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Abstract 
Research in Psychology often involves the building of 
computational models to test out various theories. The usual 
approach is to build models using the most convenient tool 
available. Newell has instead proposed building models 
within the framework of general-purpose cognitive 
architectures. One advantage of this approach is that in 
some cases it is possible to provide more perspicuous 
explanations of experimental results in different but related 
tasks, as emerging from an underlying architecture. In this 
paper, we propose the use of a bimodal cognitive 
architecture called biSoar in modeling phenomena in spatial 
representation and reasoning. We show biSoar can provide 
an architectural explanation for the phenomena of 
simplification that arises in experiments associated with 
spatial recall. We build a biSoar model for one such spatial 
recall task – wayfinding, and discuss the role of the 
architecture in the emergence of simplification.   

Introduction   
A common research approach in psychology is to start with 
a body of observations about human behavior or 
performance in some general task and propose a model that 
explains the performance.  In recent years, such models are 
often computational and may be based implicitly on a 
general view of cognition, but the models themselves are 
task-specific. Alternatively, Newell proposed that the field 
move towards unifying explanations by using general 
cognitive architectures as the framework for model-
building (Newell 1990).  The same architecture would be 
used to build models for different phenomena and while 
the models would still be task-specific, the underlying 
architecture would be general.  Newell argued, by using 
the example of “Salthouse Twentynine,” (Newell 1990) 
how such unification provides more perspicuous 
explanations of experimental results in different but related 
tasks, as emerging from an underlying architecture that 
adapts itself to the variety of tasks.  Newell and his 
associates developed Soar as such a general architecture 
and Anderson and his associates developed ACT-R for 
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similar purposes (Anderson, Bothell et al. 2004). These 
architectures as a rule focus on what is often called “central 
cognition.” Perception and motor systems that necessarily 
would be involved in physical activities such as navigating 
in real physical space would be external to central 
cognition.  

Over the recent decades a substantial body of literature 
has grown around representation and use of knowledge of 
large-scale space, motivated both by a desire to understand 
and account for human performance on navigation, 
memory for routes and related tasks, and by the need to 
provide robots with suitable tools for navigation. Some of 
this research uncovers certain observable properties of 
human performance (such as certain kinds of systematic 
errors) with implications, some times spelt out and other 
times not, for forms of underlying spatial knowledge 
(Tversky 1993). Some are specific proposals for 
knowledge representation (Kuipers 2000) while others 
provide specific computational models for some of the 
phenomena (Barkowsky 2001).  

We propose the use of a general-purpose architecture to 
model the representation of and reasoning about large-
scale space.  However, the architecture we propose to use 
for such modeling is based on our earlier proposal for a 
fundamental change in the nature of the cognitive 
architecture: that it be augmented with perceptual 
components that play a significant role in central cognition.  
We describe an architecture called biSoar, which embodies 
our proposed augmentation of a visual/spatial component 
to Soar. We show how biSoar can provide an architectural 
explanation for the simplification phenomenon that is 
common in spatial reasoning. Simplification is a 
phenomenon where the spatial details (not relevant to the 
task) of entities are left out during spatial recall. 
Simplification can be commonly seen in sketch maps that 
people draw to provide directions from one location to 
another. In such maps, routes are often straightened, 
regions that are nearby are combined into a single region 
(or left-out altogether), routes that intersect at angles are 
drawn perpendicular to each other, all while achieving the 
goal of conveying the information required to reach the 
destination. We believe simplification plays a recurring 
role in spatial reasoning and is an underlying factor in 
explaining multiple phenomena because it restricts the 



information that an agent has available to it whether it is in 
navigating or map building or spatial recall.  

