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Abstract

We present a system for extracting useful information from
multi-party meetings and presenting the results to users via a
browser. Users can view automatically extracted discussion
topics and action items, initially seeing high-level descrip-
tions, but with the ability to click through to meeting audio
and video. Users can also add value by defining and searching
for new topics and editing, correcting, deleting, or confirm-
ing action items. These feedback actions are used as implicit
supervision by the understanding agents, retraining classifier
models for improved or user-tailored performance.

Introduction
Consider this snippet taken from the first few minutes of a
meeting where the meeting leader, John, is attempting (with
some difficulty) to type a shared agenda while simultane-
ously communicating his intended outline for the meeting to
the other participants:

John: The, uh, goal is to... um....
Sam: Um, John...?
John: Yes?
Sam: Were you intending to put this in as a... as, uh, an
agenda?
John: Uh, yeah-yeah-yeah-yeah. I’m gonna let some-
one else do the.... I can’t talk and type clearly!

In response to John’s frustration at trying to type notes
and talk at the same time, Sam takes over the task of typing
the agenda:

Sam: OK. Is this everything that’s going to be in the
agenda?
John: Yes.
Sam: OK.
John: So while you’re doing that, just let me give you a
quick overview....

John’s difficulty reflects a common conflict that befalls
people in meetings—or any circumstance that calls for note-
taking—since his activity demands verbal production to oc-
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cur simultaneous to written production, resulting in a com-
plex cognitive task. When John admits that his level of cog-
nitive load is slowing him down, Sam offers to take over
the task of creating the agenda and taking notes, arriving at
a very natural collaborative solution. They now share the
load, and their meeting continues at a much smoother pace.

But as natural as their new shared workload may be, even
that solution isn’t ideal, since Sam’s task is now to take
notes while listening to John, listening to the other partic-
ipants, and participating in the meeting himself. This com-
bination of duties results in another complex task that makes
demands on Sam’s cognitive subsystems of comprehension,
selection, consolidation, and written production nearly all at
once (Piolat, Olive, & Kellogg 2005).

We believe the cognitive demands placed on meeting par-
ticipants like Sam and John can be minimized even further,
and this belief motivates our work on an intelligent Meet-
ing Assistant, as part of the DARPA CALO (“Cognitive As-
sistant that Learns and Organizes”) project. While we may
eventually offload even the task of comprehension during
meetings (to the chagrin of managers everywhere), at this
point we are focusing on assisting with selection and con-
solidation when it comes to detecting and organizing the ac-
tion items assigned and locating the topics discussed during
a meeting.

These bits of information—the tasks assigned and the
topics discussed—rank highly as things people may want
to access in a record of a meeting, whether they attended
the meeting or not (Banerjee, Rosé, & Rudnicky 2005;
Lisowska, Popescu-Belis, & Armstrong 2004). So the
CALO Meeting Assistant analyzes multi-party speech and
handwriting from meetings in order to identify the action
items and topics that people might want to review after the
meeting.

Even when we know what content to look for during
meetings, recognizing and interpreting that content poses
many problems. It’s hard enough for a human overhearer
or eavesdropper who wasn’t participating in the dialogue
of a meeting to glean the same understanding of that dia-
logue as the participants themselves, thanks to impoverished



grounding and audience design (Clark & Schaefer 1992;
Schober & Clark 1989). We can call this the overhearer un-
derstanding problem. Even professional minute-takers who
are physically present at a meeting have difficulty selecting
those items that the meeting participants themselves find sig-
nificant (Whittaker, Laban, & Tucker 2005). That difficulty
increases markedly when attempting to achieve understand-
ing with a machine overhearer that uses noisy multi-party
transcripts obtained from a speech recognizer.

One might argue that there is no single, canonical inter-
pretation of the contents of a meeting, since different peo-
ple can come away with widely different interpretations of
what happened due to their different interests or require-
ments. They may be interested only in action items which
concern them, or which relate to a particular project. Or
they may come away from a meeting with differing ideas
about what topics were discussed. Attempts to segment
meetings by “topic,” in particular, seem to be subjective:
Some may want to segment by the activity performed or
by the state of the meeting (Dielmann & Renals 2004;
Reiter & Rigoll 2004; Banerjee & Rudnicky 2004), rather
than by the subject matter discussed (Galley et al. 2003;
Gruenstein, Niekrasz, & Purver 2005). And interpretations
of the subject matter itself can differ widely, leading to poor
inter-annotator agreement on topic boundary placement, es-
pecially as the notion of “topic” becomes more fine-grained
(Gruenstein, Niekrasz, & Purver 2005).

