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Introduction
Much sponsored research in our lab either falls under or
intersects with machine reading. In this short paper we
give an encapsulated presentation of some of the research
in question, leaving aside, for the most part, the consider-
able detailed technical information that underlies our work.1

Demonstrations of our technology will be provided at the
symposium itself.

Our machine reading research can be viewed as falling
under two categories, viz.,

Fast, Primitive Machine Reading in Real-World Systems.
Here we are interested in building into deployed software
a capacity to read text expressed in English. The machine
reading in question is primitive because the English is
restricted: it’s what we calllogically controlled English.
We report herein on how the Slate2 software system reads
logically controlled English, and extracts knowledge
from this English to be represented in multi-sorted logic
(MSL), the chief native language of Slate.

Machine Reading of Diagram-Infused Text. Here we are
concerned with engineering systems that can read
diagram-infused text. Such text, as opposed to text with-
out diagrammatic or pictorial content, is by far the dom-
inant form of text seen in academia, especially in tech-
nical areas — such as physics, chemistry, mathematics,
computer science, astronomy, and so on, and also in high-
stakes standardized testing, for example in the SAT. (The
presence of diagrams in domains such as these was noted
in (Friedlandet al. 2004).) Our research in this area is
based on a new theory of learning (so-calledpoised-for
learning by reading, or just PFLbR), and a new theory of
heterogeneous reasoning calledmental metalogic.

In the remainder of the paper, we briefly describe our
work under these two categories. Finally, before we begin,

Copyright c© 2007, Association for the Advancement of Artificial
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1For example, we speak below both of diagrammatic knowl-
edge, and of Denotational Proof Languages (DPLs), but we don’t
discuss in this short paper the somewhat complicated DPL de-
signed to represent such knowledge, which is known as Vivid
(http://kryten.mm.rpi.edu/vivid030205.pdf).

2http://www.cogsci.rpi.edu/research/rair/slate

we point out that, for better or worse, our approach is a thor-
oughly logicist one (Bringsjord & Ferrucci 1998a; 1998b;
Genesereth & Nilsson 1987; Nilsson 1991).3

Primitive Machine Reading
Slate, Briefly

Slate is a robust interactive reasoning system. It allows the
human “pilot” to harness an ensemble of intelligent agents
in order to construct, test, and express proofs and argumen-
tation of various sorts. Slate is designed to empower profes-
sionals in the business of producing natural-style4 argumen-
tation — mathematicians, logicians, analysts, wargamers,
designers and producers of standardized reasoning tests, and
so on.

Machine Reading by the Slate System

Slate can translate text expressed in logically controlled En-
glish into multi-sorted logic (MSL), build knowledge ex-
pressed in MSL, and reason over that knowledge in proof-
theoretic and model-based fashion. It can do this both on its
own, and under the guidance of a human user of the system.
In light of this capability, we say that Slate, in a fixed and
confessedly limited sense, can “read.” A conceptualization
of the process by which Slate reads, shown in Figure 1, is
described by three distinct phases:

3We make use of strength factors, and abductive and inductive
inference, but not of probabilistic or statistical formalisms.

4There are various ways to understand “natural” argumenta-
tion. For us, the hallmark of such argumentation is that it con-
forms to the kind of reasoning that humans produce, not the kind
of inference generally preferred by automated reasoners. The lat-
ter are for the most part resolution-based, but resolution is well
nigh impenetrable to humans, and certainly logicians, mathemati-
cians, and various other professionals who reason for a living do
not use resolution. Instead, their reasoning is driven by supposi-
tions, and has a block-like structure. When the reasoning is deduc-
tive, we are thus talking about a Fitch-style natural deduction calcu-
lus. A standard presentation of such a calculus is presented in many
introductory textbooks; e.g., (Bergmann, Moor, & Nelson 1997;
Barwise & Etchemendy 1999). Slate’s workspace provides the hu-
man with a visual natural calculus of our own invention, in which
suppositions are readily identifiable, and arguments are built up in
modular fashion.