In general, when models are implemented in some 
cognitive architecture as possible explanations for a 
phenomenon, the behavior of interest can arise from one, 
or a combination, of three influences:– Architectural, 
Strategy and Knowledge.  Architecture is task-
independent, Strategy is task-dependent, and Knowledge is 
even more so in that agents using the same strategy may 
differ in specific pieces of knowledge.  
• Architectural Explanations – An architectural 

assumption appeals to the specifics of the architecture of 
the agent to explain the phenomena of interest. For 
instance, one way an agent can learn is through an 
automatic mechanism that puts away the knowledge that 
the agent attended to while solving a sub-problem. This 
compiled knowledge can be used the next time the agent 
encounters the same sub-problem. This process is 
automatic and a feature of the architecture, not a 
deliberative decision by the agent. 

• Strategy Explanations – A phenomenon can also emerge 
as a result of a particular strategy employed by the agent 
to solve the given task. Using the learning example from 
before, an agent can also learn due to a deliberate 
decision to put away knowledge while solving a 
particular task. This is different from an architectural 
explanation because learning in this scenario is specific 
to the current task while, in an architectural explanation, 
learning is automatic and happens regardless of the task 
or problem being solved. 

• Knowledge Explanations – An agent’s behavior may 
also arise from the presence or absence of specific items 
of domain knowledge. If the agent doesn’t know there’s 
a bridge at a certain location, it is not going to generate 
routes that could make use of the bridge. 
In general, phenomena can have more than one 

explanation. In a wayfinding example for instance, 
simplification can arise due to the strategy used. Consider 
an agent finding a route from Columbus to Buffalo. It 
looks at the map in front of it and remembers the relative 
locations of important cities along the route. The route 
found by the agent would be from Columbus to Cleveland, 
to Erie and then to Buffalo. When asked to recall the route, 
the agent retrieves from memory the relative locations of 
the important cities and draws straight lines connecting 
them. To an outside agent simplification has occurred but, 
without further experimentation, it cannot decide if the 
reason for simplification is architectural or strategic. Due 
to the number of free variables and tunable parameters in 
cognitive architectures, the ability (or inability) to build a 
model in the architecture cannot be taken as the final word 
on whether the explanation offered by the model is correct 
(or incorrect). Under certain circumstances, however, the 
inability to build a model in the general cognitive 
architecture framework can be taken as a sign that the 
approach (or strategy) is flawed. More importantly, 
building models gives us a list of possible explanations for 
the phenomenon. This list can then be used to develop a 

series of controlled experiments that can decide between 
the various explanations.  

In the next section we describe some of the existing 
literature on the representation of large-scale space. 
Following that we briefly describe biSoar. We look at our 
initial experimental results in writing a biSoar model that 
exhibits the phenomenon of simplification during 
wayfinding. We compare our proposal with an existing 
task-specific proposal, namely SSH, and conclude by 
discussing some future directions for this research. 

Representation of Large-Scale Space 
In 1948, Tolman proposed that animals have an internal 
representation of large-scale space which he called the 
cognitive map (Tolman 1948). Though he referred to it as a 
map only in the functional sense, early speculation 
involved around whether this representation was really a 
map (a global metrical representation) or merely a 
collection of representations (only a minority of which 
were metrical). An overview of the debate is presented in 
(McNamara 1986). In 1960, Lynch  produced his seminal 
study of the environment and its features that are important 
in building a cognitive map (Lynch 1960). Lynch 
identified Landmarks – salient cues in the environment 
such as distinctive buildings, routes such as roads, rails and 
even bike pathways that connect various landmarks, 
junctions or intersections of routes called nodes, districts 
which are implicit or explicit regions of the city, and edges 
that prevented travel, demarcated the different regions and 
bounded the city itself.  