So a process of individualized active learning is central
to the CALO Meeting Assistant, stimulated by a meeting
browser—or what we call a Meeting Rapporteur—designed
specifically to solicit feedback from meeting participants
about the things our assistant believed it detected. That feed-
back is then used to improve and personalize the assistant’s
detection algorithms.

Automatic Understanding
The CALO Meeting Assistant integrates many technologies
to analyze recorded meetings and extract useful information
from them. To understand the components specifically re-
lated to extracting action items and topics, we should first
look at a brief overview of the system architecture.

System Architecture
The Meeting Assitant is comprised of the following princi-
pal components: a recording architecture, a set of compo-
nents which provide natural language analysis capabilities,
a knowledge base, and the Meeting Rapporteur. Here we
discuss a subset of the language analysis components, and
the Rapporteur.

When a meeting occurs, the meeting participants each
wear headset microphones connected to a personal laptop.
Laptops are outfitted with a VoIP application, a note-taking
application, and some collaboration tools. Audio streams

from each person’s speech, along with data from other ac-
tions like note-taking, are recorded and archived to a server.
After the meeting is finished, the audio streams are pro-
cessed to produce multiple layers of analysis, including
speech transcripts and topic segments. These results are
added to a knowledge base on the server and made avail-
able as XML, which can be interpreted and displayed by the
Meeting Rapporteur, an AJAX application in a web browser.
Using the Rapporteur, participants can view the meeting
contents and replay recorded audio, as we will discuss be-
low. But first we’ll provide a brief description of how we
perform action item and topic analysis.

Action Item Identification
One way we hope to free up the cognitive effort of partici-
pants in a meeting is by automatically detecting and record-
ing action items that are discussed, providing a list that helps
people recall the tasks they agreed to do, and which can also
be revisited at subsequent meetings to track their progress.

But what is an action item? In our view, action items are
specific kinds of decisions that are common in meetings, and
occur when group responsibility for a concrete task is trans-
ferred to some particular person who assumes ownership of
that responsibility. That person does not need to be the per-
son who actually performs the assigned task, but engages in
a social interaction that commits to seeing that the task will
be completed; that is, that person becomes the owner of the
action item. Since that action item is coordinated by more
than one person, its initiation is reinforced by uptake among
the owner and other participants that the action should and
will be done, often resulting in a round of agreement. And to
distinguish that action from more vague future actions that
are still in the planning stage, an action item is often ex-
pected to be carried out within a specific timeframe, which
is usually made explicit.

These four components of an action item—a task de-
scription, an owner, a round of agreement, and an explicit
timeframe—form the crux of our dialogical and hierarchical
approach to action item detection, which differs from prior
work on task detection.

Prior work has focused on either individual sentences
from e-mails (Corston-Oliver et al. 2004) or individual
utterances from spoken dialogue (Gruenstein, Niekrasz, &
Purver 2005; Morgan et al. 2006), attempting to classify
each sentence or utterance as task-related or not. While
these “flat” approaches have shown some success in identi-
fying the sentences in e-mails that describe tasks, they do not
perform so well when applied to spoken interaction (even
when working from manual transcriptions rather than error-
ful speech recognition output). One reason for this is that, by
ignoring the structure of the dialogue, flat approaches lose
information that is embedded in the dialogue structure itself
as much as in the lexical content (like ownership acceptance
and overall agreement).



Figure 1: Defining an action item by classifying multiple
utterances with dialog subclasses

In contrast, our latest approach attempts to exploit a shal-
low notion of discourse structure, by looking for the four
separate subclasses of utterances which tend to be associ-
ated with action item discussion (see Figure 1). It looks
across a window of multiple speakers and utterances, using
a hierarchical combination of supervised classifiers to clas-
sify each utterance with any combination of these four sub-
classes. It then leverages the presence of multiple distinct
subclass types to determine if the discussion in the window
constitutes an action item.

