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Abstract

The goal of the SmartWheeler project is to increase the au-
tonomy and safety of individuals with severe mobility impair-
ments by developing a robotic wheelchair that is adapted to
their needs. The project tackles a range of challenging issues,
focusing in particular on tasks pertaining to human-robot in-
teraction, and on robust control of the intelligent wheelchair.
The platform we have built also serves as a test-bed for vali-
dating novel concepts and algorithms for automated decision-
making onboard socially assistive robots. This paper intro-
duces the wheelchair platform, and outlines technique contri-
butions in four ongoing research areas: adaptive planning in
large-scale environments, learning and control under model
uncertainty, large-scale dialogue management, and commu-
nication protocols for the tactile interface.

Introduction
Many people who suffer from chronic mobility impairments,
such as spinal cord injuries or multiple sclerosis, use a pow-
ered wheelchair to move around their environment. How-
ever, factors such as fatigue, degeneration of their condition,
and sensory impairments, often limit their ability to use stan-
dard electric wheelchairs.

The SmartWheeler project aims at developing—in collab-
oration with engineers and rehabilitation clinicians—a pro-
totype of a multi-functional intelligent wheelchair to assist
individuals with mobility impairments in their daily locomo-
tion, while minimizing physical and cognitive loads.

Many challenging issues arise in this type of applica-
tion. First, there are a number of technical issues pertain-
ing to the physical design of the wheelchair; these are only
briefly mentioned below. Second there are substantial com-
putation issues pertaining to the control of the wheelchair
which require close attention. This paper outlines ongo-
ing work targeting a number of these aspects, ranging from
new approaches to path planning, to technical innovations
for model learning, to the design of the human-robot control
interface.

Beyond its technological components, an essential aspect
of this project is a strong collaboration with clinicians, to
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ensure the definition of goals for the mobility functions, for
the patient/wheelchair and environment/wheelchair interac-
tions, as well as for the experimental validation of the smart
wheelchair.

Our aim is to show that the robotic wheelchair reduces the
physical and cognitive load required to operate the vehicle.
We are therefore focusing on high-load situations, such as
navigating in confined spaces (e.g. entering/exiting an eleva-
tor or a public washroom), stressful situations (e.g. exiting a
building during a fire alarm), or unknown environments (e.g.
transferring flights through a new airport).

Most of these tasks require basic robot navigation capa-
bilities (mapping, localization, point-to-point motion). We
rely substantially on previous technology to implement these
functionalities. Some challenges remain pertaining to ro-
bust navigation in large-scale environments. To address this,
we discuss a novel approach for variable-resolution planning
under motion and sensory uncertainty.

We are also concerned with the design of the physical in-
terface between the robotic wheelchair and its user. A key
aspect of the patient/wheelchair interface involves creating
communication protocols that can ensure high-quality infor-
mation exchanges, minimizing the ambiguity, and progres-
sively improving effectiveness of the interactions over time.
We investigate two such protocols: a voice-based dialogue
system, and a tactile/visual interface system. Both are dis-
cussed below.

Target population

The goal of this project is to increase the autonomy and
safety of individuals with severe mobility impairments by
developing a robotic wheelchair that is adapted to their
needs.

Through discussions with clinical collaborators at the
Centre de ŕeadaptation Constance-Lethbridge and Centre de
réadaptation Lucie-Bruneau, two rehabilitation clinics in the
Montreal area, we have selected a target population for this
work, along with a set of challenging tasks. We have chosen
to define the target population based on theirabilities, rather
than theirpathologies. The motivation for doing so is that
we can use uniform measures of performance across the tar-
get population, thereby allowing us to gauge the usefulness
of the deployed robotic system.



Individuals of interest will be those who meet the re-
duced mobility criteria necessary to qualify for a pow-
ered wheelchair under the Régie de l’assurance maladie du
Québec (the provincial public health board). There are well
established guidelines for applying this criteria, and our clin-
ical collaborators have long expertise in evaluating these.

Once an individual is approved for use of a powered
wheelchair, s/he may require substantial configuration of the
vehicle to achieve maximum usability. In particular, many
patients require custom interfaces that go beyond the stan-
dard joystick, for example sip-and-puff devices, or pressure
sensors that can be activated with minimum head, chin or
hand control. Yet despite clinicians’ significant customiza-
tion efforts, control of a powered wheelchair (even with a
joystick) remains a significant challenge. According to a re-
cent survey, 40% of patients found daily steering and maneu-
vering tasks to be difficult or impossible, and clinicians be-
lieve that nearly half of patients unable to control a powered
wheelchair by conventional methods would benefit from an
automated navigation system (Fehr et al., 2000).

