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Abstract

Reproductive perception is a novel approach to percep-
tion. It is based on the assumption that perception is pre-
dominantly agenerative process, i.e., that models that
represent hypotheses about the current state of the envi-
ronment generate so-called pseudo-sensor data, which
is matched against the actual sensor data to determine
and improve the correctness of these hypotheses. This
is in contrast to the view that perception is mainly a re-
ductive process where large amounts of sensor data are
processed until a compact representation is achieved.
Several successful examples of using this approach for
spatial world-modeling are presented here. The first one
deals with a robot arm and a camera to learn eye hand
coordination. In the second example, the successful de-
tection and 3D localization of humans in single 2D ther-
mal images is described. In the last but not least exam-
ple, work in progress on the generation and usage of
compact 3D models of unstructured environments on a
mobile robot is presented. The reproductive perception
approach in all three examples does not only influence
the way the spatial knowledge is generated and repre-
sented, but also its usage especially with respect to the
classification and recognition of objects.

Introduction
Computer science approaches to perception are dominated
by the view that perception is a process that takes large
amounts of data from physical sensors like the pixel array
of a camera and feed this data through various stages of
processing that each lead to a reduction of the data. This
holds especially for computer vision (Zhaoet al. 2003;
Yang, Kriegman, & Ahuja 2002; Brown 1992; Vernon 1991;
Horn 1986) but also with respect to more explicitly spatially
oriented topics like map building (Thrun 2002). The main
idea of so-called reproductive perception is to do the oppo-
site (figure 2). Perception is seen as a process, respectively
a series of processes where based on a small model large
amounts of data are generated that match the incoming data
from the sensors. The processes involved in perception so to
say try to reproduce the data delivered by the sensors.

A (world-)model as a compact representation of the envi-
ronment that is first generated and later on updated by per-
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Figure 1: Common computer science approaches to percep-
tion process sensor data in various stages that lead to a data
reduction (left). The main idea of reproductive perception is
in contrast that perception involves processes that generate
data that matches the huge amounts of data delivered by the
sensors (right).

ception is hence somewhat special within this paradigm. It
is not a collection of passively descriptive data, but it can
be thought of as a code in a kind of programming language
that actually generates data. In the example of learning eye
hand coordination presented later on, the objects as well as
their spatial properties are for example represented as turtle
graphics programs. When executed, these programs produce
a collection of data, i.e., they paint a picture in this case, that
reproduces the raw data delivered from the sensors, i.e., a
camera image in this example.

So, a model is not constructed by stepwise processing of
sensor data, but it itself generates large amounts of so-called
pseudo sensor data, which is matched against the current
sensor data. This generation of the pseudo-sensor data is
denoted as rendering. By measuring the similarity between
the actual sensor data and the pseudo sensor data, models
can be generated and adapted.

This basic idea of reproductive perception is not tied to
specific mechanisms. Nevertheless, a concrete implemen-
tation is presented here in form of an evolutionary learning
scheme (figure 2). As mentioned, a model as the representa-
tion of the environment can be thought of as code in a par-
ticular programming language. Models are hence programs
that can be executed and that generate data. This data is then
compared by a metric to the data from the sensors. This met-
ric measures the similarity between the internally generated
data and the data from the sensors. This measure of similar-
ity can then be used as a fitness function in an evolutionary



Figure 2: The implementations of reproductive perception
presented here use evolutionary learning. A population of
evolving models is used to learn a representation that gener-
ates so-called pseudo sensor data, which should be as close
as possible to the actual sensor data.

algorithm.

Learning of Eye Hand Coordination

Figure 3: A turtle graphics program re-producing the image
of a robot gripper in an experiment where a 3D world-model
for eye-hand coordination is learned from scratch.

The application of reproductive perception in experiments
with a set-up consisting of a robot arm and a camera learning
a 3D world-model related to eye hand coordination (Birk &
J. Paul 2000; Birk 1998; 1996) is presented in this section.

The reproductive perception idea is used to generate infor-
mation about objects, namely the ’body’-parts of the robot-
arm as well as colored construction blocks, and their lo-
cations in the world in form of programs that generate the
’look’ of the objects in the real world, i.e., the data from the
camera. This idea builds on (J. Paul & Solomonoff 1995),
where theories are viewed as programs which reproduce data
from the real world. In the spirit of Occam’s Razor and Kol-
mogoroff, a theory is considered nontrivial if it is ’simpler’
than the data it describes, i.e., when it leads to a representa-
tion which is shorter according to a complexity measure like
the number of occupied memory units.