The longest standing model of large-scale space 
representation is the Landmark, Survey, Route (or LRS) 
model (Siegel and White 1975). LRS theory states that an 
agent first identifies landmarks in an environment, adds 
route knowledge between landmarks as he/she traverses 
the environment and finally adds survey (or 
configurational) knowledge as the agent becomes familiar 
with the environment. Once survey knowledge has been 
added, the agent has the capability to propose novel, 
previously un-traversed paths between landmarks. In 1978, 
Stevens and Coupe proposed a hierarchical model of 
spatial memory to account for distortions in judgments of 
relative geographical locations (Stevens and Coupe 1978). 
For example, when subjects were asked if San Diego, CA 
was to the west of Reno, NV, a number of them said yes 
even though it was incorrect. Stevens and Coupe 
hypothesized that subjects stored spatial information about 
cities and states as hierarchies, and errors in judgment 
occurred because relation information is not stored at every 
level and subjects tried to conform the relation between 
cities to the relation of the corresponding super ordinate 
political units. Later theories have modified these models 
in various ways. For example, in 1998 Gilner and Mallot  
proposed the view-graph theory in which views and 
egocentric vectors replaced places (view-independent) and 
allocentric vectors in the cognitive map (Gillner and Mallot 
1998). A variety of behavioral/psychological studies have 



also aided the development of these models by providing a 
set of characteristics or behaviors that a model should 
posses. 

Knowledge of large-scale space can come from multiple 
sources. The most common source is, of course, from 
personal experience of navigation in space. We 
automatically build representations of our environment as 
we traverse them. A second, and important, source is maps. 
Our knowledge of large environments, such as the spatial 
extent and geographical locations of the fifty states, 
originated from our use of maps. Representations, 
originating from either source, are combined and modified 
in various ways during problem solving for various 
purposes. In this paper, we focus on phenomena involving 
maps.   

biSoar Architecture 
The traditional approach to cognition and problem solving 
can be best described “predicate-symbolic”; that is, the 
knowledge and goals of an agent are represented in terms 
of properties of and relations between (predicates) 
individuals in the domain of discourse. Problem solving 
proceeds by the application of rules of inference to these 
predicates. The role of the perceptual system is to give the 
agent information about the external world, and the role of 
the action system is to make changes to the world as 
expressed in the action predicates generated by the 
problem solver.  The output of the perceptual systems, in 
this view, is in the form of predicate-symbolic 
representations. Beyond providing information in this 
form, perceptual systems do not participate in the problem 
solving process, i.e., they are not part of the cognitive 
architecture and are external modules. Our alternative 
proposal calls for a much greater role for an agent’s 
perceptual system in cognition. Here, the agent has 
representations and processes that are characteristic to the 
individual modalities and cognition is an activity that 
involves all of them. The perceptual system as a whole still 
gives information about the external world, but aspects of 
the system are part of central cognition, independent of 
input from the external world.   

Soar 
Soar is an architecture for constructing general cognitive 
systems (Laird, Newell et al. 1987). Towards achieving 
this goal, Soar provides representations for short and long-
term memory, mechanisms for interacting with the external 
world, a sub-goaling strategy that is independent of the 
task and domain and a learning mechanism that allows 
Soar to learn as a result of success in solving sub-goals. 
The Soar architecture also provides a rule-based 
programming language that can be used to program the 
intelligent agent. Soar’s Working Memory (WM) is 
represented as Identifier, Attribute, Value triplets (Ex: (S1 
Object O1) (O1 Color Red)). Long term memory (LTM) in 
Soar is a collection of rules. Each rule has a condition (if) 

part that is matched to WM. If a match exists WM is 
changed according to actions specified in the action (then) 
part. There are two kinds of rules – operator proposal and 
operator application. Proposal rules propose operators. 
Each operator can be thought of as the next possible step to 
take in the problem solving process. Application rules 
apply the actions of the respective operators. Fig 1 shows 
an example of operator proposal and operator application 
rules. During problem solving, Soar goes through a series 
of 5 phases – input, proposal, decision, apply and output. 

In the proposal phase, all operators that are relevant to the 
situation (that match against conditions in WM) are 
proposed. In the decision phase, an operator is selected and 
the corresponding application rule is executed in the apply 
phase.  

