
Enabling Trust with Behavior Metamodels

Scott A. Wallace
Washington State University Vancouver

14204 NE Salmon Creek Ave.
Vancouver, WA 98686

swallace@vancouver.wsu.edu

Abstract

Intelligent assistants promise to simplify our lives and in-
crease our productivity. Yet for this promise to become real-
ity, the Artificial Intelligence community will need to address
two important issues. The first is how to determine that the as-
sistants we build will, in fact, behave appropriately and safely.
The second issue is how to convince society at large that these
assistants are useful and reliable tools that should be trusted
with important tasks. In this paper, we argue that both of these
issues are be addressed by behavior metamodels (i.e., abstract
models of how the agent behaves). Our argument is 1) based
on experimental evidence of how metamodels can improve
debugging/validation efficiency, and 2) based on how meta-
models can contribute to three fundamental components of
trusting relationships established in previous literature.

Introduction
Computational systems that can communicate with humans
and perform tasks reliably and competently have been a
long standing goal of the Artificial Intelligence community.
These intelligent assistants (agents) hold the promise of a
simplified life and of increased productivity. Little by little,
research and engineering are helping to bring this promise
within reach. Over the past two decades, computers have
rapidly been incorporated into nearly all facets of our daily
lives. Computers operate the cell phones we carry in our
pockets, the PDAs that help us track our appointments, and
they monitor and adjust the settings of our automobiles’
engines. Nonetheless, the futuristic robotic assistants en-
visioned in the 1960s are nowhere to be seen. Moreover,
although computers have helped to automate many simple
tasks (e.g., paying reoccurring bills) intelligent software as-
sistants that perform complex tasks autonomously on our be-
half are still far from common place.

As researchers, we are constantly looking for methods to
improve the state of the art: how can the methods of yester-
day scale to the problems of tomorrow? Perhaps one reason
intelligent assistants are not more common is that research
has not yet advanced to the point that we can (even in the-
ory) make assistants that perform useful and complex tasks
autonomously. However, another possibility exists that is

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

rarely explored in the AI literature: perhaps we, as mem-
bers of society, are unwilling to delegate important tasks to
autonomous computerized assistants.

We believe that as research and engineering allows us to
build more and more complicated autonomous software, this
second issue of societal acceptance will become increasingly
salient. There are at least two aspects of the societal accep-
tance problem that, though related, deserve to be explored
individually. The first problem is how do we, as the engi-
neers of these systems, convince ourselves that next gener-
ation assistants will be useful, reliable, and practical tools
for society at large. The second, related, problem is how to
convince the rest of society to become willing users of these
new technologies.

In this paper, we take the stand that the first prob-
lem (convincing ourselves) arises not simply because re-
searchers cannot create useful or reliable tools, nor because
researchers are inherently unwilling to use the tools they de-
velop. Instead, we believe that an important gap exists be-
tween promises made by theoretical developments and the
practical constraints of implementation.

At first glance, the second problem (convincing society)
may seem to be one simply of marketing. Yet research in
psychology, sociology and human-computer interaction sug-
gest that some of this issue’s roots may be much deeper. In
particular, a large body of literature cites trust as a critical
factor in developing human-human and human-computer re-
lationships. Although marketing may help to influence trust,
it is likely that there are more appropriate methods to help
end-users establish trust in tomorrow’s intelligent software
assistants.

In this paper, we explore these two problems in greater
detail. We begin by examining the gap between the promise
of theory and the practical constraints of implementation.
Then, we explore notions of trust and why trust may be a
critical factor in the acceptance of future intelligent assis-
tants. In the section entitled Metamodels, we show how
both problems can be addressed in a unified way using ab-
stract representations of behavior. In particular, we show
how metamodels can improve the efficiency of the validation
process leading us to the conclusion that metamodels can
help create more robust and reliable agents. Next, we show
how metamodels support three fundamental components of
trusting relationships thereby enabling trust between agents

and their users. Finally, we describe our current work with
metamodels and conclude with directions for the future.

The Gap Between Theory and Practice

The gap between the promises of theory and the constraints
of practice is perhaps most evident when we consider the
problem of determining whether an intelligent assistant has
been implemented correctly. To perform complex tasks,
these assistants require complex supporting software. Sim-
ply encoding the requisite knowledge to describe potential
goals, actions, and the relationships between them is a diffi-
cult engineering problem even without considering the agent
architecture that turns this knowledge into executable form.
Thus, even if we know how to build the intelligent assistants
we desire, the task may be so difficult that it cannot be man-
aged without compromising its very integrity.