In the most challenging set of experiments, the represen-
tation of the objects in the world, namely the robot-arm and
colored building-blocks, was based on a turtle-graphics like
language (figure 3). The system had to learn from scratch
representations of the objects, i.e., programs that generate
images that reproduce the camera data of a scene. This

reproductive perception of the sensor data in contrast to a
passive processing has a significant advantage as illustrated
in figure 4. The system can ’know’ about invisible parts
of the world. As soon as programs for a building block
and the gripper are learned, the system can combine them
in a manner where they can represent a scene including
occlusions, which are known to cause severe problems to
other more common approaches (Kohlheppet al. 2004;
Nüchter, Surmann, & Hertzberg 2004).

Figure 4: In the reproductive perception paradigm, programs
are learned that reproduce sensor data. This has the tremen-
dous advantage that the system can ’know’ about invisible
parts of the world. If for example turtle graphics programs
for a building block and the gripper are learned, the system
can combine them to represent a scene including occlusions.
For most standard approaches, scenes with occlusions imply
quite some difficulties.

The pieces of code that represent the different objects
and their locations are learned in an evolutionary process.
The programs representing objects are stored in a graph
that contains information about motor activations, which are
also learned by the system. It is hence possible for the
system to link different states of the models, e.g., a pro-
gram representing ’red robot gripper at location(x, y, z)’
and a version of this program representing ’red robot grip-
per at location(x̂, ŷ, ẑ)’, by a sequence of motor activa-
tions. As a consequence, it can generate plans, e.g., to
move its gripper to a particular position. Note that the use
of Cartesian coordinates in the above example was only
done for illustration purposes. The system represents all
objects by programs drawing pictures that reproduce the
’look’. Locations are hence represented in the parameters
of the programs, influencing the position of the drawn fig-
ure as well as shape properties, e.g., to compensate lens dis-
tortions. The experiments with a real world set-up showed
that the system was indeed capable of learning a 3D rep-
resentation of its world in real-time that in the end enable
it to manipulate building blocks. More detailed descrip-
tions can be found in (Birk & J. Paul 2000; Birk 1998;
1996).

One crucial aspect for the success of this evolutionary
approach is a special metric introduced in (Birk 1996) to
compare the similarity of the sensor input with a candidate
model. Unlike other approaches using Hausdorff distance
(Tung & King 2000; Mount, Netanyahu, & Moigne 1998;
Rucklidge 1997) or detecting correspondences between in-
variant features (Johnson 2000) and using transformations
metrics on them (Kohlhepp & Fischer 2001; Basri & Wein-
shall April 1996), this similarity functionψ has several sig-



Figure 5: A distance-mapd-mapc.
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Figure 6: The working principle for computingd-mapc.

nificant advantages. First of all, it can be computed very
efficiently. Second, it is not restricted to particular objects
like polygons. Third, it operates on the level of raw data
points. It hence does not need any preprocessing stages for
feature extraction, which cost additional computation time
and which are extremely vulnerable to noise and occlusions.

Concretely, the similarityψ of two 2D arraysm1 andm2

is defined as follows:

ψ(m1,m2) =
∑
c∈C

d(m1,m2, c) + d(m2,m1, c)

d(m1,m2, c) =

∑
m1[p1]=c min{md(p1, p2)|m2[p2] = c}

#c(m1)

where

• C denotes the set of values assumed bym1 orm2,

• m1[p] denotes the valuec of arraym1 at positionp =
(x, y),

• md(p1, p2) = |x1 − x2| + |y1 − y2| is the Manhattan-
distance between pointsp1 andp2,

• #c(m1) = #{p1|m1[p1] = c} is the number of cells in
m1 with valuec.

As mentioned, this function can be computed very effi-
ciently, namely in linear time. The algorithm is based on a so
called distance-mapd-mapc for a valuec. The distance-map
is an array of the Manhattan-distances to the nearest point
with valuec in mapm2 for all positionsp1 = (x1, y1):

d-mapc[x1][y1] = min{md(p1, p2)|m2[p2] = c}

The distance-mapd-mapc for a valuec is used as lookup-
table for the computation of the sum over all cells inm1 with
valuec. Figure 5 shows an example of a distance-map. It
can be computed by a relaxation algorithm. The underlying
principle is illustrated in figure 6.

Figure 7: Two of the latest IUB rescue robots in a test sce-
nario. The robots are normally tele-operated but they are
also capable of full autonomy including the detection and
localization of victims.

Figure 8: The standard GUI of an IUB rescue robot. The
data from the thermal imager can be seen in the left middle
window.

