a number of efforts in the 1980s to
combine the mechanisms of symbolic and connectionist
architectures, efforts undertaken by researchers well-versed
in the both paradigms. For example, Rumelhart says of the
development of localist connectionist architectures:

I was also inspired by the work of Ross Quillian, who
in those days was doing computer models of so-called
semantic networks. (quoted on p. 272 of Anderson &
Rosenfeld, 1998)

He names another symbolic influence on this work:
I had a student named Jim Levin. He got interested in
a system that he called Proteus. Proteus was inspired
by Carl Hewitt’s Actor system, but it turned out to be
as close as anything to neural networks. (p. 273)

The result of these cross-pollinations was a number of
strange new architectures.

This brings up an interesting question: Going forward,
which cross-pollinations are most likely to yield strange
new architectures? In our opinion, one promising cross-
pollination is combining the mechanisms of symbolic
architectures and exemplar memories. By symbolic
architectures, we mean production system architectures,
whose mechanisms include productions and declarative



memories. By exemplar memories, we mean systems that
contain large numbers of traces, each colored by the
context in which it was encoded, that operate collectively;
an example is Minerva-II (Hintzman, 1986). There have
been a handful of attempts to cross-pollinate symbolic and
exemplar architectures over the past two decades. For
example, early versions of ACT-R (Anderson, 1993) and
the Construction-Integration model (Kintsch, 1988)
employ symbolic mechanisms for immediate processing
and exemplar mechanisms for prior knowledge. Another
approach is exemplified by Miller and Laird’s (1996) Soar
model of categorization and Stanfill and Waltz’s (1986)
massively parallel memory: these employ only symbolic
mechanisms, but of a less abstract and more exemplar
nature than is typical, and that operate by mass action. We
are optimistic that a new round of cross-pollination
between the symbolic and exemplar paradigms will yield
strange new architectures.
Importation. In addition to making the familiar strange,
we can also make the strange familiar. There exist novel
computational formalisms in other technical disciplines.
Although most have nothing to offer AI, there are
exceptions. These formalisms must be identified and
imported into AI, where they can serve as strange
architectures.

In fact, there is a long history of the formalisms of other
disciplines finding their way into AI. One early example is
Norbert Wiener’s importation of information theory and
control theory from engineering into AI; these formalisms
provided strange new accounts of language processing,
decision making, and other aspects of cognition. Another
example is the production system formalism, which was
originally proposed by the logician Emil Post as a
mathematical theory of computation on par with Turing
machines.

The production system was one of those happy
events, though in a minor key, that historians of
science often talk about: a rather well-prepared
formalism, sitting in wait for a scientific mission.
(Newell & Simon, 1972, p. 889)

Newell and Simon imported this formalism into AI, where
it provided a strange new account of problem solving. At
about the same time, Chomsky imported it into linguistics,
producing a new architecture, generative grammar, for
language. A final example is the importation of statistical
mechanics and the theory of spin glasses into AI during the
1980s. These physical formalisms cross-pollinated with
conventional connectionist mechanisms. The result was
strange new architectures such as Hopfield (1982)
networks and Boltzmann machines (Ackley, Hinton, &
Sejnowski, 1985).

Institutional
The fourth strategy for developing strange new
architectures is through institutional planning. This is not
as surprising as it might seem at first glance. Consider that
brainstorming was invented by Alex Osborn as a solution
to the lack of creativity he consistently encountered in

meetings. Brainstorming establishes a safe environment in
which participants with different talents feel free to offer
strange new ideas. The planning of AI institutions where
new data, new methods, and new computational
formalisms mix freely is just brainstorming writ large. The
expected outcome is stranger architectures that are
produced by comparatively homogeneous institutions. For
example, during the early 1980s, CMU’s School of
Computer Science was still a hotbed of symbolic AI.
Geoffrey Hinton was hired away from UCSD because the
faculty were interested in “getting a neural network
presence” (Hinton quoted by Anderson & Rosenfeld 1998,
p. 375). This plan succeeded: Hinton and his symbolic
colleagues collaborated on a number of strange new
architectures that combine connectionist and symbolic
mechanisms (e.g. Touretzky & Hinton, 1988).