As we argued in (Wallace 2005), successfully construct-
ing complex intelligent agents requires overcoming chal-
lenges in both specification and implementation phases of
development. In particular, it is often hard to specify pre-
cisely what constitutes correct behavior for an intelligent
assistant since this specification may exist only within the
mind of a human domain expert. Implementation, even
assuming a well defined specification is difficult and error
prone simply due to the shear size and complexity of the
supporting knowledge base.

These difficulties are compounded by the fact that it is
not always clear how to apply software engineering tech-
niques to maintain control of the development process. This
is due, in part, to the fact that many common programming
approaches used in artificial intelligence (e.g., rule based
system and logic programming approaches) are substantially
different from those used in mainstream software develop-
ment. Moreover, many techniques for storing knowledge,
such as conditional probability tables, are easy to build with
automated techniques, but difficult for humans to inspect
and assess.

In traditional knowledge-base validation techniques (Ki-
rani, Zualkernan, & Tsai 1994; Tsai, Vishnuvajjala, &
Zhang 1999), a domain expert and knowledge engineer find
and correct errors by examining an agent’s behavior in a
number of test scenarios. Although this is still the de facto
approach for identifying errors in many complex intelligent
systems, it has several weaknesses. It is time consuming;
each test requires the domain expert’s participation. It is
error prone; problems in the agent’s behavior are likely to
be relatively few and far between and the domain expert
must be constantly engaged in order to identify the remain-
ing flaws. Finally, because of the time and cost associated
with this approach, it is likely that only a very small amount
of potential behavior can be tested.

Reducing the time and cost of validation would allow the
agent to be tested in a larger number of scenarios. This,
in turn, would increase the reliability of the overall system.
As we will see in later sections, metamodels can be useful
tools to help decrease the cost of validation by increasing the
speed at which errors can be identified and corrected.

Enabling Trust Between Users and Agents
For society to become willing users of intelligent assistants,
these assistants need to hold the promise of improved qual-
ity of life or improved productivity. Moreover, the improve-
ment gained by using these agents will need to be evaluated
against the potential harm that they could cause (i.e., if they
fail to perform their tasks). This same situation exists when
dealing with a human assistant.

In our everyday lives, we need to work with other people,
many of whom we have never met, in order to accomplish
our goals. Even tasks as mundane as ordering a new com-
puter over the phone requires the interplay of many different
people for the transactions to complete successfully. Thus,
in order to function in today’s world, we must be able to
evaluate the rewards that can be obtained by relying on oth-
ers against the potential risks of such associations.

In most situations, an individual cannot accurately as-
sess the real risk and reward of establishing a particular
relationship. It is the construct of trust, that allows peo-
ple to navigate these situations without complete knowl-
edge (Lewis & Weigert 1985; Fahrenholtz & Bartelt 2001;
Fogg & Tseng 1999). Indeed, Luhmnann, who is widely
cited in modern trust literature, argues that a critical func-
tion of trust is to reduce complexity (Luhmann 1979). Thus,
it is trust that keeps people from the impossible task of at-
tempting to analyze all possible outcomes that might re-
sult from forming a particular relationship (Simmel 1964;
Lewis & Weigert 1985).

Models of Trust
Trust has been the focus of a numerous studies and reports
in sociology, psychology and computer science literature.
In this paper, we focus our attention on three models of
trust that have received recent attention but have much older
roots.

The first model of trust, described by Ratnasignham
in (Ratnasingham 1998), is based on the work of Lewick
and Bunker (Lewicki & Bunker 1996) and Shapiro et
al. (Shapiro, Sheppard, & Cheraskin 1992). The model iden-
tifies three stages of trust that develop between two parties
over the course of time. The first stage is called deterrence-
based trust. Here, the relationship is typically in early stages
of development and trust is linked more to a threat of pun-
ishment that to a promise of reward. As the relationship
continues to develop, it may enter a second stage based on
knowledge. At this point, trust is linked to past experiences
that allow the trustor to understand and predict the behavior
of the trustee. The third, and final, stage of trust is identi-
fication based. In this stage, trust stems from empathy and
common values, similar to the trust that is established be-
tween friends and family.