Detecting and Locating Humans
The following example of using reproductive perception for
spatial processing is based on work in the domain of rescue
robotics (Birk & Carpin 2006b), for which the IUB robotics
group has developed several systems ranging from the low-
level mechatronics (figure 7) (Birket al. 2006b) to high level
software enabling full autonomy (Birket al. 2006a) and co-
operation (Birk & Carpin 2006a; Rooker & Birk 2006). It is
of obvious interest in this domain to automatically recognize
victims.

Autonomous human detection is an integral part of many
AI applications that provide human-robot interactions, rang-
ing from rescue robotics and security systems to robots serv-
ing as guides in museums. While having such a wide ap-
plication area it is at the same time a very complex task
due to the high intra-class variability of human beings –
not only do people look very differently among themselves,
but also the same person can have very different appear-
ances based on pose, clothing, environment conditions (Mo-
han, Papageorgiou, & Poggio 2001). Current human detec-
tion algorithms fall into one of three categories –model-
basedmethods in which a general model is trying to be
matched to different parts of an image in order to find
a fit (Yuille 1991), image-invariancesystems which base
their matching on a set of image pattern relationships (e.g.
brightness levels) that uniquely determine the object be-
ing sought (Sinha 1994) and finallyexample-basedalgo-



rithms that learn detection by being trained on a set of pos-
itive and negative examples (Papageorgiou & Poggio 2000;
Mohan, Papageorgiou, & Poggio 2001; Orenet al. 1997;
Yow & Cipolla 1997). In addition these techniques most
commonly employ differential imaging in order to detect the
silhouettes of human beings and color analysis in order to
determine different parts of the human body (Wrenet al.
1997; Mohan, Papageorgiou, & Poggio 2001; Hogg 1983).

Due to the high complexity of the problem the above al-
gorithms impose restrictions on the environment in which
they will be detecting humans or on the to-be-detected hu-
mans themselves. Example of such constraints are – greater
dynamics of people relative to the background (Wrenet al.
1997), only one person in the view of the camera (Papa-
georgiou & Poggio 2000), restrictions on lightning dynam-
ics (Wrenet al. 1997), people’s poses and occlusions (Papa-
georgiou & Poggio 2000). These assumptions limit the ap-
plicability of the algorithms, e.g. in rescue robotics, where
people that have to be detected can exhibit a number of these
restrictions.

Here work is presented that tackles these problems in two
ways. First of all, thermal images are used to ease segmenta-
tion. Instead of using a visible light camera, a device with a
far infrared image sensor is employed where pixels represent
temperatures (figure 8). The second point, which is much
more crucial from the application as well as the scientific
viewpoint, is to use reproductive perception where a com-
plete 3D scene model is learned on the fly to represent a 2D
snapshot. Again, programs are used, which generate images
that describe the perceived environment. Here, the environ-
ment is modeled as a collection of 3D humans and boxes
distributed in space that are projected to a 2D image using
OpenGL. The parameters of the OpenGL camera model are
roughly based on the parameters of the real camera on a IUB
RugBot (figure 7). A human is represented as a composition
of its basic body parts – head, torso, arms, legs. The devel-
oped human model has 14 rotational joints through which it
can mimic almost any pose of a real human. In addition it
has six more degrees of freedom (DOF) for the position and
orientation of the torso in space. Figure 9 displays the output
of a sample program for the case of drawing a whole human
and for only an arm. Boxes as the only other components
of the 3D scenes are simply defined by their dimensions and
positions in space.

Figure 9: The 2D rendering of a 3D model of a human and
an arm drawn in wireframe mode.

Based on the OpenGL routines for drawing humans and
boxes a complete drawing program is created as a set of calls
to these functions. Each call can be defined as an instruc-
tion. An instruction places the corresponding model on a

Figure 10: The output of a sample 3D drawing program. The
human is drawn in wireframe mode for illustration purposes.
When matching renderings to the thermo-images a uniform
color texture is used for humans. Note that most of the time,
they boxes have a dark color like the background, i.e., they
are at room temperature. These dark boxes are mainly used
to represent occlusions.

3D scene and after all calls are executed the projection of
the drawn scene is taken and returned as the output of the
program, as shown in figure 10. A simple thresholding op-
eration is used to reduce the camera image to a bitmap with
two colors: the background temperature illustrated by black
and temperatures in the human range indicated by blue. Hu-
mans emit about 36oC only at exposed body parts. Parts
covered by clothes, dust, and so can appear colder. Hence a
range of 28oC to 38oC is segmented to be potentially human.
Anything else is considered as background temperature.

Figure 11 shows the result from applying this segmenta-
tion to an input image.

Figure 11: On the left is the original bitmap from the thermo
camera. On the right is the same image after segmenting
everything in the range of 28oC to 38oC to be potentially
human.

