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Abstract

One of the Multi-Agent Systems that is widely used by
various government agencies, buyers and sellers in a
market economy, in such a manner so as to attain op-
timized resource allocation, is the Combinatorial Auc-
tioning System (CAS). We study another important as-
pect of resource allocations in CAS, namelyfairness.
We present two important notions of fairness in CAS,
extended fairnessand basic fairness. We give an al-
gorithm that works by incorporating a metric to ensure
fairness in a CAS that uses the Vickrey-Clark-Groves
(VCG) mechanism, and uses an algorithm of Sandholm
to achieve optimality. Mathematical formulations are
given to represent measures of extended fairness and
basic fairness.

Keywords: fairness, optimality, multi-agent systems,
combinatorial auctions

Introduction
Multi-Agent Systems (MAS) have been an interesting topic
in the areas of decision theory and game theory. MAS are
composed of a number of autonomous agents. In some ap-
plications, these autonomous agents act in a self-interested
manner in their dealings with numerous other agents. Even
in the interactive frameworks of game theory, the decision
of one agent often affects that of another. This behavior is
seen in the MAS which mainly deal with issues like resource
allocation (Bredin & et al 2000; Sycara 1998). In such sce-
narios, each agent holds different significance over the vari-
ous possible allocations and hence, concepts like individual
rationality, fairness, optimality, efficiency, etc., are impor-
tant (Chevaleyre, Dunne, & et al 2006). In this paper, we
study a framework where optimality is a desirable property
but fairness is a required property. An excellent example
of such a framework is Combinatorial Auctioning Systems
(CAS) where the two most important issues pertaining to re-
source allocation areoptimalityandfairness.

Incorporation of fairness into game theory and economics
is a significant issue. Its welfare implications in different
systems were explored by Rabin (Rabin 1993). The prob-
lem of fair allocation is being resolved in various MAS by
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using different procedures depending upon the technique of
allocation of goods and the nature of goods. Brams and
Taylor give the analysis of procedures for dividing divisi-
ble and indivisible items and resolving disputes among the
self-interested agents (Brams & Taylor Feb 23 1996). Some
of the procedures described by them include the “Divide and
Choose” method of allocation of divisible goods among two
agents to ensure the fair allocation of goods which also ex-
hibits the property of “envy-freeness,” a property first intro-
duced by Foley (D.Foley 1967). Lucas’ method of markers
and Knaster’s method of sealed bids are described for MAS
comprising more than two players and for the division of
indivisible items. The Adjusted-Winner (AW) procedure is
also defined by Brams (Brams 2005) for envy-freeness and
equatability in two-agent systems. Various other procedures
like moving knife procedures for cake cutting are defined
for the MAS comprising three or more agents (Brams 2005;
Barbanel & Brams 2004).

However, it can also be seen that the perception of fairness
varies across the different multi-agent systems, specially
with regards to the resource allocations. In some MAS, al-
location is perceived to be fair when resources are equitably
distributed so that each recipient believes that it has received
its fair share. In such a case, each agent likes its share at
least as much as that of other agents’ share and, hence, it is
also known as envy-free division of resources (Brams 2005).
But this notion of fairness is not applicable to all the MAS.
To explain the different notions of fairness in MAS, we clas-
sify fairness intobasic fairnessandextended fairnessin this
paper.

To illustrate these notions of fairness mathematically, we
shall use the framework of the Combinatorial Auctioning
Systems (CAS). The CAS is a kind of MAS whereby the
bidders can bid over combination of items (Nisan 2000;
Narahari & Dayama 2005). The CAS approach is being
used by different government agencies like the FCC (Cram-
ton 2005) and numerous business applications like logistics
and transportation (Caplice & Sheffi 2003; 2005) supply
chain formation (W.E. Walsh & Ygg 2000), B2B negotia-
tions (Jones & Koehler 2000), etc. It has been noticed that
one of the significant issues in CAS is that of resource al-
location. Optimum resource allocation is one of the most
desirable properties in a CAS, and deals mainly with the
Winner Determination Problem (WDP) (Sandholm 2002;



Narumanchi & Vidal 2005). Determining the winner in a
CAS so as to maximize revenue is an NP-complete problem.
However, it is seen that besides WDP, fairness is another im-
portant objective in many CAS-like government auctions.
We realize the significance of fairness in CAS through a
quote expressed by Rothkopf in (Rothkopf 2001) that

Optimal solution to the winner determination problem,
while desirable, is not required. What is required is a
guarantee that the auction will be fair and will be per-
ceived as fair.