A second model of trust is described by Lewis and
Weigert in (Lewis & Weigert 1985). These authors identify
three distinct components which occur to different degrees
in any single trust relationship. The first is cognitive trust,
based on a knowledge of the other party’s character or their
past actions. Lewis and Weigert note that knowledge alone
is not sufficient to cause trust. Rather, in their mind, trust

is the construct that results from taking a “cognitive ‘leap’
beyond the expectations that reason and experience alone
would warrant” (Lewis & Weigert 1985, pp. 970). In ad-
dition to this cognitive basis, the authors also indicate that
trust always has an important emotional component. This
serves as a critical link between parties; breaking the trust
bond causes emotional distress (wrath or pain) that neither
party wishes to experience. The final component of trust is
behavioral and is affected by the way in which each party
treats each other. Namely, if the parties act as though they
trust one another, this helps to establish a bond of true trust;
the converse also appears to be true.

The final model of trust we examine is that presented by
Fahrenholtz and Bartlet (Fahrenholtz & Bartelt 2001) based
on the work of sociologist B. A. Misztal. In this model,
there are three high-level trust forms, each of which has three
manifestations called practices. The practices are essentially
behaviors that a person uses in lieu of grounded information;
that is, these behaviors serve to manage complexity.

The first form is habitus; its first practice is that of habits
all of which can be viewed as a form of default behavior that
reduces the need to react or perform deep reasoning about
what to do in a particular situation. The second practice is
reputation, a mechanism that helps place reasonable limits
on trust based on mutually recognized tokens such as diplo-
mas. The final practice is memory, the imperfect process of
recording history, which can be reshaped over time.

The second form in this model is passion. Passion op-
erates independently from reason and is based on familiar
associations between two people. The three practices of pas-
sion are identified as those dealing with family, friends and
society.

The final form is policy. Its first practice is solidarity,
which is the practice of taking the goals of a larger group
based on mutual understanding. The second is toleration
which is the acceptance of difference, and places limits on
how much difference can be allowed in a trusting relation-
ship. The final practice is legitimacy which results from ex-
isting beliefs and describes the degree to which institutions
are valued.

Common Traits
Although each of the three models described above have
distinctive features, they also share some common traits.
Equally interesting is the fact that although these models
are designed to describe trust between people, research in
Human-Computer Interaction has demonstrated how many
of these common traits are also relevant to relationships be-
tween humans and machines. Below, we explore these com-
mon traits.

The first trait shared by the models above is the notion
that trust is somehow related to predictability and under-
standing. Knowledge based trust, cognitive trust and the
trust that results from habits and memory are all examples
of this trait. Echoing this, experiments involving human use
of automated (software) aids have indicated that an under-
standing, or at least an explanation, of why the aid may make
mistakes increases the users’ level of trust in the aid and their
likelihood to rely on it (Dzindolet et al. 2003). Similarly,

intelligent systems that can justify their actions have been
shown to engender greater trust in their end-users (Miller &
Larson 1992).

The first and third models also indicate that similarity be-
tween parties is important for trust. The notions of empa-
thy, common values, solidarity, and passion are all exam-
ples of this trait. Fogg and Tseng surveyed studies of com-
puter credibility, a notion closely related to trust that the au-
thors describe as “trust in information” or believability of
a source (Fogg & Tseng 1999). They cite two studies that
point toward an indication that users find computer programs
more credible when they are considered a part of the same
group as the user (e.g., from the same company, team, etc.).
Bickmore and Cassell describe another experiment that in-
dicates ties between similarity and trust. Here, an intelli-
gent agent’s interface was built to allow two conversational
strategies. The first strategy used “small talk” to establish
connection with a user while the second used only topically
relevant discourse. The study found that behavioral similar-
ity between the user and the agent increased trust. Specif-
ically, users who attempted to initiate a conversation with
the agent were more trusting of the agent that used small
talk while those that didn’t initiate a conversation were more
trusting of the other agent (Bickmore & Cassell 2001).

Finally, the first and second models both cite conse-
quences as important components of the trust relationship:
deterrence-based trust and emotional trust illustrate this trait.
The fact that machines are not capable of emotion may pro-
vide a serious roadblock to establishing credibility with fu-
ture intelligent assistants. Although research has shown
that personification of the interface can help establish trust
with its users, personification alone is not enough to sustain
trust (Bickmore & Picard 2005). Personification may ini-
tially help to establish an intelligent system as an emotional
being, yet it is fair to say that nearly everyone recognizes that
even today’s most sophisticated intelligent systems are inca-
pable of real human emotion. Decisions made by these sys-
tems are necessarily based on cold calculation. Therefore,
any notion of consequence is similarly calculated and can-
not have any special, emotional, significance to the agent. In
the near term, it is likely that the threat of consequences will
be aimed more towards an agent’s developer than toward the
agent itself.

