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Abstract

We introduce a new equilibrium selection mechanism for a
class of symmetric coordination games. Taking advantage
of the structure of these games, we assert that the equilib-
rium selected by this mechanism constitutes a “natural solu-
tion” in the sense that the associated expected payoff is the
highest equilibrium value that can be achieved without any
player having to guess how to do so. We illustrate the con-
cept for specific examples, discuss computational issues, and
then briefly conclude with a discussion about how the concept
can be generalized to other coordination games.

Introduction

The Nash equilibrium has emerged as the dominant solu-
tion concept for strategic games, where a profile of (possibly
randomized) actions constitutes an equilibrium if no individ-
ual player has the incentive to deviate from his or her pre-
scribed action. The assured existence of a Nash equilibrium
in mixed strategies is one of the key results (Nash 1950)
that helped to shape the field in its early days. However,
in applications, it is often inadequate to simply be assured
of the existence of a Nash equilibrium, or that an equilib-
rium can be computed in a finite number of operations. If
we look to game theory for a prescription of how to act in
competitive situations, the existence of multiple Nash equi-
libria in pure or mixed strategies is problematic. Some-
times a ‘“salient” solution presents itself (Gauthier 1975;
Gilbert 1989), and all players instinctively focus on specific
equilibrium, often the option that is closer, easier, brighter,
or something cognitively distinct (even if the distinction is
not reflected in the payoff function). Unfortunately, notions
of salience are difficult to encode within a precise mathe-
matical framework, almost by definition. In response, re-
searchers have sought to define alternative solution concepts
for strategic games by proposing “refinements” to the Nash
equilibrium that take advantage of the extensive form struc-
ture of the game with or without perfect information that
can justify the choice of a specific equilibria (cf. (Fudenberg
& Tirole 1995) for a comprehensive review of the subject).
Other researchers have derived equilibrium selection mech-
anisms, including (a) payoff and risk dominance (Harsanyi
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& Selton 1988) and other deductive selection mechanisms
and (b) inductive selection mechanisms (see (Haruvy &
Stahl 2004) and references contained therein). Still others
have developed alternatives to the Nash equilibrium, such
as the correlated equilibrium (Aumann 1974), notions of
dominance, and their relationships to Nash equilibria (again
see (Fudenberg & Tirole 1995) for a review). Many of the
proposed equilibrium refinements and selection mechanisms
above seek to resolve a natural tension between objective
individual self-interest and uncertainty about how the game
will be played, and this tension seems unavoidable generally
in non-cooperative games. However, for identical interest
games, where self interest is synonymous with group inter-
ests, this tension is perhaps easier to resolve, and this paper
seeks to exploit symmetry and common interests in deriving
a new solution concept for games that is both technically
precise and also endogenously salient.

We consider symmetric N-player games of identical in-
terests, where all players have the same pure strategy action
space A and the payoff function u : AN +— R is such that
() u(y',...,y") is the payoff each player receives when
the group plays the profile 3',...,%" and (ii) the payoff
is the same for any permutation of y',... 3"V, It is well-
known (Becker & Damianov 2006; Cheng et al. 2004) that
symmetric strategic games generally have symmetric mixed
strategy equilibria x = (z, ..., ), where x is a mixed strat-
egy over A. (This true even when without identical inter-
ests.!) We develop a new solution concept for N-player,
symmetric, identical interest games in which players are re-
warded for commonality in their choice of actions. Specifi-
cally, we assert throughout the paper the following assump-
tion.

Assumption 1 The common set of pure strategies A is fi-
nite, and the payoff function is such that given a subset of
actions G C A, there is a unique symmetric mixed strategy
Nash equilibrium x(G) = (x(G), ..., z(Q)) for which the
support of each player’s equilibrium is precisely G. In ad-

'In general, a noncooperative game is symmetric if all players
have the same pure strategy (action) space A and the payoff func-
tion u : AN — R is such that (i) that the payoff to any player who
plays z € A receives u(x,y’,...,y"~ ") when all other players
play y', ...,y 1, respectively, and (ii) the payoff is the same for
any permutation of %, ...y~ L.



dition, using v(Q) to denote the expected payoff (“value”)
associated with the equilibrium x(G), the following proper-
ties hold:

P1 Given G; C Gy C A, then
v(G1) > v(Ga), (1)

and the inequality is strict if G is a strict subset of Gs.
P.2  Given disjoint G1, Go, G3 (all subsets of A), then

’U(Gl) = U(GQ) <~ ’U(Gl UGg) = U(GQUGg). )

For convenience, we refer to any subset of actions G C A
as an action group. Also, we let X (G) denote the set of all
mixed strategies = whose support is precisely G. One im-
plication of Assumption 1 is that a specific (unique) mixed
strategy equilibrium x(G) is implied by the decision to (i)
put positive probability on each of the actions a € G and (ii)
put zero probability on all of the actions b € A \ G. Thus,
the problem of selecting a symmetric mixed strategy equi-
librium is in a sense equivalent to the problem of selecting
an action group.

The remainder of this paper is organized as follows. First
we introduce the notion of natural solutions for games that
satisfy Assumption 1. Next, we illustrate natural solutions
for a simple class of games that we refer to as static agree-
ment games, where positive payoff is associated with all
players choosing the same action. After taking up computa-
tional issues, we conclude with a summary and offer direc-
tions for ongoing research.

Natural Solutions

The solution concept we propose for games that satisfy As-
sumption 1 is tightly coupled to the payoffs that can be
achieved when individual players make arbitrary decisions
about what actions to play. Some additional notation will be
helpful. For any a € A, let the function i, : AN~ — R be
defined by

aa(yQ,...7yN):u(a,y27...,yN). 3)

We can interpret u, as the payoff function for the game that
is defined by Player 1 unilaterally declaring his intent to play
a € A. We are now equipped to define a notion of equiva-
lence between actions.

Definition 1 (Equivalent Actions) Two distinct actions a
and o' are equivalent, denoted a « a’, if there exists a bi-
jective function ¢ o+ AN AN such that

liq (@) = Tia/ (Pa,ar (),

In other words, two actions are equivalent if, after they are
selected by Player 1, they offer the Players 2 through IV the
same opportunities to receive payoffs, i.e. if the games de-
fined by u, and . are equivalent. We now proceed to de-
fine an important building block for our solution concept.

Vae AN 4)

Definition 2 (Atomic Action Groups) An action group G
is atomic if it is such that for all a € G

1. the actions a and a’ are equivalent (i.e. a < a’) for all o’
in G, and

2. the actions a and b are not equivalent for any b € A\ G.

For singleton action groups G = {a}, the first requirement
above holds vacuously, though the second may not. As a
convention, we do not consider the empty set ) to be atomic.
The definitions above imply that G is atomic if (i) for any
action a € G the (N — 1)-player game defined by @, is
equivalent to the (N — 1)-player game defined by @, for
any other a’ € G and (ii) G contains all such actions.

Definition 3 (Proper Action Groups) An action group G
is proper if (i) it is a union of atomic action groups and
(ii) it is such that if F C G is an atomic action group
then G contains all atomic action groups H C A such that
v(H) = v(F). An action group is improper if it is not
proper.

Note that an atomic action group F' is itself proper only if it
is the unique atomic action group with the value v(F'). Strict
subsets of atomic action groups are improper. Any action
group involving a strict subset of an atomic action group is
improper. By convention, the empty set is improper. The full
set of actions A is itself necessarily proper. If G is proper,
then A \ G must also be proper. More generally, if G is
proper and F' C G is proper, then G \ F is proper. Finally,
note that any union of proper action groups is proper.

Definition 4 (Natural Action Groups) An action group G
is natural if it is proper and has the property that for any
proper action group F' C G there is no proper action group
H C A\ G such that v((G\ F)U H) = v(G). If an action
group is not natural, then we refer to it as unnatural.

Thus, to be “natural” an action group G must be proper and
must also be such that no subset of G that is proper can be
replaced by a proper action group that is disjoint to G. Note
that the full set of actions itself A is itself natural vacuously
since there are no proper action groups H C A\ A. Observe
also that if G is natural and H C A\ G is such that v(H) =
v(@), then H cannot be proper. Indeed, if G N H # (), then
H would be a disjoint proper action group whose value is
the same as (G, and this would contradict the fact that G is
natural. More generally, we have the following proposition.