We shall consider a CAS that uses the Sandholm al-
gorithm and the concept of a Generalized Vickrey Auc-
tion (GVA) (Narahari & Dayama 2005). Sandholm’s algo-
rithm is a method to determine the optimal allocation of re-
sources (Sandholm 2002) in a CAS. The concept of single-
round second-price sealed-bid auction is then used to deter-
mine the payment made by the winners. According to this,
the payment made by a winner is determined by the second-
highest bid. In order to achieve fairness in such a CAS, we
propose an algorithm that takes into consideration the fair
values of resources as perceived by the bidders and the auc-
tioneer in the system. Based upon their estimate of fair val-
ues, payments are made by the winners. A detailed analysis
is done to highlight some important properties exhibited by
this algorithm.

We start by classifying fairness and explaining its differ-
ent notions. It is followed by our study on CAS and we give
the mathematical formulations that are used to represent the
measures of basic and extended fairness in CAS. Thereafter,
a detail analysis of the scheme that highlights the attractive
properties in the new payment scheme is given. We finally
conclude the paper by suggesting the ideas for further work
along these lines.

Classification of Fairness
To explain the different notions of fairness in various MAS,
we classify fairness asBasic Fairnessand Extended Fair-
ness. This section defines the various perceptions about
measuring fairness in MAS.

In our analysis, we do not consider agent preferences as
being apart from their bids, i.e., if an agent has a higher pref-
erence for a good, it is considered to indicate the same by a
higher bid, and vice versa. All goods are considered divisi-
ble.

Our algorithm creates an allocation that is seen as hav-
ing fairness (either basic or extended) by all agents in the
system.

Basic Fairness
In many MAS, there occurs a need of allocating the re-
sources in an equitable manner, i.e., each agent gets an eq-
uitable share of the resources. This happens mainly when
every agent holds similar significance for the given set of
resources and has a desire to procure it. Thus, it becomes
necessary to allocate the resources in an equitable fashion,
i.e., such that each agent believes that its share is compara-
ble to the share of other agents. Thus, none of the agents
hold preferences over the share of other agents. Hence, we

say that every agent believes that the set of resources is di-
vided fairly among all the agents. This concept of fairness is
termed asbasic fairness.

Definition 1. Basic Fairness is said to be achieved when the
resource allocation is done in comparative terms among all
the participating agents and the allocation is perceived to
be fair by all of them with respect to the share that each of
them procures.

This kind of fairness is required in the applications
whereby fairness is the key issue rather than the individual
satisfaction of the self-interested agents. In such applica-
tions, it becomes necessary to divide a resource set in an
equitable fashion so that every agent believes that it is re-
ceiving its fair share from the set of resources. Hence, we
see that every agent enjoys material equality and this ensures
basic fairness among them. In other words, the concept of
basic fairness also ensures egalitarian social welfare (Cheva-
leyre & et al 2005) and envy-freeness (Brams 2005).

An example of such application that pertains to the equi-
table allocation of resources is given by Lematre (Cheva-
leyre, Dunne, & et al 2006). It deals with the equitable
distribution of Earth Observing Satellite (EOS) Resources.
EOS is co-funded and exploited by a number of agents and
its mission is to acquire images of specific areas on earth
surface, in response to observation demands from agents.
However, due to some exploitation constraints and due to
large number of demands, a set of demands, each of which
could be satisfied individually, may not be satisfiable in a
single day. Thus, exploitation of EOS should ensure that
each agent gets an equitable share in the EOS resources, i.e.,
the demands of each agent is given equal weight assuming
that agents have equal rights over the resource (we assume
that they have funded the satellite equally). Hence, we ob-
serve that basic fairness is achieved as the demands of all
agents are entertained by the equitable distribution of EOS
resources.

Extended Fairness
In every MAS, we observe that each agent intends to pro-
cure a resource at a value that is perceived by it to be fair
for the procurement. In other words, every agent assigns a
fair value to each resource. This value is agent’s estimate
of the value of the resource in quantitative terms. The fair
value attached to each resource can be expressed in mone-
tary terms in most MAS. Thus, an agent intends to procure
a resource by trading it with cash which is equal to the fair
value attached to the resource by the respective agent. In
such cases, each agent believes that it procures the resource
at a fair value and, hence, believes the allocation to be fair.