Phase 1English texts are rephrased in logically controlled
English — i.e., a proper subset of full English that can
be unambiguously translated into a formal logic. At
the present time Slate makes use of Attempto Controlled
English (ACE) (Fuchs, Schwertel, & Schwitter 1999;
Hoefler 2004), a logically controlled English with a fixed,
definite clause grammar and a user-defined vocabulary.5

Phase 2Discourse representation structures (DRSs) are au-
tomatically generated from the controlled English. DRSs
are a syntactic variant of first-order logic for the resolution
of unbounded anaphora. Their use in the interpretation of
text is a central element of discourse representation theory
(Kamp & Reyle 1993; 1996).

Phase 3The DRSs are automatically translated into MSL,
the chief native language of Slate. (Slate has built-in
translators for going from MSL to straight first-order
logic (FOL), using long-established theorems (Manzano
1996).) As a DRS is equivalent to a quantified first-order
formula, the translation to FOL is not conceptually dif-
ficult. Algorithms for performing such translations are
provided by Blackburn (Blackburn & Bos Forthcoming),
among others.

Figure 1: Slate’s Reading Process

To demonstrate Slate’s reading ability, we turn to the In-
telligence Analysis case study of “Well-Logger #1.”6 In this
factually-based7 hypothetical scenario about the potential
possession of radiological dispersion bombs by terrorists,
the analyst is given (i) 14 Premises — explicitly set off for
the analyst, and (ii) a table containing additional necessary
information. From these two sets of givens, the analyst is
challenged to determine and justify which one of twelve pos-
sible recommendations should be issued to superiors in po-
sition to launch aggressive law enforcement activity. Slate’s
reading ability enables the direct and automatic formaliza-
tion of the textual premises from the given English. Perhaps
the simplest of the 14 premises is “Ifx has some sufficient
amount (≥ k curies) of iridium,x has suitable raw material”
which, as a result of Phase 1, is rephrased as “If a personx

5Phase 1 is currently a manual operation, but techniques devel-
oped by Molĺa & Schwitter (Molĺa & Schwitter 2001) may allow
for at least partial automation of this phase.

6This is a rather tricky case study in intelligence analysis cre-
ated by Selmer Bringsjord for ARDA (now DTO), and makes for a
good test of human reasoners, machine reasoners, and systems that
assist the interaction between the two. The case study is available
at http://kryten.mm.rpi.edu/SBLOGGERCASESTUDY.tar.gz .

7The case is based on the real-life theft of well-loggers, many
of which contain enough raw material to fashion so-called “dirty
bombs.”

has some sufficient iridium thenx has some raw material.”
By passing the sentence through the remaining phases, the
following formula is obtained.

∀A,...,E(( object(A,person,person)∧
quantity(A,cardinality,count unit,B,eq,1)∧
structure(A,atomic)∧
object(C, iridium,object)∧
quantity(C,dimension,unit,D,eq,unspecified)∧
structure(C,mass)∧
property(C,sufficient)∧
predicate(E,unspecified,have,A,C))
⇒
∃F,G,H ( object(F,material,object)∧

quantity(F,dimension,unit,G,eq,unspecified)∧
structure(F,mass)∧
property(F, raw)∧
predicate(H,unspecified,have,A,F)))

Note that the complexity of the above formula is a reflec-
tion of the encoding strategy and micro-ontology employed
by ACE. Through the application of an inverse encoding
scheme, as part of Phase 3, a succinct statement is achieved;
namely,

∀A,B((person(A)∧ iridium(B)∧have(A,B))⇒
∃C(material(C)∧ raw(C)∧have(A,C)))

This final formula is a correct formalization of the initial
premise. Of course, Slate can do likewise for the remaining
13 premises of the case study, and for a sentential expres-
sion of the information contained in the table provided to
the analyst. Once all this knowledge is represented in Slate’s
workspace, an argument can be constructed by the human,
and then validated by her using argument-checking facilities
built into Slate. Once that happens, the case study is solved.