Robot platform
SmartWheeler, shown in Figure 1, is built on top of a
commercially available Sunrise Quickie Freestyle, to which
we have added front and back laser range-finders, wheel
odometers, a touch-sensitive graphical display, a voice in-
terface, and an onboard computer. The laser range-finders
and odometers are used for navigation and obstacle avoid-
ance. The display, voice interface, and joystick are the main
modes of communication with the user. The onboard com-
puter interfaces with the wheelchair’s motor control board
to provide autonomous navigational commands. Additional
devices will be integrated in the future, including stereo vi-
sion, IR sensors, and a modified joystick. All hardware and
electronic design were performed in-house by staff members
at McGill’s Center for Intelligent Machines.

Figure 1: SmartWheeler robot platform.

The robot’s basic mapping and navigation functions are
provided by the Carmen robot navigation toolkit (Monte-
merlo et al., 2003). This toolkit can be adapted to a variety

of robot platforms and has been used in the robotics com-
munity for the control of indoor mobile robots in a variety of
challenging environments. The toolkit can be used to build
a high-resolution 2-D grid-based representation of an indoor
environment. When used for online navigation, it provides
robust laser-based robot localization, obstacle detection, and
path planning.

Carmen is particularly useful for validation of new algo-
rithms because its simulator is known to be highly reliable
and policies with good simulation performance can typically
be ported without modification to the corresponding robot
platform.

However there are some limitations to the current soft-
ware, and we are actively developing a number of new capa-
bilities, for example:

• Detection and avoidance of negative obstacles (e.g. down-
ward staircase).

• Robust point-to-point planning and navigation.

• Shared control between autonomous controller and hu-
man user.

• Adaptive (user-specific) control strategy.

• Adapted interface for low-bandwidth communication.

The remainder of the paper discusses four ongoing areas
of research pertaining to this project.

Adaptive planning in large-scale environments
As part of its task domain, the robot will be called upon to
navigate robustly in very large environments. There exists a
number of well known approaches for robot path planning,
however they tend to roughly fall into two classes.

The first group assumes deterministic effects on the part
of both the robot and the environment; these methods can
therefore scale to high-dimensional domains but are not ro-
bust to uncertainty in the motion or sensor model. An exam-
ple of such algorithm is the variable resolution cell decom-
position technique.

The second group considers probabilistic motion effects
and sensor readings; these methods are therefore robust to
uncertainty, but generally scales poorly and can only handle
small environments. An example of such an algorithm is the
Partially Observable Markov Decision Process (POMDP)
framework.

We aim to combine these two types of techniques, in an
attempt to devise a planning approach that affords the com-
putational flexibility of variable resolution techniques with
the robustness of POMDs. Before describing our approach,
we review briefly the POMDP framework.

The POMDP is defined by the n-tuple:{S, A,Z, T,O,R}
whereS defines the state space,A defines the action space,
Z defines the set of observations,T = Pr(s′|s, a) de-
fines the state-to-state transition probabilities (e.g. motion
model),O = Pr(z|s, a) defines the probability of seeing
each observation (e.g. sensor model), andR(s, a) defines a
real-valued reward function. Unlike many traditional plan-
ning paradigms, in POMDPs the state of the system is not
necessarily known, but can be inferred probabilistically from



the observation sequence. To do this, we track a belief state,
b(s) = Pr(st = s|zt, at−1, zt−1, ..., a0, z0, b0), which de-
fines the probability of each state at a given time stept. The
goal of the POMDP is to select a sequence of actions such
as to maximize the sum of rewards over time. This is de-
fined formally as:V (b) = R(b, a) +

∑
b′ T (b, a, b′)V (b′).

Further details on POMDP solution techniques can be found
in the literature (Kaelbling et al., 1998; Hauskrecht, 2000;
Pineau et al., 2006). For the purposes of this paper, it is
sufficient to say that planning complexity increases quadrat-
ically with the size of the state space. Thus it is crucial to
find a good compact state representation to tackle planning
in large-scale environments.

With this goal in mind, we have developed a new ap-
proach to planning in metric environments with unifies
the variable resolution cell decomposition and POMDP ap-
proaches. The variable resolution technique allows us to
select the appropriate state representation for the environ-
ment. This automatically discretizes the robot’s navigation
space using fine grid resolution near obstacles or goal ar-
eas, and coarser discretization in large open spaces. Once
we have computed the discretization, we must infer a prob-
abilistic motion model to capture the robot’s motion uncer-
tainty. This is done using sampling techniques; the robot
runs through a number of trajectories and the motion model
is estimated from statistics computed over these trajectories.
A probabilistic sensor model is also needed; this is gener-
ally crafted by hand based on expert knowledge. In the next
section we discuss how to incorporate automated learning in
this phase of the approach. Given a variable resolution state
representation and corresponding parameterized models, we
are able to compute an optimal path planning strategy over
the entire state space. This is done using recent POMDP
solution techniques (Pineau and Gordon, 2005).