However, it is important to mention that the fair value at-
tached to each resource by an agent does not necessarily re-
flect the utility value of the resource to it. An agent may
hold a higher or lower utility value for a resource irrespec-
tive of the fair value attached to the resource by it. Thus,
the fair value attached to a resource is an estimate of the ac-
tual value of the resource in the system as perceived by an
agent in quantitative terms. It means that an agent is always
willing to trade a resource at its fair value.



Unlike basic fairness, extended fairness concept does not
refer to an equitable distribution of resources. A resource is
procured by one of the agents. However, it is considered fair
by all the participating agents since parameters of the trade
are perceived to be fair by all. These parameters of trade
may be monetary exchange, or exchange of any tangible or
intangible goods.

Definition 2. Extended fairness is said to be achieved when
a resource is procured by a single agent and all the other
agents perceive the allocation to be fair with respect to the
parameters of trade.

An example of such a system can be explained through
a scenario of job allocations in a multi-national company.
Consider a MAS that refers to a company hiring situa-
tion, comprising an agent offering the job positions (i.e.,
the owner agent) and a number of self-interested agents
who contend for these jobs. The contending agents express
their estimate of the fair value through their curriculum vi-
tae that is submitted to the owner agent, i.e., each contend-
ing agent believes that its curriculum vita fulfills the mini-
mum requirements for the job and that it is eligible for the
job. Hence, the agents define their perception of the re-
quired qualifications for the job through their curriculum vi-
tae and believe it to be sufficient to qualify for the job. The
owner agent selects the job-seeker agent that holds at least
minimum qualifications required for the job but holds the
maximum qualifications among all the contending agents.
Thus, the job is allocated to the agent whose curriculum vita
matches this criterion. All the agents believe that the cur-
riculum vita of the winning agent was a fair parameter of
allocation and, hence, perceive the allocation to be fair.

Thus, when the resources are allocated in a comparable
fashion among all the agents, basic fairness is said to be
achieved in the system. On the other hand, when fairness is
measured with respect to the parameters of trade, extended
fairness is said to be achieved.

To explain these notions of fairness mathematically, we
shall study a framework where fairness is a required prop-
erty in resource allocation. However, we also see that re-
source allocation deals with another key issue of optimality
in various MAS. Thus, the best example of resource alloca-
tion framework where both optimality and fairness are the
key issues is Combinatorial Auctioning Systems (CAS).

Fairness in Combinatorial Auctioning Systems
(CAS)

Combinatorial Auctioning Systems are a kind of MAS
which comprise an auctioneer and a number of self-
interested bidders. The auctioneer aims at allocating the
available resources among the bidders who, in turn, bid for
sets of resources to procure them in order to satisfy their
needs. The bidders aim at procuring the resources at mini-
mum value during the bidding process, while the auctioneer
aims at maximizing the revenue generated by the allocation
of these resources. Thus, CAS refers to a scenario where
the bidders bid for the set of resources and the auctioneer
allocates the same to the highest-bidding agent in order to
maximize the revenue. Hence, we see that optimality is

one of the key issues in CAS. The Sandholm algorithm is
used here to attain optimal allocation of resources. It works
by making an allocation tree and carrying out some prepro-
cessing steps like pruning to make the steps faster without
compromising the optimality (Narahari & Dayama 2005;
Sandholm 2002).

However, besides optimality, another key issue desired by
some auctioning systems is fairness. To incorporate this sig-
nificant property in this resource allocation procedure, we
propose an algorithm which uses a metric to measure fair-
ness for each agent and determines the final payment made
by the winning bidders.

The algorithm that we describe is based upon a CAS
that uses the Sandholm algorithm for achieving optimality,
and an incentive-compatible mechanism called Generalized
Vickrey Auction (GVA) as the pricing mechanism that deter-
mines the payments to be given by the winning bidders. The
Generalized Vickrey Auction (GVA) has a payoff structure
that is designed in a manner such that each winning agent
gets a discount on its actual bid. This discount is called a
Vickrey Discount, and is defined in (Narahari & Dayama
2005) as the extent by which the total revenue to the seller
is increased due to the presence of that winning bidder, i.e.,
the marginal contribution of the winning bidder to the total
revenue.