Proposition 1 If G is natural and H # G is such that
v(H) = v(QG), then H cannot be proper (and thus cannot
be natural).

Proof: Let G and H be as stated in the proposition. As
we have already observed, if G and H are disjoint, then H
cannot be proper. To address the remaining case in which
G N H # (), let us suppose to the contrary that H is proper.
The fact that v(G) = v(H) implies through property P.1
that neither G nor H is nested within the other. Thus, since
G # H, it must be true that G\ H, H\ G, and GN H
are all nonempty. Now let a be an action in the intersection
G N H. Since both G and H are proper, they must both
contain all actions b € A that are equivalent to a, and thus
G N H is a union of atomic action groups. In addition, for
any atomic action group F' C G' N H, the fact that G and
H are both proper implies that they both contain all atomic
action groups with value equal to v(F’). Thus, G N H must



itself be proper. Consequently, G \ H and H \ G must also
be proper. Now, since G is natural and G\ H and H \ G are
proper, we have that

v(H) = v(GNH)U(H\G))
= o([G\(G\H)]U(H\G))
7 (@),

which is a contradiction. Thus, H cannot be proper. B

By Proposition 1, if G is natural, there can be no other
natural action groups H # G with the same value as GG, and
thus we are motivated to make the following definition.

Definition 5 (Natural Solutions) A natural action group
G* for a given SA game is the natural solution of the game
if all other natural action groups G are such that v(G) <
v(G*). We use v* to denote the value of the natural solution

v(G*).

From our earlier observations, A itself is always natural,
and, from property P.1, A is the the only action group with
value less than or equal to v(A). Since there can be only
finitely many distinct natural action groups, a natural solu-
tion must exist.

The following proposition describes a convenient equiva-
lent characterization of natural action groups.

Proposition 2 A proper action group G is natural if and
only if for any proper action group F C G and any proper
action group H C A\ G it is true that v(F) # v(H).

Proof: By property P.2, the existence of action groups
F C Gand H C A\G such that v(F) = v(H) is equivalent
tov((G\ F)UF) =v((G\ F)U H). Thus, the hypoth-
esis that v(F') # v(H) for all pairs of proper action groups
F C Gand H C A\ G is equivalent to the hypothesis that
G is natural. B

Discussion

Clearly, for any game satisfying Assumption 1 the natural
solution is a (possibly mixed) Nash equilibrium. Thus, we
may regard “natural-ness” as an equilibrium selection mech-
anism, in the same vein as payoff dominance (Harsanyi &
Selton 1988). What we achieve in selecting a natural solu-
tion is a form of uniqueness: to paraphrase Proposition 1, If
G is the natural solution, then any other action group H with
equivalent value cannot be proper, meaning that H must be
comprised of some but not all elements of an atomic action
group. Moreover, the natural solution G* is the natural ac-
tion group that offers the highest expected payoff-
Assumption 1 certainly is key in deriving our main re-
sults. The assumption begins by requiring that a unique
mixed strategy equilibrium be associated with the resolve
(on the part of all players) to put positive measure on any
action group G C A. Note that the existence of such a
mixed strategy equilibrium is clear from (Becker & Dami-
anov 2006) (Cheng et al. 2004), (Nash 1950), and the
uniqueness requirement is what makes this an assumption.
Property P.1 requires that the equilibrium payoff associated
with an action group G becomes strictly worse as new ac-
tions are added, i.e. played with positive probability. This

property is the driving force behind Proposition 1 and also
the assured existence of a natural solution. In a sense, P.1
creates an essential tradeoff between (i) the value that can be
achieved by all players agreeing on particular actions and (ii)
the cost of uncertainty about which action to choose. Prop-
erty P.2 is a more technical requirement and is used mainly
in validating the test for natural-ness in Proposition 2.

Games that reward commonality in action selection tend
to satisfy property P.1. In the next section, we illustrate this
for a class of static “agreement” games, where positive re-
ward is associated only with every player agreeing on an
action.

Static Agreement (SA) Games

Definition 6 (Static Agreement Games) A static agreement
game is an N-player symmetric game defined by a common
set of actions A = {a1, as, . .., a,} and a payoff vector u =
(Uay, Uags - - - Uq, ) > 0 such that u,, is the common payoff
if all players select the same action a; € A and the common
payoff otherwise is zero.