Enabling Trust in Tomorrow’s Assistants
Just as trust must be established between two people before
potentially risky relationships are formed, so too will end-
users require trust in their intelligent assistants. While there
are no simple answers for how to ensure that such a bond
can be formed, in the following section we look at one tech-
nique, namely the use of high-level behavior models, that
could help end-users better understand and more accurately
predict the behavior of future intelligent assistants.

Behavior Metamodels
Behavior metamodels provide a simplified description for
how a particular system behaves. They are literally a model
of the agent, which itself is a model that represents how to

Obtain
User

Preferences

Verify
Funding

Reserve
Air Transport

Reserve
Ground

Transport

Reserve
Hotel

Plan Trip

Make
Reservations

Figure 1: A Hierarchical Behavior Representation

perform a task. While the properties of a metamodel are
entirely open ended, we focus on models that have three
features: 1) they are inexpensive to produce; 2) they are
substantially easier to understand than the agent’s internal
implementation; and 3) they are consistent with the agent’s
actual behavior (albeit at a high level of abstraction). As
we will argue in later sections, metamodels that meet these
requirements can be used both to help establish trust with
end-users and to help improve agent validation.

In previous work (Wallace & Laird 2003), we examined
a particular type of metamodel called a hierarchical behav-
ioral representation that is inspired by AND/OR trees, HTN
planning (Erol, Hendler, & Nau 1994) and GOMS model-
ing (John & Kieras 1996) to encode the variety of ways in
which particular tasks can be accomplished.

An example HBR is illustrated in Figure 1. The hierarchy
is an AND/OR tree with binary temporal constraints repre-
senting the relationships between the agent’s goals and ac-
tions. In this representation, internal nodes correspond to
goals and leaves correspond to primitive actions (in the fig-
ure above, only a partial tree is shown). A node’s children
indicates the set of sub-goals or primitive actions that are
relevant to accomplishing the specified goal. The manner
in which sub-goals should be used to achieve their parent
goal is encoded by the child’s node-type constraint (AND vs
OR) and the binary ordering constraints between siblings. In
the figure above, Plan Trip is an AND node while all others
are OR nodes. Nodes can be associated with preconditions
(not shown in the figure above) that specify properties of the
world state that are consistently true when a particular goal
is pursued. Binary temporal constraints between siblings are
represented with arrows. Thus, the figure illustrates that to
complete the Plan Trip goal, the agent must obtain the user’s
preferences and verify sufficient funds are available before
making reservations. Making reservations, in turn, may in-
volve a combination of flights, ground transportation and ho-
tel rooms. However, according to the model, if both a flight
and a hotel room are to be reserved, the flight should be re-

served first.
The HBR meets each of our three requirements. It is in-

expensive to produce; although it may be produced by hand,
it is also easily constructed from observational traces of be-
havior using machine learning techniques (Wallace & Laird
2003). In addition, because the HBR is also a very simple
structure, it is much easier to understand than a standard rule
base. Finally, although the simplicity of the model necessar-
ily means that some details of behavior are lost, it has been
shown to be effective at capturing enough nuances to dis-
tinguish between correct and incorrect behavior (Wallace &
Laird 2003). In the following section, we present new results
indicating just how much these metamodels can increase the
speed of identifying and correcting errors in an agent’s be-
havior. Following this presentation, we discuss how these
same metamodels can be used to enable trust with end-users.

Metamodels: Reducing the Theory/Practice Gap
Metamodels may help reduce the gap between theory and
practice by allowing developers to create more reliable and
more robust intelligent systems. While the HBR model dis-
cussed in the previous section has been shown to be effective
enough to allow developers to identify flaws in an agent’s
behavior, the time savings of this contribution has not been
previously quantified.

To examine this aspect of performance, we conducted an
experiment in which five users attempted to find and correct
flaws in an agent’s behavior given HBRs that represented
the agent’s current (flawed) behavior, and HBRs that repre-
sented correct, expert-level behavior. Agents were imple-
mented in the Soar (Laird, Newell, & Rosenbloom 1987)
architecture and each participant had at least six months of
Soar programming experience. Participants identified two
behavior flaws, with and without the aid of the HBR meta-
model. In the unaided situation, participants relied on stan-
dard debugging tools and techniques that they were already
in the practice of using. Once the flaw was identified, the
participants corrected the agents’ knowledge using Visual-
Soar, the standard Soar development environment. Thus, in
the experiments presented below, there are two conditions:
aided and unaided. Condition is a within-subject variable,
which is to say that each participant experiences both.