We give mathematical formulations to show that both
kinds of fairness can be achieved in CAS. We show thatex-
tended fairnessis achieved in all cases except in case of a
tie, in which casebasic fairnessis ensured.

Mathematical Formulation
Terminology Let our CAS be a multi-agent system which
is defined by the following entities:

(i) A set Φ comprisingm resourcesr0, r1, . . . , rm−1 for
which the bids are raised.

(ii) A set ξ comprisingn biddersb0, b1, . . . , bn−1. These
are the agents among whom the resources are allocated.

(iii) An auctioneer, denoted byλ, is the initial owner of all
the resources and invites bids in the auctions.

Let us consider a CAS that comprises three bidders
b0, b1, b2, an auctioneer denoted asλ, and three resources
r0, r1, r2. Each bidder is privileged to bid upon any com-
bination of these resources. We denote the combinations
or subsets of these resources as{r0}, {r1}, {r2}, {r0, r1},
{r0, r2}, {r1, r2}, {r0, r1, r2}. We shall use the term pack-
age to define a set that comprises the subsets of resources
won by a bidder. For example, a package for a bidder win-
ning the subsets{r0} and{r1} is defined as{{r0}, {r1}}.

Assume that the auctioneer and each bidder has fair valu-
ation for each of the individual resource (say, in dollars) as
shown in Table 1.

Definition 3. The fair valuation for an agent represents its
estimate of the actual value of the resource.

Thus, fair valuation by a bidder and an auctioneer for each
resource represents their estimate of the actual value of each
resource. Thus, a bidder is willing to trade a resource at its
fair value and also believes that no loss is incurred by the



seller in the trade. Similarly, the auctioneer is willing to sell
a resource at the fair valuation described for it by him. Fair
value for a combination of resources can be calculated as
the sum of the fair value for each of the resources in that
combination. The fair valuation for a resource by a bidder
does not refer to the utility measure of the resource to the
bidder. We shall use the term fair valuation and fair value
interchangeably.

Bidderb0 Bidderb1 Bidderb2 Auctioneerλ

r0 5 10 10 8

r1 8 2 5 10

r2 8 8 10 15

Table 1: Fair valuations for each resource by all bidders

From Table 1, we can see that the bidderb0 values re-
sourcer0 for $5, r1 for $8 andr2 for $8. This means that
bidderb0 is willing to trade resourcer0 with $5,r1 with $8
andr2 with $8 and believes that no loss is incurred by the
auctioneer in this trade. The fair valuation for the subset
{r0, r2} for the bidderb0 is calculated as the sum of the fair
values forr0 andr2 as given by the bidderb0, i.e., 5 + 8 =
$13. Similarly, fair valuation for a package is the sum of the
fair valuation of the comprising sets i.e. for a package{r0},
{r1, r2}, the fair value is the sum of the fair values of{r0}
and{r1, r2}.

Let the bids raised by the bidders for the individual re-
source and different combination of resources be as given in
table 2. It can be seen that the bids raised by each of the bid-
der for different sets of resources may or may not be equal to
his fair valuation of the respective set of resources. A bidder
can put zero bids for the set of resources it does not wish to
procure.

Bidderb0 Bidderb1 Bidderb2

r0 0 10 10

r1 10 5 0

r2 5 10 15

{r0, r1} 0 30 20

{r0, r2} 20 0 30

{r1, r2} 15 0 0

{r0, r1, r2} 50 50 30

Table 2: Bids raised by the bidders for different combination
of resources

It is assumed that the bidding language used in our system
is OR bids, i.e., a bidder can submit any number of bids and
is willing to obtain any number of atomic bids for a price
equal to the sum of their prices (Nisan 2000; Narahari &
Dayama 2005; Sandholm 2002).

The functions and the matrices used in the algorithm are
as follows:

(a) A setD which is a subset of the set of natural numbers,
i.e., D ⊆ N, describing the possible quantitative values
(in dollars) assigned to resources by bidders.