This approach improves accuracy beyond a flat approach,
and also helps isolate information that is vital to extracting
a useful representation of an action item (for example, pro-
viding the due date and person responsible) (Purver, Ehlen,
& Niekrasz 2006). Each sub-classifier is trained to detect a
class of utterance which makes a particular discourse contri-
bution to establishing an action item: proposal or description
of the related task; discussion of the timeframe involved; as-
signment of the responsible party or owner; and agreement
by the relevant people. An overall decision is then made
based on local clusters of multiple discourse contributions,
and the properties of the hypothesized action item are taken
from the contributing utterances of various classes (the sur-
face strings, semantic content or speaker/addressee identity,
depending on the utterance subclass). Multiple alternative
hypotheses about action items and their properties are pro-
vided and scored using the individual sub-classifier confi-
dences.

Topic Identification
To answer the kinds of questions about meeting topics that
users are likely to ask (Lisowska, Popescu-Belis, & Arm-
strong 2004), we require two elements: topic segmenta-

tion (dividing the discourse into topically coherent time seg-
ments) and topic identification (providing some model of the
topics associated with those segments). These are joint prob-
lems, and we attempt to solve them as a joint inference prob-
lem.

The meeting discourse is modeled as though it were gen-
erated by a set of underlying topics, with each topically co-
herent segment of discourse corresponding to a particular
fixed weighted mixture of those topics. By using a variant
of Latent Dirichlet Allocation (Blei, Ng, & Jordan 2003), we
can then jointly learn a set of underlying topics together with
a most likely segmentation (see Figure 2). Segmentation
accuracy rivals that of other methods, while human judges
rate the topics themselves highly on a coherence scale (see
(Purver et al. 2006) for details).

Topics are learned over multiple meetings and are stored
in a central topic pool. They can then be presented to the
user as a summary (labeled via the top most distinctive
words) to be used to guide audio and video browsing. They
are also used to interpret a user keyword or sentence search
query, by finding the weighted mixture of learned topics
which best matches the words of the query and returns the
most closely related segments or phrases.

Meeting Rapporteur
Research on multi-party dialogue in meetings has yielded
many meeting browser tools geared toward querying and
summarizing multimodal data collected from meetings
(Koumpis & Renals 2005; Tucker & Whittaker 2004). Why
create another?

Existing tools focus on rapid information retrieval by
users, and are designed to optimize the speed and success
of finding answers to a broad class of queries. But the lack
of linguistic metadata available to them results in a focus on
the playback of signals rather than the display of dialogical
or semantic features of the meeting.

Because our aim in the CALO Meeting Assistant project
is to automatically extract useful information such as the ac-
tion items and topics discussed during meetings, our meet-
ing browser has a different goal. Not only do we need
an end-user-focused interface for users to browse the au-
dio, video, notes, transcripts, and artifacts of meetings, we
also need a browser that selectively presents automatically
extracted information from our algorithms in a convenient
and intuitive manner. And that browser should allow—even
compel—users to modify or correct information when auto-
mated recognition falls short of the mark.

In fact, compelling users to provide feedback is essen-
tial to addressing the overhearer understanding problem we
mentioned earlier that results from impoverished ground-
ing. We deal with that understanding problem by designing
agents to maintain multiple lexical and semantic hypotheses,
and then rely on feedback from users about which hypothe-
ses sound reasonable. But getting that feedback isn’t always



Figure 2: A meeting segmented into topic areas

easy. A meeting browser that offers a high-level summary
of the meeting’s topics and action items is the ideal place to
solicit feedback from end-users about what happened during
a meeting. It can also exploit the transparency of uncertainty
principle, which counts on a person’s tendency to feel com-
pelled to correct errors when those errors are (a) glaringly
evident, and (b) correctable in a facile and obvious way.

Our solution is the Meeting Rapporteur, which presents
the Meeting Assistant’s automatically extracted hypotheses
alongside manual notes taken by meeting participants using
the SmartNotes meeting notes application (Banerjee & Rud-
nicky 2006). SmartNotes allows meeting participants to take
shared notes during a meeting and then review them later in
a simple web page. They also see automatically generated
notes along with their own, and these hypotheses are high-
lighted at various degrees of illumination, according to the
level of confidence given to the hypothesis. Hypotheses that
have relatively high confidence scores have lighter highlight-
ing, while hypotheses with lower confidence have darker
highlighting. This way users can (a) easily spot the auto-
matic hypotheses, and (b) get a quick sense of how likely
those hypotheses are to be correct.