Our test-bed agent performed a simulated object retrieval
task. A “correct” agent was implemented in 78 Soar rules,
and used in conjunction with a simulated environment to
create a HBR representing its aggregate behavior. Note that
in normal use, observations of correct behavior are likely to
come from human experts. However, by creating a correct
agent first, it is possible to describe precisely how flawed
agents differ from the ideal (both in behavior and in their im-
plementation). This property is critical for the experiment.

Table 1 illustrates salient properties of the correctly im-
plemented agent and two flawed implementations created by
modifying one of the agent’s rules. The correct agent (col-
umn 1) is capable of exhibiting four distinct behaviors (row
3) based on its interactions with the environment. The av-
erage length of its behavior traces (i.e., the number of goals
and actions required to complete the task) is 67 (row 5). We
constructed two flawed agents so that each participant could

Correct Flawed-A Flawed-B

Modification N/A New Proposal Deletion
Manifestation N/A Intrusion Commission
Num. Behaviors 4 12 8
Consistent BTs N/A 4 4
Avg. BT Length 67 69 68

Table 1: Properties of correct & flawed agents

perform a debugging task with and without assistance from
the HBR (each time using a different flawed agent). One of
our primary desires was to ensure that both flawed agents
were similarly “different” from the correctly implemented
agent. That is, we wanted to ensure that the debugging task
was equally challenging in both cases. The first flawed agent
(column 2) was created by adding a single new proposal rule
(row 1). The effect of the new rule was to introduce inap-
propriate goals into the otherwise correct behavior (row 2).
The flawed agent exhibited twelve distinct behaviors (row
3), four of which were the correct (desired) behaviors (row
4). The second flawed agent (column 3) was created by re-
moving a preference rule that ranked two competing goals
against one another. The net effect was that this agent would
inappropriately replace one goal for the other. This lead to
eight distinct behaviors, four of which were consistent with
correct behavior, and four of which where incorrect.

It is worth noting that the flaws introduced into these
agents are minor by most standards. In this experiment,
flawed behavior does not result deadlocks or infinite loops.
Indeed, when viewed in the classical sense, these agents are
not necessarily “flawed”. They are successful in achieving
the desired final state (finding the lost object). The distinc-
tion between the correct and flawed agents is similar to the
distinction one might make between an experienced plumber
and a home-improvement aficionado. Both may be able to
get the job done (thus achieving the same final state), but the
events that transpired along the way and the efficiency of the
job may be remarkably different. In this sense, the home-
improvement aficionado would be a inadequate replacement
for the experienced plumber just as our flawed agents are
inadequate replacements for the correct agent upon which
their behavior is based.

Because none of the participants had used, or even seen,
the graphical representations of HBR models, an initial tu-
torial was required. For this, each participant was given an
overview of how the HBR modeled behavior. After this dis-
cussion, users were assisted in identifying four different er-
rors (misplacement, intrusion, omission, commission) in an
exceedingly simple mock environment using the HBRs. In
addition to this tutorial, participants were asked to read a
short informational summary. This provided an overview
of the experiment including a description of the debugging
task, a summary of the agent’s behavior, and a plain English
description of some salient operators used by the agents.
This was intended to familiarize the users with the domain
and the agent’s design without requiring each participant to
build their own agent from the ground up. Finally, the partic-

Participant Unaided Aided Initial Method

1 A B Aided
2 B A Aided
3 A B Unaided
4 B A Unaided
5 A B Unaided

Table 2: Assignment of participants

ipants were alerted that only one rule in each of the agents’
knowledge bases had been modified, removed or added in
order to generate the behavioral deviations.

After the participant had read the informational summary,
they were randomly assigned an agent to validate. We at-
tempted to mitigate bias by varying the order in which the
aided and unaided tests were presented as well as the pairing
between the agent and the validation method. Table 2 indi-
cates each participant’s (agent,validation method) pairings.
For each experiment, we asked the participants to indicate
when they were ready to modify the agent’s knowledge and
to articulate what changes they believed were required. This
allowed us to measure the amount of time needed to iden-
tify the behavioral flaw as well as the total time required to
correct the agent’s behavior.