Soar’s learning mechanism is called chunking. If Soar 
becomes stuck (called an impasse), it creates a sub-goal to 
try and resolve the problem. For example, if, during the 
decision cycle, Soar does not know which operator to 
select, it creates a sub-goal to try and choose an operator. 
The sub-goal goes away when the impasse that created it is 
resolved and the information that caused to be resolved is 
used to create a rule called a chunk. The next time Soar is 
faced with the same problem the chunk is executed instead 
of re-solving the problem.  

To create biSoar, Soar is augmented with a 
Diagrammatic Reasoning System (DRS). DRS is a 
domain-independent system for representing diagrams. In 
DRS, diagrams are represented as a collection of points, 
curves and regions. The fact that points refer to the 
location of cities or that regions represent states in a map, 
is task-specific knowledge that is part of Soar but not of 
DRS. This allows DRS to be used in multiple task domains 
without modifications. DRS also provides a set of 
perceptual and action routines that allows Soar to create 
and modify a diagram, and to extract relations between 
diagrammatic objects from the diagram. By the addition of 
the capabilities of DRS, Soar’s cognitive state, long-term 
memory etc, that were exclusively predicate-symbolic, 
now acquire a visual component and hence are bimodal. 
Our current focus is on diagram-like aspects of the visual 
component. This allows us to concentrate on the visual 
reasoning process without distractions from problems that 
are more involved with image processing. (Chandrasekaran 
2004) contains further details about DRS and the 
perceptual and action routines. (Kurup and Chandrasekaran 
2006) contain further details about how DRS is hooked up 
to Soar. 

Operator Proposal: If (Color, Red) then propose 
operator to stop car. 
Operator Application: If operator proposed to 
stop car, then stop car.

Fig 1: Examples of operator proposal and application 
rules in Soar



Cognitive State in Soar 
Soar’s representations are predicate-symbolic. The 
cognitive state in Soar is represented by the contents of 
Soar’s WM and operator, if any, that has been selected. Fig 
2(b) shows the Soar’s cognitive state representation of the 
blocks world example in 2(a).  The world represented by 
Soar is shown in 2(a). 

Cognitive State in biSoar 
The cognitive state in biSoar is bimodal – it has both 
symbolic and diagrammatic parts. Fig 3 shows the bimodal 
representation of the world depicted in Fig 2(a). Working 
memory is biSoar is represented as a quadruplet, with each 
Identifier, Attribute, Value triplet augmented with a 
diagrammatic component. The diagrammatic component is 
represented using DRS. It represents the visualization of 
the triplet. Since not all triplets need to be (or can be) 
visualized, these components are present only as needed. 
States represent the current or potential future state of 
interest in the world and the symbolic and the 

diagrammatic part may represent related or distinct aspects 
of the world. However, the diagrammatic representation is 
“complete” in a way that the symbolic representation is 
not. For example, from the symbolic representation alone it 
is not possible to say without further inference whether A 
is above C. But the same information is available for pick 
up in the diagram with no extra inference required. This 
has advantages (for instance in dealing with certain aspects 
of the Frame Problem) and disadvantages (over-
specificity). The implications of the use of DR is however 
outside the scope of the current paper. 

To utilize the bimodal cognitive state, Soar’s rules in 
LTM are also suitably modified to be bimodal. Conditions 

and actions in rules can refer to either symbolic or 

diagrammatic working memory. The If part of the rule can 
also check for objects/relations in the diagram and the then 
part can make changes to the diagram. Fig 4 shows an 
example of the operator proposal and operator application 
rules in biSoar. Problem solving in this new bimodal Soar 
proceeds through the application of rules that act on and 
modify both the symbolic and diagrammatic sections of the 
working memory.  