(b) A fairness matrix, Γi,[1×m], for the bidder bi,
and Γλ,[1×m] for the auctioneer,λ, is defined as :
Γi = [τi,0, τi,1, . . . , τi,m−1], for the bidderbi.
Γλ = [τλ,0, τλ,1, . . . , τλ,m−1], for the auctioneer,λ.

where the functionτi is defined by a bidder,bi, for a re-
source,rj as:

τi(rj) = d, d ∈ D

This function represents a fair valuation of a resource,rj ,
by a bidderbi. From table 1, we haveτ0 (r1) = 8,τ1 (r1) =
2, etc. Thus, from table 1, we have the following fairness
matrices:Γ0 = [5, 8, 8];Γ1 = [10, 2, 8];Γ2 = [10, 5, 10];
Γλ = [ 8, 10, 15]

(c) A functionΥi,k, known as thepay functionby a bidder,
bi is defined as:

Υi,k (bi,Ψk) = d

where Ψk = {µj |µj ∈
set of resources won by bidder, bi}, and Υi,k is the
cost of the package,Ψk, to the bidderbi as calculated
from the GVA payment scheme.

Algorithm To Incorporate Extended Fairness In CAS
1. Each bidder and the auctioneer define its fairness matrix

before the start of bidding process. It is a sealed matrix
and is unsealed at the end of bidding process.

2. An allocation tree is constructed at the end of the bidding
process to determine the optimum allocation and the win-
ning bidders (Sandholm 2002). Information about all the
bidders in a tie is not discarded using some pre-defined
criteria.

3. Use GVA pricing mechanism to calculate the Vickrey dis-
count (Narahari & Dayama 2005) and, hence, payments
by the winning bidders for their corresponding packages,
i.e., calculateΥij for the packageΨj won by the bidder
bi.

4. Calculate the fair value of the package won by each bid-
der and denote it asΠij for the bidderbi who wins the
packageΨj .

5. Also calculate the fair value of each package using the
fairness matrix of the auctioneer and denote it asΠλj for
a packageΨj .

6. Compare the values ofΠλj and Υij and determine the
final payment by the bidder depending upon the following
conditions:

Case 1:Υij > Πλj Bidder pays the amountΥij and the
auctioneer gains profit equal to (Υij −Πλj) which is dis-
tributed among other bidders who bid for the packageΨj .
The profit is distributed in a proportional manner, i.e., in
the ratio of(Πkj − Πλj)/(Πλj) for a bidderbk who also
bid for Ψj but is not a winning bidder.



Case 2:Υij = Πλj In this case, the bidder pays the amount
Υij to the auctioneer.

Case 3:Υij < Πλj Auctioneer suffers a loss of amount
(Πλj − Υij). However, loss can be recovered as per the
following cases:

(i) Πij > Πλj Bidder’s estimate of fair valuation is more
thanΥij . Thus, bidder gives the final payment ofΠλj

to the auctioneer.
(ii) Πij = Πλj Bidder’s estimate of fair value is same

as that of auctioneer’s estimate and is greater than the
valueΥij . Thus, bidder pays amountΠij to the auc-
tioneer.

(iii) Πij < Πλj

(a) Πij ≤ Υij : then bidder’s final payment remains
the same, i.e.,Υij

(b) Πij > Υij : then bidder’s final payment is equal to
Πij .

Handling the cases of tie - Incorporating Basic Fairness
Unlike traditional algorithms, we do not discard the bids in
the cases of a tie on the basis of some pre-decided criterion.
We consider these cases in our algorithm to providebasic
fairnessto the bidders.

In cases of a tie, we shall measure the utility value of the
resource to each bidder in the tie.

Definition 4. The utility value of a resource to a bidder is
defined as the quantified measure of satisfaction or happi-
ness derived by the procurement of the resource.

Mathematically, we define utility value for a resource set
µj as:

υi(µj) = νi(µj)−Πij

whereνi(µj) is the bid value of the resourceµj andΠij

is the fair valuation for the resource setµj for the bidderbi.
The bidders maximize this utility value to quantify the

importance and their need for the resource to them. Thus,
the higher the utility value, the greater is the need for the
resource set.

In such a case, fairness can be imparted if the resource set
µj is divided among all the bidders in a proportional manner,
i.e., in accordance to the utility value attached to the resource
by each bidder.