Note that when there is a unique maximum u* among
the payoffs {uq,, Uq,, - - - Ua, }, then it is reasonable to take
as an “optimal solution” the unique Nash equilibrium that
achieves the value of u* is the one in which all players put
unit weight on the corresponding action in A. However,
when maximum payoff is not uniquely achievable, then what
constitutes a reasonable solution becomes much less clear.
Unfortunately, existing equilibrium selection mechanisms,
such as the payoff and risk dominance criteria of (Harsanyi
& Selton 1988), which are designed to identify pure strategy
equilibria, do not provide a clear answer.

Verifying Assumption 1 for SA Games

We now show that static agreement games satisfy Assump-
tion 1. To simplify notation, let v(z) denote the expected
payoff associated with all players using the same mixed
strategy z, i.e.

v(x) = Zuaaﬁé\[ (5)
i=1
Similarly, let
v(z,T) = Z uaixé\iflfai. (6)
i=1

denote the expected payoff given that N — 1 players agree
on x € X and a single player deviates by choosing z € X.

Now given an action group G C A, consider the mixed
strategy

z(@G) 2 ka - (la,ec - u(;l/(N—l)’ loyec - u;Ql/(N71)7
cLageq - ug /Y)Y € X(G), (7)

where X
ke = “1/(N=1) (®)

ZaGG Ua

is a normalizing constant and 1,,c¢ is an indicator variable
that evaluates to one if a; € G and zero otherwise.



Lemma 1 Let G be an action group for a static agree-
ment game. The mixed strategy profile x(G) =
(x(G),...,z(Q)), having value

(@) £ o(@(@) = kY, ©)

is the unique symmetric mixed strategy Nash equilibrium in
X(G)

Proof: We first show that x(G) is a Nash equilibrium.
Note that

n L A\N-1
’U(LI}(G), j) = Zuaz (kG . 1ai€G : uti\:l) fa,L

i=1

n
1 _
= kG E laieG * La,
i=1

< kg
= v(@(G)),

where the third line holds with equality when z € X(G).
Since no individual player can deviate from x(G) to obtain
a higher expected payoff, x(G) is a Nash equilibrium.

To establish uniqueness, suppose that (z,....x) € X(G)
is a Nash equilibrium. Then, it must be true that all actions
a € G have the same expected value relative to x. In partic-

ular, listing the elements of G as a(y), - . ., a(|g|), it must be
N-1 _ N-1 S _
true that g, T ° = Uag)Ta,,,, fori=1,..., |G| —1,

which along with the requirement that x4, +- -+ + %4 5, =
1 defines system of linear equations that can only be satisfied
by one vector in X (G), namely x(G). B

Lemma2 Let Gy,...,G,, be mutually disjoint action
groups for a static agreement game. Then,

1
[Zm (’U(Gi))—l/(N_U]N—l

=1

o(U,Gy) = (10)

Proof: Since

(v(Gi)) T = [Z u;““’-”] Ci=1m,

acG,

we have that
1

[Z”HZ G “_1/(1\[—1)}]\[—1
1= acG; "a

v (inlGi) =

Some easy consequences of Lemma 2 are the following.

Corollary 1 Let G1 and G5 be action groups for a static
agreement game such that G1 C Gso. Then,

v(G1) > v(Ga), Y

and the inequality is strict if G is a strict subset of Gs.

Corollary 2 Let Gy, Gy, and G3 be mutually disjoint action
groups for a static coordination game. Then,

’U(Gl) = U(GQ) <~ ’U(G1UG3) = U(GQUGg). (12)

Corollary 3 Let G1,Ga, ..., Gy, be mutually disjoint ac-
tion groups with equal value, i.e. v(G1) = v(Gy) = ... =

v(Gr) 2 k. Then,
V(UG = —3

—= (13)

Corollaries 1 and 2, along with Lemma 1, imply that static
agreement games satisfy the requirements of Assumption 1,
and thus the solution concept of natural solutions applies.

We point out that for any a € A, the value of the singleton
action group {a} is u,. Thus, if a is such that u, > u; for
all a € A, then u, is the highest value an action group can
have. On the other hand, from Corollary 1, thinking of A
itself as an action group, v(A) is the smallest value that an
action group can have and no other action group can achieve
that value.