Machine Reading Diagram-Infused Text
Poised-For Learning by Reading (PFLbR)
Put informally, the core idea behind poised-for learning by
reading (PFLbR) is this: An agent8 can be said to have p.f.-
learned some textI if, in the absence of any output from
the system that would normally justify assertions that the
system had learned this text, by virtue of having on hand not
just declarative knowledge of a sort that can be represented
as formulas in a logic, but also

• a certain class of algorithms ready to produce correct output, and

• diagrammatic knowledge produced by readingI ,

the agent is ready (poised) to produce such output. The algo-
rithms in question are specifically designed to produce the-
orems, and proofs that establish theorems. Knowledge that
includes such algorithms, and the diagrammatic knowledge
to which we have alluded, is calledp.f.-knowledge. PFLbR
is consistent with results in cognitive science indicating that
certain human learners, when reading, are able to self-test
and self-explain, which puts them in position to deliver supe-
rior performance when actual testing comes (Chiet al. 1994;
VanLehn, Jones, & Chi 1992). PFLbR is also consistent
with the possibility that, in the future, whether an agent had
in fact learned in some desirable way could be determined

8In the now-orthodox sense of ‘agent’ set out in (Russell &
Norvig 2002).



by simply inspecting the “brain” of the agent, obviating the
need for carrying out testing.

In what follows we say a few words about the general
structure of PFLbR, and the two above-bulleted features of
p.f.-knowledge.

Overall Structure of PFLbR

Let us assume that we are concerned with the kind of sophis-
ticated learning that comes through reading, but also that we
are specifically talking about the domain of (elementary) as-
tronomy. The context is thus one in which an agent — who
we will call ‘Hugh,’ or sometimes just ‘H ’ — is charged
with learning about this subject (one quite new to him) from
a group of relevant books.9 Let’s refer to the collective in-
put coming from these books asI , and let’s useO to refer to
Hugh’s output, produced in response to a test (or, as we soon
say, to aquery). At this point the situation is quite generic;
it coincides with what some of us have calledPsychometric
AI (Bringsjord & Schimanski 2003); and the situation can
be summed up by Figure 2.

?
I O

H

Figure 2: Highest-Level View of the Overall Structure

Our context includes that Hugh would ordinarily be said
to have learned if he was able to answer sufficiently diffi-
cult questions about astronomy correctly, with accompany-
ing justifications of those answers. Accordingly, we assume
that a queryQ is given to Hugh, and that he would be asked
to provide an answerA to it, supported by justificationJ ;
and we assume that the pair (J ,A), which comprisesO, is
of very high quality.

Diagrammatic Knowledge and Additional
Structure of PFLbR

It’s tempting to say that the elements ofI are characters,
words, sentences, paragraphs, and so on. This response is
inaccurate. As you may remember from your grade school
days, or perhaps as you can guess, the stimuli in the case at
hand, that which appears on the pages of the books Hugh
studies, includes both linguistic and pictorial information.
Consider for example any of the books on astronomy cited
earlier. Each of them,on each and every page, includes both
textualanddiagrammatic information. As an example, con-
sider that constellations are picked out and remembered with
help from diagrams superimposed on stars and planets seen
when looking (save for Sagittarius) on a line of sight beyond
the Milky Way. Figure 3 indicates how the trick works for
Scorpio.
This implies that we can provide a bit more structure in our
overview of p.f.-learning: We can say that the inputI is

9A nice group of such books is: (Simon 1992; Awan 2004;
Lippincott 2004; Dickinson 1998).

Figure 3: The superimposition of a scorpion to produce
Scorpio. The input here involves diagrammatic/visual infor-
mation, as well as textual information. Taken from (Awan
2004).

composed of textual informationΘ and diagrammatic infor-
mation∆. At this point p.f.-learning can be summed up by
Figure 4.