During the first phase of the debugging session, partic-
ipants identified how the flawed agent’s behavior differed
from the standard set by the correct (original) agent. Partic-
ipants were free to look for errors using whatever debug-
ging techniques they had developed during previous Soar
programming experiences. Similarly, in the aided case, no
specific instructions on how to identify errors we given, par-
ticipants generalized their tutorial experience to interpret the
information in the HBRs and identify what changes would
be required to make the flawed agents behave correctly.

The second phase of the debugging session began once
the participant determined that they were ready to try mod-
ifying the agent’s knowledge in order to correct the error.
Regardless of whether the error identified with or without
aid from the HBRs, participants used the VisualSoar editing
environment (a standard part of Soar’s development environ-
ment) to locate and correct the faulty knowledge. Once the
participant had made changes, they reexamined the agent’s
behavior to ensure that the flaw had in fact been corrected.
When the participant was confident that the problem was re-
solved, the clock was stopped and this was recorded as the
total time needed to correct the agent’s behavior.

Figure 2 illustrates the total time spent by each partici-
pant identifying and correcting errors in the flawed agent’s
knowledge. Encouragingly, the aided approach yields at
least a factor of three performance advantage over standard
debugging techniques that are unaided by the HBRs. Not
surprisingly, a paired t-test confirms that the performance
advantage gained when aided by the HBRs are statistically
significant (p = .0002). This gives creditability to the be-
lief that using the HBRs would increase designers’ ability
to identify and correct flaws in the intelligent systems they
develop.

 0

 5

 10

 15

 20

 25

 30

54321

T
im

e
T

o
C

or
re

ct
 B

eh
av

io
r (

m
in

.)

Participant

Aided by HBR
Unaided by HBR

Figure 2: Total time to identify and correct the agent error

 0

 5

 10

 15

 20

 25

 30

54321

T
im

e
T

o
Id

en
tif

y
E

rr
or

 (m
in

.)

Participant

Aided by HBR
Unaided by HBR

Figure 3: Time to identify the agent error

 0

 2

 4

 6

 8

 10

54321

T
im

e
T

o
Fi

x
E

rr
or

 (m
in

.)

Participant

Aided by HBR
Unaided by HBR

Figure 4: Time to fix the agent error

Figure 3 illustrates the time required by each participant
to identify (but not correct) the error in the agent’s behav-
ior. Here, time was stopped once the participant verbalized
a correct description of what part of the agent’s behavior
needed correction. Since the metamodel is most useful for
the error identification portion of the complete task, this fig-
ure illustrates more precisely how much time savings could
be realized using the graphical behavior summary provided
by the HBR. Somewhat surprisingly, measuring time with
minute precision yielded no variance between users aided by
the HBRs. Although it is unfortunate that we cannot inspect
these measurements in greater detail, we were extremely en-
couraged by the fact that there was such a substantial differ-
ence with and without the aid of the metamodel. Again, a
paired t-test indicates statistical significance of these results
(p = .0006).

Finally, we examined the time required by each partici-
pant to fix the agents’ flaws once they were identified. This
is simply the difference between the values reported in Fig-
ure 2 and Figure 3. These times are displayed in Figure 4.
The assumption here is that the time required to make the
fix should not be dependent on whether the aided or unaided
approach was used to identify the error. Examining the fig-
ure indicates that there is no obvious trend, and a paired t-
test indicates that the differences between aided and unaided
performance for fixing a flaw is not significant (p = .85).

Given the size of our sample, we cannot present a con-
vincing argument that the HBR alone is responsible for all
performance effects seen above. For instance, we cannon
meaningfully compare the overall difficulty of finding Flaw
A v.s. finding Flaw B using each technique. However, it
does seems safe to conclude that the HBR provides a good
deal of information that is useful for identifying behavior
differences and for isolating faulty knowledge. By improv-
ing the efficiency of the debugging process, HBRs would
also allow developers to examine more test scenarios with-
out increasing costs. This, in turn, should increase the devel-
oper’s ability to reliably construct complex system thereby
reducing the gap between the promises of theory and the

limits of practice.

Metamodels: Enabling End-User Trust
Recall that the three trust models examined earlier in this
paper cited the following factors as important to establish-
ing trust: understanding, predictability, similarity and con-
sequences. Of these, it seems likely that metamodels may
help with the first three of these factors.