Note also that an action group G C A is atomic if all
of the actions that it contains have individually equivalent
payoffs, and no other actions b ¢ G have the same payoft as
those represented by G. In particular, GG is not atomic if it
involves some, but not all, actions a that achieve a particular
value.

Examples

We now illustrate our solution concept in the context of
some specific examples.

Example 1 Consider the two-player SA game defined by
the payoff vector
u=(4,4,2,2).

. . A
Here, the only atomic action groups are Gi_o = {al, ag}

and G3_4 é {a3, a4}. Since U(Gl_g) 7é U(G3_4), both are
proper. A itself is also proper. All three proper action groups
are natural. In particular, the action group G;_» is natural

. . N
despite the fact that is has the same value as Gz = {as}

(and as G4 = {a4}) — the action groups G3 and G are not
proper.

Example 2 Consider the two-player SA game defined by
the payoff vector

u=(4,4,6,6,6,8,8,8,8).

Here, using the same notation as in the preceding example,
the action groups G1_2, G3_5, and Gg_g are atomic. How-
ever, since v(G1—2) = v(Gs—5) = v(Gg—9), none of the
atomic action groups are individually proper. Similarly, any
pair of atomic action groups is improper. The only proper
action group is A itself, which is also natural.

Example 3 Consider the two-player SA game defined by
the payoff vector

u=(3,6,6,6).
Here, G and G54 are the atomic action groups. The proper
action groups are G1, Go_4, and A itself. Note that the ac-
tion group (&1 is natural since the only disjoint proper action



group G54 has a different value. (It is important to note
that G is natural despite the fact that other disjoint action
groups have the same value — all such disjoint action groups,
i.e. Ga_3, G24, and G3_y4, fail to be proper.) The action
group G54 is also natural since its value is not the same as
the disjoint proper action group G;. Finally, the third (and
final) natural action group for this game is A itself.

Example 4 Consider the two-player SA game defined by
the payoff vector

u=(3,6,12,12,18,18,18)

for which the atomic action groups are G1, Go, G3_4, and
G'5_7. The action group (G is proper since no other atomic
action groups have the same value. Any action group in-
volving some but not all of G2, G3_4, and G5_7 is im-
proper. On the other hand G5_7 and A itself are proper.
Since v(G1) # v(Ga—7), all three proper action groups are
natural.

Example 5 Consider the two-player SA game defined by
the payoff vector

u=(2,2,4,4,5,5,5,5,5,6,6,6)

for which the atomic action groups are G1_2, G3_4, G5_9,
and Gig—12. The proper action groups are Gi_25_9,
G3,4’10,12 and A itself. Since U(G3,4’10,12) >
v(G1-2,5—9), all three proper action groups are natural.

Example 6 Consider the two-player SA game defined by
the payoff vector

u=(8,8,8,8,2,4,4,5,5,5,5,5,6,6,6)

for which the atomic action groups are Gi_4, G5,
Gg—_7, Gg_12, and G13_15. The proper action groups are
G1,7’13,15, Gg_12 and A itself. Since U(G8,12) >
v(G 1_7,13_15), all three proper action groups are natural.

Example 7 Consider the two-player SA game defined by
the payoff vector

u=(2,2,8,8,12,12,12,5,5,5,5,5,6,6,6)

for which the atomic action groups are G1_2, G3_4, G5_7,
Gs_12 and G13_15. The proper action groups are G13_15,
Gi-28-12, G1—28-15, G1-12, A, G3_7, and G3_7,13_15,
of which only G1_2 812, A, and G3_7 13_15 are natural.

Example 8 Consider the two-player SA game defined by
the payoff vector

u=(18,18,18,12,12,6,2, 4,8, 16, 32, 32),

for which the only natural action group is A itself (even
though there are many proper action groups).

Summary results for Examples 1-8 are shown in Table 1
below. All of the examples point to an important property of
“natural solutions,” namely the discontinuity of the solution.
For instance, in Example 1, the natural solution is G _o with
value v(G1_2) = 2. By infinitesimally reducing the payoff
associated with action as, the natural solution becomes G,
with value 4. Thus, the concept itself is inherently extremely
sensitive to small variations in payoffs.