?

H

I = (!,") O= (J,A)

Q

Figure 4: High-Level View with Basic Structure of InputI
and OutputO

But we can uncover additional structure in p.f.-learning.
We draw your attention to Figure 5. Notice that we now
assume that the input, courtesy of help from a natural lan-
guage understanding module, leads to the representation
of this input (in some logical system; see e.g., (Ebbing-
haus, Flum, & Thomas 1984; Bringsjord & Ferrucci 1998a;
Bringsjord & Yang 2003)), augmented by a system for han-
dling pictorial input ∆. In addition, we include nowΨ,
knowledge Hugh was in command of prior to his study of
astronomy. P.f.-knowledge is denoted byΠ, which is pro-
duced from: the representation of both text and diagrams;
from Ψ; and from queriesQ1, . . . ,Qm that the agent produces
internally, in a “self-reflective” mode that helps anticipate
actual queriesQ. OnceΠ is constructed, a queryQ leads to
a representation of the output (in some logical system), and
this representation, with help from a natural language gen-
eration module, yields the final answer and corresponding
justification in natural language. Again, the overall process
is summed up in Figure 5.

The representationof the input is itself a mixture of the
syntactic and semantic. There is now overwhelming empir-
ical evidence for the view that while some human knowl-
edge does seem to be accurately modeled in purely syntactic
or symbolic form (the theory ofmental logicproposes such
knowledge; see e.g. (Rips 1994; Yang, Braine, & O’Brien
1998)), some knowledge is represented in irreducibly se-
mantic form, or in what we call, using Johnson-Laird’s
descriptor,mental models(e.g., see (Johnson-Laird 1983;
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Figure 5: Additional Structure in the Sequence of P.f.-
Learning

Johnson-Lairdet al. 2000)). Mental models can be pictorial
or imagistic in form, rather than symbolic, syntactic, or lin-
guistic. P.f.-knowledge of astronomy includesboth types of
knowledge. The theory within cognitive science that posits,
explains, and empirically justifies (among other things) this
mixed mode ismental metalogic(‘MML,’ for short), and is
due to Bringsjord and Yingrui Yang (Yang & Johnson-Laird
2000a; 2000b; Yang & Bringsjord forthcoming; Rinella,
Bringsjord, & Yang 2001; Yang & Bringsjord 2001a; 2001b;
Yang, Braine, & O’Brien 1998).10

Figure 6: Standard Overview of our Solar System (from
Awan 2004)

In order to make this more concrete, let’s turn to some
simple information about our solar system. The basic
overview of the system is traditionally provided to readers
by pictures like that shown in Figure 6, from (Awan 2004).
Let’s suppose, then, that Hugh has specifically read such ma-
terial. In addition, let’s suppose that Hugh successfully an-
swers and justifies the query: Is it true that all the planets
inside the asteroid belt are smaller than the sun? If he has
truly learned from his reading, then he has p.f.-learned from
that reading; and this in turn implies that his answer and jus-
tification flow from p.f.-knowledge. One possibility for this
p.f.-knowledge is shown in Figure 7, which makes use of
the kind of blocks world often used in AI for expository pur-
poses. (This particular blocks world is that of Hyperproof
(Barwise & Etchemendy 1994).) Here, Hugh has a mental

10MML holds as well that another hallmark of human reasoning
is meta-reasoning. This means, for example, that humans are ca-
pable of reasoning about patterns of reasoning. Meta-reasoning is
mechanized in PFLbR throughmethods, discussed below.