Chunking in biSoar 
The bimodal nature of LTM and WM in biSoar has 
consequences for chunking. Chunks (rules) that are learned 
in biSoar are bimodal. Like in chunking in Soar, only those 
representations (symbolic or diagrammatic) that were 
attended to during problem solving become part of the 
chunked rule. Diagrammatic chunking is implemented as a 
visualize method that is part of any routine that interacts 
with an object in the real world. The visualize method 
produces the equivalent of the product of attention on just 
aspects of the diagrammatic object. One way to think of 
visualize is that it is as if we are looking at the route at a 
very low resolution resulting in the loss of much of the 
finer details while still preserving the starting and ending 
points and the general curvature of the route. Fig 5(b) is the 
output of the visualize operator on the curve in 5(a) where 
the attention has been focused on just the betginning and 
end points. Fig 5(d) is similarly the result of visualize on 
Fig 5(c) where the attention has been focused on the braod 
shape, and on none of the details of the perimeter. The 

Working Memory: 
Block (A), Block (B), 
Block (C), On (A,B), On 
(B,C) 
 
Selected Operator:  None(a) (b)

Fig 2: (a)  Blocks World and (b) Soar’s representation of 
the world in (a). 

C
B
A

Working Memory: 
Block (A), Block (B), 
Block (C), On (A,B), On 
(B,C) 
 
Selected Operator:  None 

Fig 3: biSoar representation of the world shown in 2(a) 

Operator Proposal: If goal is On(A,B) and 
In_The_Diagram(A not on B) then propose 
operator to move A on to B. 
Operator Application: If operator proposed to 
move A on to B and In_The_Diagram(A and B 
are clear) then In_The_Diagram(move A on to 
B). 

Fig 4: Examples of operator proposal and application 
rules in biSoar

Fig 5: The effects of the visualize method. 

(a) (b)

(c) (d)



result of visualize does depend upon the requirements of 
the task because that determines the aspects to which 
attention was paid to in the diagram. But visualization in 
this manner is architectural because it happens irrespective 
of the task or the domain. For now, if attention is paid to a 
curve, it is considered to produce a straight line, but in 
general, it can thought of as producing a simple curve 
instead of a straight line. 

Wayfinding 
Wayfinding is a rich task domain to exercise a cognitive 
architecture intended to model spatial representation and 
reasoning. Human behavior in wayfinding exhibits a 
number of properties.  
• Ability to recall the order of landmarks as well as 

relative orientation changes along the route is usually 
preserved. 

• Simplification – routes recalled by subjects rarely 
preserve the exact curvature of pathways or their 
orientation to each other and to other landmarks. 
Curvature is usually straightened and actual angles are 
replaced by a small number of qualitative angular 
descriptions (left, slight right etc).  

• Abstraction – multiple objects (whose details are 
irrelevant to the task) are usually abstracted to form a 
single object in recalled maps. 

• Ability to hypothesize the destinations of untraveled 
routes, and the ability to generate novel routes. 

 
The properties that are exhibited differ depending on the 
nature of wayfinding task as well as the source of the 
spatial information. For example, the ability to hypothesize 
destinations of untraveled routes is not required if the 
agent’s source of knowledge is a map. On the other hand, 
this ability becomes important when the agent’s knowledge 
about the world is created through the agent’s interaction 
with the environment – that is, built up over time through 
the movement of the agent in the world. 

 
The term Cognitive Map is often used to refer to the 
various posited internal representations that constitute our 
knowledge of large-scale space. While there is 

disagreement as to the nature of these representations, 
there is a general consensus that the term map is 
misleading and that the representation is not a single, 
metrical, global map-like structure. Instead it is more likely 
a collection of fragments of knowledge of space, some 
metrical and some not, that are brought together to solve 

the spatial task. Cognitive Atlas (Hirtle 1998) and 
Cognitive Collage (Tversky 1993) are two of the suggested 
alternative terms that more correctly represent the nature of 
our representation of large scale space. In this task, we 
would like to explore how an architectural explanation of 
simplification can be given through the biSoar architecture. 
In particular, we explore whether the basic property of 
chunking (chunk only that to which attention was paid) is 
enough to explain the emergence of simplification in stored 
maps. 