Computational Issues

As discussed in the previous section, a natural solution is
guaranteed to exist under Assumption 1. Clearly, the natural
solution for an instance can be computed by brute force enu-
meration of the natural action groups, although the worst-
case complexity of this task is likely to be prohibitive. (We
have not yet attempted to characterize the complexity of this
problem.) In the following subsections we report some ex-
periences with a heuristic that we refer to as the “parallel
reduction algorithm” for SA games.

The Parallel Reduction Algorithm (PRA) for SA
Games

The parallel reduction algorithm involves aggregating
unions of atomic action groups of like value in a stagewise
process.

Algorithm 1 (PRA) Given an SA game with action set A
and payoff vector u.

1. (Initialization) Partition A into atomic action groups
{Ga}7 Ga%a ) Ga}nl }7

where v(Gy1) = U(Gal;+1),f0ri =1,...,m — 1L
2. In the k-th iteration:
(a) (Termination Condition) If v(Gyr) > v(Ggx), then
stop and output Ga;f as the solution.
(b) (Reduction Step) Otherwise, aggregate action groups
to obtain a coarser partition

{Ga’f+l’Ga§+1 e ,Gak+1 },

ME+1
where (i) each G k+1 is an exhaustive union of k-th
2
stage action groups with like value and (ii) v(G x+1) >
v(Gale),fori =1,...,mpy1 — L

We use the term “parallel” to indicate that in Step 2.(b) all
possible unions of like-valued action groups are aggregated
simultaneously, as opposed to say only aggregating the like-
valued action groups with highest value.

Our empirical experience with PRA is that it tends to iden-
tify natural solutions for SA games with small numbers of
atomic groups. For example, PRA correctly identifies natu-
ral solutions for Examples 1-7. More generally, we have the
following analytical result.

Proposition 3 [f the PRA algorithm terminates within k =
2 stages, then it produces a natural solution.

Proof: The first round of parallel reduction results in the
partitioning of A into atomic action groups

{Ga% ) Ga%a cey Ga,}nl }7
where we may assume that v(Gp1) > v(Ga1+l), fori =

1,...,m; — 1. The PRA algorithrh terminates at this point
with G 1 as the “answer” if v(G1) > v(G,y). Would this
answer be correct? Well, termination implies that Ga} is
necessarily proper; it would in fact have to be natural, since



Table 1: Natural Solutions for the Examples

| Example | Proper Action Groups

|

Natural Action Groups

Natural Solution |

1 Gi12,G3.4, A G1-2,G3.4, A Gio
2 A A
3 G1,Go_y, A G1,Go_y, A G1
4 Gi1,Go_7, A Gi1,Go_7, A G1
5 Gi1-25-9,G3-410-12, A Gi1-25-9,Ga_a,10-12, A | Ga_4,10-12
6 Gi1_7,13-15,. Gg_12, A Gi1_7,13-15. Gg_12, A Gs_12
7 Gis—15, Gi—2,8-12, Gi—28-15, | Gi—28-12, 4, G3_7,13—-15 | G3-7,13-15
Gi_12, A, G3_7,G3_713_15
| 8 | too many to list [ A [ A4 |

(i) there are no strict subsets of Ga% that are proper and (ii)
any other disjoint proper action group would have to have
value less than v(G,1). Thus, the “answer” would indeed
be the natural solution of the SA game.

If the PRA fails to terminate in the first iteration, then it
must have been the case that v(G,1) = v(G,y), and the
second stage of reduction results in a new, coarser partition

of A:
{Gafa Gaga SRR Gagnz }a

where we may assume that v(G,z2) > v(Ga?H), for i =
1,...,ma — 1. Note that by definition of the PRA each G .2
is an exhaustive union of like-valued atomic action grousz
and is thus necessarily proper. The PRA algorithm termi-
nates with G,z as the “answer” if v(G,2) > v(Gyz). To
see if this answer would be correct, suppose that the termi-
nation condition is satisfied. Note that no strict subset of
G2 can be proper. Thus, to show that G2 is natural, we
must show that no disjoint proper subset has the same value.
We now establish that this is the case. First, note that any
action group that involves a part but not all of G2 for any
1 > 1 cannot be proper. Thus, proper action groupé that are
disjoint to G2 must involve unions of G2 for ¢ > 1. Since
v(Ga2) > v(Gyyz) all such unions must have strictly lower
value, and G2 and must be natural. To see that G2 is the
natural solution, we must show that all other natural action
groups have lower value. The only way this could possibly
happen is if one of the atomic action groups in the preceding
stage G,1 for any ¢ > 1 happened to be natural with value
higher than Gaf. However, any such action group, being
natural, would have to be listed before G2 in the second-
stage partition, and this would be a contradiction. Thus, the
termination condition would imply that Gaf is the natural
solution. M