The experiments reported in the previous section indi-
cated that HBRs were very useful to identify flaws in an
agent’s behavior. Most likely, HBRs are useful because they
allow people (here the experiment’s participants) to quickly
understand what types of behavior an agent has performed.
It seems reasonable to assume that end users will also find
it easier to understand the high-level behavior of a partic-
ular agent with the aid of a behavior metamodel such as
the HBR presented here. Although end users may not be as
technically knowledgeable as the participants in this study,
and therefore may not receive the same degree of benefit as
our participants, it is important to remember that the partic-
ipants themselves were in no way experts at interpreting the
meaning of different HBR structures. There only exposure
to these representations was via the short tutorial conducted
prior to the debugging task.

If metamodels are successful at helping end-users un-
derstand an agent’s behavior, we should also expect that
through this understanding, end-users will also have an in-
creased ability to predict how a particular agent is likely to
behave. Indeed, the very nature of the HBR is to act as a
road map that indicates potential ways in which problems
can be solved. Thus, although the models may not be partic-
ularly useful for identifying the fine details of how an agent
will behave, they do provide insight into how the agent de-
composes and proceeds to perform complex tasks.

HBRs may also increase understanding and predictability
in other ways. In particular, because these models explic-
itly represent each of the agent’s goals and actions, it would
be possible to indicate the expected likelihood of the agent
successfully completing its task based on the types of goals
it is currently pursing. For example, consider an agent that
acts as a navigational aid. It’s knowledge may be subdivided
into goals and actions suited for a variety of situations such
as urban or forest environments. In heavily forested areas,
the agent may not perform optimally, perhaps due to limi-
tations of its sensors. If performance is related to the goals
being pursued (i.e., some goals are more likely to lead to
success than others), this information could be stored within
the HBR. The result would then be a new representation ca-
pable of indicating to the end-user when it may be more or
less appropriate to rely on their intelligent assistant. Not
only would this help the user understand the strengths and
weaknesses of their assistant, it could also serve as a basis
for adjusting the agent’s autonomy as it becomes less capa-
ble of performing its task.

Finally, HBRs, and metamodels in general, may also con-
tribute to trust by increasing notions of similarity between
the user and the agent. By improving the transparency of the
problem solving process, metamodels not only improve the
user’s understanding of how the agent reasons, but they also

allow the user to draw parallels between their own reasoning
and that of the agent.

As argued above, there is good cause to believe that meta-
models may positively contribute to three of the four com-
mon factors required for trusting relationship. However,
one factor that remains unaddressed is the notion of con-
sequences. As non-human, and perhaps more importantly,
non-emotional entities, the threats normally posed by the vi-
olation of trust hold little, if any, water for today’s agents.
End-users of these systems will likely need to redirect their
needs for emotional reparation on to the companies or indi-
viduals that design and sell intelligent systems. This possi-
bility brings the value of metamodels full circle. Although
metamodels cannot directly address an end-users need to en-
sure that there are consequences for an agent that breaks a
trust relationship, they can help developers limit their expo-
sure to litigation by ensuring that the agents they create are
robust and reliable before they end up in the hands of the
public.

Future Work: Beyond Trust
So far in this paper, we have discussed the use of meta-
models to help developers and end-users understand the be-
havior of intelligent systems. This can decrease validation
costs for developers while also increasing trust amongst end-
users. However, we predict that metamodels may be useful
for other purposes as well.

Recently, we have investigated the possibility of us-
ing metamodels to bring validation out of the laboratory
and into the runtime environment. Our system, called S-
ASSESS (Wallace 2005) uses a metamodel as a specifica-
tion of appropriate behavior. S-ASSESS then constrains the
agent’s behavior during task performance in order to uphold
requirements specified by the model while being as consis-
tent as possible with the agent’s own preferences. This ap-
proach is similar to previous work on safe planning systems
(e.g., (Weld & Etzioni 1994) and (Musliner, Durfee, & Shin
1993)) but allows safety constraints to be upheld by reac-
tive systems that don’t exhibit distinct planning and acting
phases.

As mentioned earlier, metamodels may also provide a nat-
ural mechanism to adjust the degree of an agent’s autonomy.
S-ASSESS facilitates this use as well. During performance,
S-ASSESS continually checks to ensure that the agent’s be-
havior will remain consistent with its metamodel. When a
threat to the constraint model is identified, a number of op-
tions exist. By default, S-ASSESS attempts force the agent
to “do the right thing”. However, certain types of threats
may be more severe than others, offering a natural motiva-
tion to reduce the agent’s autonomy and fall back to outside
expertise. We are just beginning to explore potential appli-
cations of this feature in our current work with S-ASSESS.