The agent is given the task of finding a route from P1 to P2 
in the map shown in Fig 6(a). The agent is asked to recall 
the route and the result is something like the map shown in 
Fig 6(b). Note that the recalled map has simplified paths. 
The wayfinding strategy used is shown in Fig 7.  The 
problem solving sequence for one segment of the solution 
is shown in Fig 8. The critical step in the sequence is 
“copy”. Copy contains the visualize method that produces 
the equivalent of the product of attention on the route from 
P1 to R1R3. 

Fig 6: The map for the wayfinding task and the solution 
found by the model. 

R

R1 

P1 

R2 

R3 

R1R3 

R4 

P2 
R1 

P1 R1R3 

R3 

R4
R2 

P2

(a) (b)

Fig 7: wayfinding strategy used by the model 

0. Let the starting point be the current point.
1. Find the curve on which the current point lies. 
2. Find the next point in every possible direction 
from the current point 
3. For each possible next point, calculate the 
Euclidean distance between that point and the 
destination 
4. Pick the point that is closest to the destination. 
5. Make that the current point and repeat from 1. 
6. Combine the curves generated so far to create the 
route from P1 to P2 

Fig 8: one problem solving sequence from the task 

- The agent calls the DRS to find the routes on which 
P1 lies. (R1) 
- The agent calls the DRS to find the next point in 
either direction on R1 from P1. (Start point of R1 
and R1R3)  
- Agent calls DRS to find the Euclidean distance 
between R1 and P2 and R1R3 and P2. (80 and 50)  
- Agent picks R1R3 as the next point and calls for 
DRS to copy the route from P1 to R1R3. Finds the 
routes on which R1R2 lies. (R1 and R3)



Discussion 
The Spatial Semantic Hierarchy (SSH) provides a 
comprehensive theory of how an agent learns to build a 
representation of the environment, and how it uses this 
representation during problem solving. SSH represents its 
knowledge of space at multiple levels – control, causal, 
topological and metrical, with the information at one level 
building on what was learned at the next lower level 
(except in the case of the metrical level). These 
representations are learned by the agent while navigating 
through an environment.  

In its current avatar, biSoar encompasses the topological 
and metrical levels of SSH. The representational and 
problem solving capabilities of biSoar and SSH with 
regards to topological information are similar. The real 
difference is at the metrical level. SSH proposes a few 
ways in which 2-D metric information may be represented 
but biSoar, and in particular, DRS provides a concrete 
representational format for metric information. Further, 
biSoar creates, modifies and inspects this information 
during problem solving making DRS an integral part of the 
problem solving process.  

At this time, biSoar does not have an explanation for 
how representations are learned while the agent navigates 
the world. For now, biSoar’s spatial knowledge comes 
from an external map. Also, certain issues, such as the 
control (sensor) level of the SSH, are outside the 
jurisdiction of the architecture. In biSoar, representations 
and processes at the control level would possibly be part of 
a perceptual/motor system with which biSoar 
communicates during navigation.   

One of the advantages of developing models and 
theories within the framework of a general-purpose 
cognitive architecture is that it is sometimes possible to 
provide a single architectural explanation for phenomenon 
observed in different but related tasks. One such case is the 
phenomenon of simplification found in a multitude of 
spatial recall tasks.  We have proposed biSoar (a bimodal 
version of the cognitive architecture Soar) and its 
diagrammatic chunking, an architectural learning 
mechanism similar to chunking in Soar, as one possible 
explanation for the simplification phenomenon. A model 
for the wayfinding task is used to describe how 
simplification emerges due to chunking.  Due to limitations 
of space, we focused on the wayfinding example in the 
paper, but the same architectural feature of visualize as part 
of chunking can explain aspects of the phenomena related 
to recalling the directional relation between San-Diego and 
Reno. In particular, simplification affects what the agent 
learns about the shapes of California and Nevada and the ir 
orientation to each other. This later affects the agent when 
solving the problem of finding the relation between San-
Diego and Reno. Our proposal has similarities with the 
proposal by Barkowsky for the use of visual 
representations in solving these kinds of problems 
(Barkowsky 2001). 
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