One implication of Proposition 3 is that the parallel re-
duction algorithm will always correctly identify natural so-
lutions in games with three or fewer distinct atomic action
groups. It is not clear at this point whether we can or how
to extend the argument above to situations where PRA ter-
minates with k& > 3 iterations. Unfortunately, PRA fails to
produce natural solution in general. To see this consider the

two-player SA game of Example 8 in Section , defined by
the payoff vector

u=(18,18,18,12,12,6,2, 4,8, 16, 32, 32).
This game reduces by PRA as follows?:

u® = (18,18,18,12,12,6,2,4,8, 16,32, 32)
u' = (6,6,6,2,4,8,16,16)

u? = (2,2,4,8,8)

ud = (1,4,4)

ut = (1,2),

Terminating with Gs_12, whose value is v(Gg_12) = 2.
While Gg_15 is proper, it is unnatural since it has the same
value as the disjoint proper action group G7. It turns out
for this game that the only natural solution is A itself,
whose value is v* = v(A) = 2/3. (Interestingly, PRA pro-
duces a natural action group for the SA game defined by
u=(6,6,6,2,4,8,16,16), i.e. u* above.)

Discussion

The fact that PRA may fail to produce a natural solution
raises some interesting points. By definition, PRA always
terminates finitely with a mixed strategy Nash equilibrium.
Moreover, PRA is “robust” in the sense that whenever in-
dependent players implement the algorithm for a game it
will always produce the same set of actions (and correspond-
ing mixed strategy Nash equilibrium) regardless of how the
players have labeled the actions. Consequently, we could
drop the notion of “natural solutions” altogether and adopt
PRA as a purely algorithmic approach to equilibrium selec-
tion. However, for a number of reasons, a purely algorith-
mic mechanism for equilibrium selection can be unsatisfy-
ing. First, PRA is not the only algorithm that can unambigu-
ously identify mixed strategy Nash equilibria. For example,
any algorithm that always produces the action group A itself
as the answer can be interpreted as a one that robustly se-
lects Nash equilibria, whereas clearly PRA may not always
elect to put positive measure on all actions. Indeed, there

’In implementing the PRA algorithm “by hand” we often find
it convenient to not reorder action groups according to value.



are many robust algorithms for selecting action groups, all
of which may produce distinct solutions, and consequently
the equilibrium selection problem is “pushed up” one level
to a problem of algorithm selection.> Another problem with
a purely algorithmic response to equilibrium selection is the
fact that, unless the algorithm happens to produce natural
solutions, the resulting solution can be such that no player
is motivated to implement the solution. Consider again Ex-
ample 8 where the PRA algorithm outputs the action group
Gg_12 with value v(Gg_12) = 2. In this case, a rational
player may well consider playing the proper action group
G'7, which as a singleton offers the same value as the five-
action group Gg_12.

Conclusions

We have defined a solution concept, namely natural solu-
tions, for SA games as an equilibrium selection rule. We
have established that the PRA in general fails to produce nat-
ural solutions, although it provably works for special cases
(e.g. games for which PRA terminates within two stages.)
Ultimately, the failure of PRA in general does not interfere
with the proposed solution concept, since natural solutions
can still be finitely computed by enumeration.

In future work, we will show how the notion of a natu-
ral solution applies more generally than just for SA games.
Indeed, Assumption 1 is framed in general-enough terms to
capture non-diagonal games, as well as certain dynamic ex-
tensions to “agreement” games. In addition, we believe that
the notion of “natural” solutions to games can be extended
to other types of coordination games, including those that
reward action diversity (as opposed to action commonality)
for which (i) property P.1 of Assumption 1 holds in reverse
and the monotonicity of Equation (1) may not be strict.
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