The thresholded camera image is then compared to the
output of the OpenGL program. For this purpose the image
distance function (Birk 1996) shortly introduced in the pre-
vious section is also used here. The fitness of an individual
in the population is defined via the image distance between
the output of the individual and the pre-processed infrared
image. In addition to standard evolutionary operators, a hill-
climbing operator is used to exploit the meaningful gradients
of the image similarity function with respect to basic trans-
formations like translation, rotation and expansion.

The approach has been successfully used in real world
scenarios (Birket al. 2006a). Here a few example results are
presented. Object recognition, here the identification of hu-
mans, is done as follows within the reproductive perception
paradigm. The online evolution to generate a model for the
current sensor data is bound in time. If the fitness of the best
individual in the population is in the end very high, i.e., the



similarity between the data it produces and the sensor data is
very high, the model can be considered to be correct. Note
that this is always the case for all experiments described in
this and in the previous section. But it is an additional safe-
guard to prevent false classifications. The building blocks
of this model hence are related to the objects in the real en-
vironment. In the example of the victim identification, the
best model for the sensor data only contains a 3D OpenGL
human model if and only if there is also a human in the re-
lated 2D thermal image. This also holds with respect to any
number of humans, i.e., forN ≥ 0 humans, there areN
according building blocks as part of a proper model for the
sensor data.

In the following two examples are presented. In the first
one the human is in a position which is quite standard. In
the second one a very complex pose is used, which is nev-
ertheless successfully reproduced and hence the human is
recognized. Figure 12 shows a segmented infrared image
and three good matches generated with our approach. Note
that not only the human got recognized as indicated by an
according fitness, but that it also can be localized. The input
is only a 2D image, but the pseudo sensor data is based on
3D models that include information about the location of the
human in 3D space.

Figure 12: Complete humans can be reliably detected as
shown here with an input image on the top left and three
examples of best matches. Note that the input image is 2D
whereas the rendered data of the matches is based on 3D
models that include location data.

A second example contains a human in a very complex
pose. Figure 13 shows the segmented image with a typical
good match. It can be observed that some parts of the human
are not matched completely correctly. What matters most is
that the image is nevertheless represented by a code sniplet
for a human 3D model. It is hence reliably recognized by
its low fitness compared to other models that do not contain
this code.

The runtimes in general allow an online recognition of hu-
mans with the onboard processing capabilities of a RugBot,
which features a Pentium-M 1.2GHz processor, i.e., the im-
ages can be analyzed while the robot moves along as each
generation takes about 300 msec and 50 to 300 generations
are needed for reliable classification. For the general case,
there is no exact estimate of the actual time it takes to detect
a human or even several ones in a scene. First of all, the
performance depends on which body parts can be seen. An

Figure 13: The segmented infrared image of a real human
in a rather difficult posture and an example rendering of an
evolved representation. Though there are a few minor dis-
crepancies between the 2D image and the rendering of the
3D model, the scene is clearly recognized to contain a hu-
man. Also, its location is quite well determined.

arm can be perfectly matched in a few seconds. For the hu-
man in the complex posture, which forms a so-to-say worst
case here, it took about 1.5 minutes on average to nicely
match the 3D model to the 2D image. Second, the recogni-
tion is a stochastic process were increased computation time
simply increases the confidence that there is indeed a hu-
man in the scene. It usually just takes a few generations,
i.e., several hundred milliseconds, to transform a code sni-
plet representing a human such that its rendering roughly
matches an image of a real human, which is indicated by
low fitness values of the best individual. It strongly depends
on the application whether this first rough match is consid-
ered important enough to trigger other functions or whether
the evolutionary algorithm should continue first for several
seconds to produce a ”perfect” fit.

3D Models of Unstructured Environments

Figure 14: 3D data from an IUB rugbot generating a model
of a rescue scenario with reproductive perception.

Current work in progress includes the generation of com-
plete 3D models of unstructured environments with mobile
robots using the reproductive perception approach. The un-
derlying algorithms and principles are the same as in the ap-
plication scenarios described above. The main difference is
the size of the models, which requires some hierarchical or-
ganization. There is also successful work in progress where
the classification and recognition methods sketched in sec-
tion 3 are not only applied to humans but also to arbitrary
objects.

Conclusion
Reproductive perception was introduced, an approach where
models are generated, which produce data to match sensor



data. This is used in several cases of spatial knowledge pro-
cessing, e.g., to represent objects and their locations in the
learning of eye hand coordination as well as in work on de-
tecting and locating humans. Work in progress includes the
generation of complete 3D models of unstructured environ-
ments.
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