Let us consider the same example to explain the concept
of basic fairness in our system. From table 2, we observe
that the optimum allocation attained through allocation tree
comprises the resource set{r0, r1, r2} as it generates the
maximum revenue of $50. However, we see that this bid is
raised by the two bidders,b0 andb1.

Thus, we calculate the fair value of the resource setµ1 =
{r0, r1, r2} for the bidderb0 and b1, i.e., Π01 = 5+8+8 =
$21 andΠ11 = 10+2+8 = $20. Thus, the utility value of the
resource setµ1 for the bidderb0 andb1 is as follows:

for bidderb0, υ0(µ1) = 50 - 21 = $29, and

for bidderb1, υ1(µ1) = 50 - 20 = $30.

Hence, the resource setµ1 is divided among bidders,b0

andb1, in the ratio of 29:30. In other words, bidderb0 gets
49.15% and bidderb1 gets 50.85% of the resource setµ1.

The payment made by the bidders is also done in the sim-
ilar proportional manner. For example, the bidders,b0 and
b1, make their respective payments in the ratio of 29:30 to
make up a total of $50 for the auctioneer, i.e., bidderb0 pays
$24.65 and bidderb1 pays $25.35 to the auctioneer for their
respective shares.

Thus, we take into account the fair estimates of the auc-
tioneer and the bidders for each resource to ensure that fair-
ness is achieved to auctioneer as well as the bidders. We
also see that extended fairness as well as basic fairness are
achieved in CAS by using a fairness metric.

We shall do a detailed analysis of this algorithm in the
following section.

Analysis
A detailed analysis is done to highlight some important con-
cepts used and the significant properties exhibited by our
CAS through the new payment mechanism.

Fairness
In MAS, every agent has its own metric to measure fair-
ness with regards to the allocation of resources. Similarly in
CAS, we see that the auctioneer and the bidders have their
own estimate of the fairness value attached to each resource.
We introduced the concept of fairness matrix to attain the
knowledge of the fair value attached to each resource by the
auctioneer and each bidder. This matrix is used as a metric
to ensure that each allocation of resources is perceived to be
a fair allocation by the bidder as well as the auctioneer.

We see that extended fairness is achieved through the al-
gorithm when an agent having the highest bid procures the
resource. In such a case, the winning bidder perceives the
allocation to be fair as it procures the resource at his esti-
mate of the fair value of the resource. However, other agents
also perceive the allocation to be fair since the resource is
procured by the agent having the highest bid. Thus, the trad-
ing parameter, i.e., the bid value at which the resource is
being procured is the highest and hence fair in an auctioning
system.

We also see that basic fairness is achieved in our system
when there is more than one bidder who has raised equal
bid for the same set of resources. In such a case, we divide
the set of resources among all the bidders so as to ensure
fairness to all the bidders in a tie. However, this division
of resources is done in a proportional manner. We intend
to divide the resource such that the bidder holding highest
utility value to it should get the maximum share. To ensure
this, we calculate the utility value (i.e.,υi(µj) = νi(µj) −
Πij) of the set of resources to each bidder and divide the
set in the ratio of these values among the respective bidders.
Thus, we see that each bidder procures its share of the set
of resources in accordance to the importance attached by the
bidder to it.

Due to the achievement of fairness through our payment
scheme, the bidders are expected to show willingness to par-
ticipate in the auctions.



Rationality
We shall see that the fairness matrix is a metric for fair valu-
ation that forces the bidders and the auctioneer to behave ra-
tionally. They attain maximum profits if they describe their
fair matrix truthfully. Our system ensures certain behavioral
traits of auctioneer and the bidders through which this prop-
erty of rationality is achieved in our system. These behav-
ioral traits are described in the following:

Proposition 1. The auctioneer does not state extremely high
or low values in its fairness matrix as this does not generate
higher revenue.

Proof. If an auctioneer states very high values in its fairness
matrix, then Case 3 follows most of the times. From Case
3, we observe that the auctioneer receives a payment equal
to Πλj only if this value is comparable to that ofΠij for a
bidderbi. In other words, an auctioneer benefits only if its
valuation is not irrationally higher than that of the bidder.
On contrary, the auctioneer does not state very low values in
its fairness matrix. For such circumstances, Case 1 follows,
whereby it seems to be that the auctioneer gains profit which
is distributed among the bidders. Hence, the auctioneer does
not gain any profit by behaving irrationally.