So for both manual and automated hypotheses, there is
one coherent meeting review-oriented interface that allows
the user to quickly make changes to text, delete unwanted
items, and add items to a to-do list, creating a highly person-
alized representation of the meeting that is specific to that
particular user’s perception of its salient aspects (see Fig-
ure 3). These changes are saved in the knowledge base as a

personalized “overlay” to the meeting, which will be loaded
dynamically whenever the user wishes to browse it. But
most importantly, the user’s selections and changes serve as
feedback actions that contribute to a personalized re-training
of the models that underlie our detection algorithms.

Action Item Display
A user can view action items detected from the meeting in
the browser and drag them to a bin that adds the items to the
user’s to-do list. For the properties of action items—such as
their descriptions, owners, and timeframes—the background
colors of hypotheses are tied to their sub-classifier confi-
dence scores, so less certain hypotheses are more conspic-
uous. These hypotheses respond to mouse-overs by popping
up the most likely alternate hypotheses, and those hypothe-
ses replace erroneous ones with a simple click. If an entire
action item is rubbish, one click will delete it and provide
negative feedback to our models. A user who just wants to
make a reasonable action item disappear can click an “ig-
nore this” box, which will still provide positive feedback to
our model.

Automatically detected action items are also listed along-
side the manual notes taken at the meeting, where the
user can click a “transcript” button to obtain the machine-
recognized transcript of those utterances that occur just be-
fore and after the detected action item. This provides the
user with a clearer context of the action item, which could
then be edited to better represent the actual task. Since the
machine transcript can be errorful, the transcript button is



Figure 3: Meeting Rapporteur representation of a meeting, with manual and automatically generated action items



supplemented with an “audio” button, which will play the
actual audio displayed in the transcript.

Topic Display
Topics appear as word vectors (ordered lists of words) for
direct browsing or to help with user-defined topic queries.
Given a user search term, the most likely associated topics
are displayed, together with sliders that allow the user to
rate the relevance of each list of words to the actually de-
sired topic. As the user rates each topic and its words are re-
weighted, a new list of the most relevant words appears, so
the user can fine-tune the topic before the browser retrieves
the relevant meeting segments.

This process, while requiring the extra “re-weighting”
step from a straight-up search process, allows the user to de-
fine a highly customized set of topics, in addition to the top-
ics already identified by our segmentation and identification
algorithms. Those topics are saved in a topic pool which, af-
ter a personalized topic is defined, will subsequently apply
to all searches across all meetings. While many topic de-
tection routines assume that a pre-segmented and canonical
list of topics will suffice for all users, our personalized topic
pool assumes that users have their own subjective notions of
what exactly a topic means (represented in our system by the
vector of weighted words they create), and also that they will
probably be concerned with similar topics for future meet-
ings. These personalized topic pools could also be used to
find similar topics in documents or e-mails.

Learning from Feedback
Recording Feedback
Monitoring and recording feedback is a non-trivial engineer-
ing problem. Our method records each user action as a
set of changes to the underlying knowledge base of meet-
ing events. These actions are stored independently of the
original meeting record, and the two are reinterpreted dy-
namically to produce a personalized representation of the
meeting that is displayed in the browser. This gives learn-
ing and other post-processing algorithms universal access to
the state of the browser at any given time in the use history.
Feedback actions are timestamped and associated with indi-
vidual users. So each user, by providing feedback, creates
a personalized representation of the meeting, including the
action items and topics discussed. Subsequent browsing ses-
sions by a user then “re-applies” that user’s feedback to the
original meeting data, providing a personalized representa-
tion of what happened during a meeting, according to the
data learned from feedback provided by the user.

Action Item Feedback
Feedback on automatically detected action items is obtained
by giving users the opportunity to add each action item to
their desktop to-do lists, (converted to a standard iCal rep-
resentation of the task) which provides implicit feedback to

our model that the detected set of utterances indeed signified
a valid action item. Users can also “clean up” these action
items before committing them to the to-do list, which pro-
vides additional feedback on the individual properties of the
action item, and how the user believes these should be de-
scribed.

The supervised action item classifiers can be retrained
given utterance data annotated as positive or negative in-
stances for each of the utterance subclasses (task description,
timeframe, owner and agreement). We take user feedback
as providing this annotation implicitly, inferring the individ-
ual utterance annotation classes by combining the feedback
given with the stored links to the original utterances used as
evidence to produce the hypothesis.