Conclusions
The future success of intelligent assistants relies on more
than the technological and theoretical developments of the
Artificial Intelligence community. In particular, we believe
that the problem of determining whether complex intelligent

agents will perform their tasks appropriately will become
increasingly important in the years ahead. Similarly, there
will be a parallel need to convince society at large that in-
telligent systems are trustworthy and valuable resources. In
this paper, we have argued that both of these problems can
be addressed by high-level models of an agent’s behavior
(metamodels). We have demonstrated how metamodels can
improve the debugging process, and reasoned that the same
models may be useful for establishing trust with end-users.

References
Bickmore, T., and Cassell, J. 2001. Relational agents: A
model and implementation of building user trust. In CHI
’01: Proceedings of the SIGCHI conference on Human fac-
tors in computing systems, 396–403.
Bickmore, T. W., and Picard, R. W. 2005. Establish-
ing and maintaining long-term human-computer relation-
ships. ACM Transactions on Computer-Human Interaction
12(2):293–327.
Dzindolet, M. T.; Peterson, S. A.; Pomranky, R. A.; Pierce,
L. G.; and Beck, H. P. 2003. The role of trust in automa-
tion reliance. International Journal of Human-Computer
Studies 58:697–718.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. In Proceedings of the Twel-
veth National Conference on Artificial Intelligence, 1123–
1128. AAAI Press/MIT Press.
Fahrenholtz, D., and Bartelt, A. 2001. Towards a socio-
logical view of trust in computer science. In Proceedings
of the Eighth Research Symposium on Emerging Electronic
Markets.
Fogg, B. J., and Tseng, H. 1999. The elements of computer
credibility. In CHI ’99: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, 80–87.
John, B. E., and Kieras, D. E. 1996. The GOMS family
of user interface analysis techniques: Comparison and con-
trast. ACM Transactions on Computer–Human Interaction
3(4):320–351.
Kirani, S. H.; Zualkernan, I. A.; and Tsai, W.-T. 1994.
Evaluatuion of expert system testing methods. Communi-
cations of the ACM 37(11):71–81.
Laird, J. E.; Newell, A.; and Rosenbloom, P. S. 1987. Soar:
An architecture for general intelligence. Artificial Intelli-
gence 33(1):1–64.
Lewicki, R. J., and Bunker, B. B. 1996. Developing and
maintaining trust in work relationships. In Kramer, R. M.,
and Tyler, T. R., eds., Trust in Organizations: Frontiers of
Theory and Research. Thousand Oaks, CA: Sage. 114–
139.
Lewis, J. D., and Weigert, A. 1985. Trust as a social reality.
Social Forces 967–985.
Luhmann, N. 1979. Trust and Power. Wiley.
Miller, C., and Larson, R. 1992. An explanatory and “argu-
mentative” interface for a model-based diagnostic system.
In Proceedings of the ACM Symposium on User Interface
Software and Technology.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.
CIRCA: A cooperative intelligent real-time control archi-
tecture. IEEE Transactions on Systems, Man and Cyber-
netics 23(6).
Ratnasingham, P. 1998. The importantance of trust in elec-
tronic commerce. Internet Research: Electronic Network-
ing Applications and Policy 8(4):313–321.
Shapiro, D.; Sheppard, B. H.; and Cheraskin, L. 1992.
Buisness on a handshake. The Negotiation Journal 365–
378.
Simmel, G. 1964. The Sociology of Georg Simmel. Free
Press. Translated, edited and with an introduction by Kurt
H. Wolff.
Tsai, W.-T.; Vishnuvajjala, R.; and Zhang, D. 1999.
Verification and validation of knowledge-based systems.
IEEE Transactions on Knowledge and Data Engineering
11(1):202–212.
Wallace, S. A., and Laird, J. E. 2003. Behavior Bounding:
Toward effective comparisons of agents & humans. In Pro-
ceedings of the Eighteenth International Joint Conference
on Artificial Intelligence, 727–732.
Wallace, S. A. 2005. S-Assess: A library for self-
assessment. In Proceedings of the Fourth International
Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS-05), 256–263.
Weld, D., and Etzioni, O. 1994. The first law of robotics
(a call to arms). In Proceedings of the Twelveth National
Conference on Artificial Intelligence.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