Cross-pollination and institutional planning are in some
sense the same strategy applied at different levels. Cross-
pollination operates at the individual level, requiring
researchers who have been  trained in multiple
architectural paradigms. Such researchers are few and far
between. Institutional planning acknowledges this state of
affairs, applying cross-pollination at a broader social level:
although each researcher might know only a single
architecture, by working together in the same organization,
they can cross-pollinate familiar mechanisms to produce
strange new architectures.

Conclusion
The fundamental claim of this symposium – that some
bugs are informative – coheres well with existing research
programs in AI, such as automated scientific discovery
(e.g., Shrager & Langley, 1990) and model-based
diagnosis (e.g., Ginsberg, 1987). We make a different,
though related claim: some systems are strange, near-bugs
that turn out upon deeper analysis to be absolutely
fundamental. This paper has developed the notion of
strangeness with respect to one class of system in AI,
cognitive architectures (and the computational mechanisms
that compose them). It has described the detection of
strange new architectures and their synthesis with
conventional architectures. Finally, it has inventoried
strategies for the deliberate design of strange new
architectures.

An important question is whether AI formalisms can be
developed for representing, reasoning over, and reconciling
seemingly contradictory architectures and mechanisms?
Recall that the normal response to contradiction is logical:
to retract one of the conflicting alternatives. This is the
kind of move for which truth maintenance systems (e.g.,
Ginsberg, 1987) are well-suited. However, strangeness
demands a different move: the conflicting alternatives must
be reconciled in a new synthesis. This requires AI
formalisms that tolerate contradictions without falling into
tautology; that afford their synthetic resolution; and that
support the design strategies described above.



Interestingly, Wittgenstein (1930) anticipated the need for
such formalisms.

I predict a time when there will be mathematical
investigations of calculi containing contradictions,
and people will actually be proud of having
emancipated themselves from consistence.

An important goal for future research, then, is to develop
such formalisms.

We believe that formalisms capable of handling the
strange will be statistical and inductive, not logical and
deductive, in nature. For example, consider the following
metaphor for visualizing the synthesis of the conventional
and the strange: In simple linear regression, the goal is to
find a line that best accounts for (i.e., minimizes the
variance in) a set of points. An example is shown in Figure
1a. We can interpret this diagram at different levels of
abstraction. For example, the points can be data on human
cognition, the line a mechanism that predicts them, and the
axes different architectures. Another possibility is that the
points are mechanisms, the line an architecture, and the
axes different architectural paradigms. Regardless of the
interpretation chosen, interpret Figure 1a as the current
understanding of the field. Next, consider the appearance
of a new point, as shown in Figure 1b. The point is an
outlier. A well-known problem in regression is how to
handle outliers. The outlier – a strange new datum or
mechanism – introduces tension into the field. One way to
alleviate this tension is to classify it as an error or a
member of a different distribution, and to ignore it. This is
the logical response. It contrasts with the Hegelian
response, which is to reconcile it with the other points.
This maps in the regression metaphor to assuming that,
appearances to the contrary, the outlier belongs to the same
distribution as the other points. The next step is to sample
additional points in the empty region and to estimate a new
line that accounts for them all. The result, shown in Figure
1c, can be a strange account, one orthogonal to current
understanding. This represents a Hegelian synthesis of the
conventional and the strange.

This metaphor nicely captures the synthesis of the
strange and the conventional. Can it be formalized? Can it
be stretched to accommodate the strategies for designing
strange new architectures inventoried above? We believe
these questions are worth pursuing. Critically, the design of

new architectures does not affect the contents of the space
– the points and lines – but rather the space itself,
specifically the identity of its axes. For example, the
empirical and methodological strategies can be viewed as
rotating the space so that an outlier (i.e., anomalous datum)
or set of outliers (i.e., class of anomalous data collected
from a new method) relate coherently with the existing
points. The theoretical and institutional strategies can be
viewed as requiring the extraction of additional axes. For
example, Principle Components Analysis is a multivariate
technique for extracting a sufficient number of orthogonal
axes for coherently plotting a set of points. It might be
possible to use this technique and related statistical and
machine learning methods to induce strange new
architectures (i.e., axes) that better organize the data on
cognition.
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