Proposition 2. Bidders do not state extremely high or low
values in the fairness matrix as it does not help them procure
the resources at lower values.

Proof. We see that the Case 3 deals with the fairness values
of the bidderbi. In caseΥij < Πλj < Πλj < Πij , the bid-
der pays the amountΠλj , i.e., higher than his fair estimate of
the packageΨj . Otherwise ifΥij ≤ Πij ≤ Πλj , the bidder
pays the amount equal toΠij . In both the cases, we see that
the value to be paid is higher than the bid value. However, if
the bidder is in a tie for a resource set, then its utility value
falls negative ifΥij ≤ Πij . Hence, the bidder does not get
the profits which are distributed among other bidders in a tie.
Thus, a bidder undergoes a loss if the value ofΠij is very
high. On contrary, the bidder does not state lower values in
the fairness matrix. In this case, a loss is perceived by the
bidder under Case 3, condition (iii), part (a).

Proposition 3. Bidders raise their bids truthfully.

Proof. Bidders gain by bidding truthfully. On bidding truth-
fully, they can maximize the Vickrey Discount on their bids.
Secondly, in the cases of tie, they can maximize the profit
earned (υi(µj) = νi(µj)−Πij), i.e., for a given value ofΠij ,
profit can be maximized by raising the bids truthfully.

Incentive Compatibility
The payment mechanism described in our system is incen-
tive compatible in certain cases. In the cases, when payment
value for a package, as calculated from the VCG mecha-
nism, is greater than the fair valuation of the auctioneer for
the same package, then Case 1 follows, i.e., the auctioneer
gets an amount higher than its fair valuation for that pack-
age. It means that the auctioneer gains the profit equal to
(Υij − Πλj). This profit is distributed in the proportional

manner among the bidders who bid for the same package as
explained in Case 1.

Thus, it also forces the bidders to bid truthfully so as to
gain monetary incentives from the auctioning system.

Efficiency
The cases of a tie are handled in such a way so as to ensure
basic fairness. In such a case, we divide the resource in pro-
portion to its utility value to a bidder. Thus, a resource is
allocated in accordance to the wishes of the consumers and,
hence, the net benefit attained through its use is maximized.
In other words, we can say that our system is allocatively ef-
ficient as the resources are allocated to the bidders who value
them most and can derive maximum benefits through their
use. Hence, we achieve allocative efficiency by handling the
cases of tie in an efficient manner.

Optimality
Optimality is a significant property that is desired in a CAS.
We ensure this property by the use of Sandholm algorithm
in our system. It is used to obtain the optimum allocation
of resources so as to maximize the revenue generated for the
auctioneer. Thus, output obtained is the most optimal output
and there is no other allocation that generates more revenues
than the current allocation.

Conclusion
Thus, we have shown that fairness is incorporated in CAS,
whereby all the agents receive their fair share if they behave
rationally. Extended fairness as well as basic fairness is at-
tained through our payment mechanism. Optimal allocation
is obtained through the Sandholm algorithm and the other
significant properties like allocative efficiency and incentive
compatibility are also achieved. This is an improvement be-
cause in the existing world of multi-agent systems, there do
not seem to be many studies that attempt to incorporate op-
timality as well as fairness. The present paper addresses this
lack in a specific multi-agent system, namely, the CAS.

However, this work can be extended towards achieving
a generalized framework suitable for all, or at least many,
multi-agent systems, rather than just CAS.

The framework described can also be extended in several
ways: one is to de-centralize the suggested algorithm, to
avoid use of a single dedicated auctioneer. Especially in dis-
tributed computing environments, it would be best to have a
method to implement the suggested algorithm (or something
close to it) without requiring an agent to act as a dedicated
auctioneer.

A second important extension would be to find applica-
tions for the work. Some applications that suggest them-
selves include distribution of land (a matter of great concern
for governments and people the world over) in a fair man-
ner. In land auctions where a tie occurs, no pre-defined or
idiosyncratic method need be used to break the tie; rather,
the allocation can be done fairly in the manner suggested.

Fairness is also an important and pressing concern in the
computing sciences and information technology, particu-
larly, in distributed computing (Lamport 2000). It is there-



fore also of interest to see how our method for achieving
fairness could be applied in such contexts.
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