model abstracted from the picture shown in Figure 6; this
model corresponds to the first blocks world image. In this
image, the sun is shown on the far left, and then the plan-
ets move to the right diagonally out to the lineup of tetra-
hedrons; this lineup represents the asteroid belt. The large
dodecahedron after the belt is Jupiter (the remaining four
planets aren’t shown). In addition, we assume that Hugh
knows (syntactically) that the sun is quite large, and a dis-
junction: that Earth is either roughly the same size as Venus
or Mars. Given this, he has knowledge poised to produce an
affirmative in response to the query, as well as a correspond-
ing justification. The affirmative response corresponds to
the last formula in the sequence, and overall the sequence
is poised for an argument by cases. The two cases are the
two disjuncts, and each leads to the situation presented in
the second image, in which the relative sizes of the sun and
Earth are pinned down. It’s a matter of direct mental obser-
vation to infer from this second image that all four interior
planets are indeed smaller than the sun. Notice that the p.f.-
knowledge in this case isnota proof. Rather, it’s knowledge
that is merelypoised forproviding an argument that in turn
yields an affirmative response to the query.

Remarks on “Poised-For Proving”
PFLbR is based on denotational proof languages (DPLs)
(Arkoudas 2000). DPLs integrate computation and deduc-
tion. They can be used as regular programming languages,
as languages for presenting and checking formal proofs in
natural-deduction style, and as languages for expressing
trusted proof-search algorithms — so-calledmethods. Here
we will focus on methods, which are a key element of DPLs
for PFLbR.

Put simply, a method is an algorithm for constructing a
proof; some methods are allowed to be higher-order: they
take methods as arguments. Hugh’s p.f.-knowledge can be
represented as a higher-order method, that is, as an algorithm
for producing a justification for the answer to the query, in
the form of a proof, when supplied with appropriate lower-
level methods as arguments in order to fill in certain gaps
within the higher-order method’s reasoning. In a nutshell,
if Hugh truly learns by reading, then,beforehe is tested,
he stands ready with algorithms which, when fired in re-
sponse to an actual test, will efficiently produce correct an-
swers and justifications. Such a method goes beyond those
in the well-established DPL known as Athena (Arkoudas )
by allowing reference to visual models or diagrams — or as
we simply say in the sample code (Figure 8), todiagrams.
A method corresponding to the p.f.-knowledge in Figure
7 can be formulated as theshow-relative-size-of-sun
method shown in Figure 8.11 Note again that the methods
here incorporate visual information and reasoning. For in-
stance, the assertion that the sun is large is obtained via the
“visual” inference ruleinspect, which consults a stored di-
agram in order to verify the claimed conclusion. Premises

11Due to lack of space, we don’t explain the syntax and seman-
tics of every Athena construct appearing in Figure 8. A succinct
reference describing Athena’s syntax and formal semantics can be
found elsewhere (Arvizo ).



Figure 7: Some Possible P.f.-Knowledge of Our Solar Sys-
tem. The p.f.-knowledge here is shown in Hyperproof. In
the first picture (a representation of a diagram Hugh read),
the leftmost object,a, is the sun. Since its size at this point is
unknown, the object depicting it is a cylinder (cylinders in-
dicate that the actual shape of the object isunknown; Hyper-
proof, and our own diagrammatic DPLs (e.g., the aforemen-
tioned Vivid, allow for this third truth value), not a dodeca-
hedron. Moving from left to right,b is Mercury,c Venus,e
Earth,d Mars. The asteroid belt is represented by the line
of tetrahedrons, and then the first planet beyond this belt
is a representation of Jupiter (whose size is also unclear to
Hugh). The second picture shows that sizes resolved, on the
basis of an argument by cases that is poised to be completed.

1, 2 and 3 in Figure 8 are obtained in that way from stored
visual information (referred to in the code asdiagram1) de-
rived from∆ within the input Hugh has been supplied with
via his reading. Premises 4 and 5 come from prior and back-
ground knowledge. Prior knowledge is already stored in
Hugh’s knowledge base and would be recalled for the pur-
poses of running the method in order to construct the justifi-
cation/answer pair in response to a query.
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