Using feedback to judge overall confirmation or deletion
of an action item is reasonably straightforward. When a hy-
pothesized action item is confirmed, we can judge the utter-
ances used to provide its confirmed property values as pos-
itive instances for the subclasses associated with each prop-
erty, while judging the utterances used to provide the alter-
nate hypotheses (which the user did not select) as negative
instances for each subclass. Conversely, when a hypothe-
sized action is deleted, we can mark all the utterances used
to produce it as negative instances for all subclasses.

When it comes to judging feedback on individual proper-
ties, things can become more challenging. Feedback which
merely switches from one hypothesis to another is simple:
we can mark the utterances corresponding to the accepted
hypothesis as positive for the relevant subclass, and the oth-
ers as negative. However, feedback which replaces all hy-
potheses with a new manually-edited value forces us to find
a relevant utterance (or set of utterances) in the nearby dis-
course, and make the assumption that it should be marked
as the correct positive instance. However, this is a strong as-
sumption, and we should only make it in cases where our
relevance measure scores highly. To assess relevance we
can use the associated sub-classifier to score candidate ut-
terances, apply various similarity/distance metrics (includ-
ing simple lexical overlap and synonymy), or use standard
information retrieval measures like TF-IDF, or a combina-
tion of all of these.

The most challenging feedback case is when the user
manually creates a new action item, either through typed or
handwritten notes during the meeting or by adding one after
the meeting in the Rapporteur. This requires us to search for
likely relevant utterances for all properties, which increases
the danger of misidentifying false positive instances. We can
use the co-presence of apparently-relevant utterances from
multiple different subclasses to help increase our confidence.
In the case of notes taken during the meeting, we can also
use the timestamp that identifies when the note was taken to
rule out candidate utterances which occur after it.

In all cases, feedback provides implicit supervision, al-
lowing us to automatically produce new training data so we



can re-train the classifier models for higher accuracy or user-
specificity. Treating all users’ feedback together allows us
to produce a more robust general model; treating individual
users’ feedback separately could also allow us to produce
tailored classifier models which reflect each user’s prefer-
ences.

Topic Feedback

The topic extraction and segmentation methods are essen-
tially unsupervised and therefore do not need to use feed-
back to the same degree. Yet even here we can get some
benefit: As users define new topics during the search pro-
cess (by moving sliders to define a new weighted topic mix-
ture), these new topics can be added to the topic pool. They
can then be presented to the user (as a likely topic of interest,
given their past use) and used in future searches. Potentially,
they can also be used to re-segment past meetings based on
new topic information, although this technique has not yet
been investigated.

Future Directions
We’ve discussed our efforts here at creating a meeting as-
sistant system that uses automatically generated transcripts
from meeting recordings to detect action items and iden-
tify topics. This system is particularly unique in its use of
user feedback—collected from meeting participants after the
meeting using a Meeting Rapporteur—to provide feedback
to our detection models, making them more robust as well
as more personalized.

How much of an impact does user feedback have on im-
proving our models? This is a question we have just be-
gun to investigate, and some preliminary findings on a small
dataset look promising. Our next goal is to analyze feedback
collected from the set of meetings that were collected using
our system as part of the CALO Year 3 test process, and
assess the relationship between user feedback and classifier
performance. Even a simple analysis of how often people
tend to provide feedback and what types of feedback they
give could prove quite informative.

As we near the ability to achieve real-time performance
for our detectors, we are also beginning to consider ways
that feedback might be incorporated into a meeting assistant
system that works during the meeting, and how much of a
help or hindrance such a system might be. For instance, in-
stead of soliciting feedback from users by asking them to
browse a summary of the meeting after the fact, one pos-
sibility might be to provide a small applet that pops up an
action item—on a laptop, phone, or PDA—shortly after the
action item is discussed in the meeting, and allows a meeting
participant to add it to a to-do list. But would this distraction
be more cognitively taxing to a meeting participant than the
simple act of writing the action item down on a notepad, as
most people do today? And are there aspects of flow during

a meeting that would be helped or hindered by the introduc-
tion of real-time meeting technology?

Finally, how will people change their behavior during
meetings when they know that the things they say are being
recorded into a permanant transcript, and that the commit-
ments they make are being automatically detected, recorded,
and stored? Will people cease to take notes? Will they cease
to make commitments? How will the process of decision-
making change when this type of technology is introduced
to the meeting room? Will the language they use become
more specific? Or more vague? These are questions for
which we are eager to discover answers, and our search for
them is now underway.
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