Figure 3 shows a sample map taken from (Carmen, 2006),
along with the the state representation that was extracted by
our approach. As expected, large rooms receive coarse reso-
lution, whereas hallways and narrow areas show finer reso-
lution. For this map, the use of the variable cell decomposi-
tion yielded a 400-fold reduction in computation, compared
to using the full map resolution. Further reduction could be
achieved at the expense of some loss in performance. Thus
the variable resolution approach allows us to trade-off plan-
ning time and plan quality in a flexible manner.

Learning and control under model uncertainty

The POMDP framework requires a known parametric model
defining the dynamics of the problem domain. The paramet-
ric model contains two parts: themotionmodel (or transition
probabilities) and thesensormodel (or observation proba-
bilities). In the section above, we assumed that the motion
model was learned by acquiring motion samples and build-
ing a parametric representation. We also assumed that the
observation model was given by an expert. Both of these as-
sumptions can be problematic in some realistic applications.
Learning a model from samples is feasible in cases where
data is plentiful and inexpensive, for example when a simu-
lator is available, however the quality of the produced model

Output Of Algorithm

Using Variable Resolution Techniques Under a POMDP Framework for Robotic Path Planning – p. 6Figure 2: Variable resolution map

is only as good as the simulator’s fidelity. Alternately, ask-
ing a domain expert to specify a parametric model is feasible
in some domains, for example in the physical world where
there are natural constraints. However in other cases, for ex-
ample human-robot interaction, acquiring an accurate model
can be challenging because of our poor understanding of the
dynamics that occur in that domain.

Ideally, we would like to combine both expert knowledge
and data-drive learning to produce a more flexible approach
to model acquisition. To achieve this, the key is to develop
new ways of representing the POMDP paradigm, such that
model uncertainty is taken into account. The approach we
propose, called MEDUSA, relies on a Bayesian formulation
of uncertainty, which is particularly appropriate to offer a
flexible trade-off between a priori knowledge engineering
and data-drive parameter inference.

The approach is relatively simple. First, we assume an
expert specifies a prior on the model parametersP (M). We
then observe dataY from standard trajectories. Assuming
we can specify a simple generative processP (Y |M), then it
is straight-forward to apply Bayes rule and obtain a posterior
modelP (M |Y ) which combines both the expert knowledge
and the data acquired. Since POMDP model parameters are
generally represented using multinomial distributions, it is
convenient to represent the model prior (and posterior) us-
ing Dirichlet distributions, which are the conjugate prior for
the multinomial. There is one more obstacle: to apply this
method we need to know thestatecorresponding to each
data point acquired, since this will tell us which parameter
to update. But the state is not usually given in POMDPs.
To overcome this, we assume access to an oracle which can
identify the state of the system when queried. This is a rel-
atively strong assumption, in the POMDP context. However
it is standard in most other planning frameworks. We com-
ment below on ways to relax this assumption.

Given these preliminaries, we formulate an algorithm
which uses Dirichlet distributions to capture model uncer-
tainty. The algorithm relies on a sampling of POMDP mod-
els from these distributions to plan and select actions. As



learning progresses, the set of sampled models will gradu-
ally converge to the correct model. Here is the full algo-
rithm:
1. Define Dirichlet priors over the model.

2. Sample a set of POMDPs from the distribution.

3. Solve each model using standard POMDP technique.

4. Use policy to select good actions.

5. Query the oracle and observe answer (s,a,z,s)

6. Increment Dirichlet parametersDir(αs,a,s), Dir(αs,a,z)
7. Continue until convergence.
Throughout, we maintain a weight indicating the probability
of a sampled model. Models with low weights are dropped
periodically, and replaced by re-sampling the Dirichlet dis-
tributions.

In practice, we also try to minimize the number of queries
to the oracle. For example, if the robot happens to be in a
part of the state space that has already been well-explored,
then it is not useful to query the oracle since no new informa-
tion will be provided. In such cases, the robot should sim-
ple behave optimally until it moves towards less-explored
regions. To accomplish this as part of MEDUSA, we con-
sidered a number of heuristics designed to decide when the
oracle should be queried, and when the robot should in-
stead follow its policy. The method we settled on com-
bines information about thevarianceover the value com-
puted by each model, theexpected information gainthat a
query could yield, theentropy in the belief, and thenum-
ber of recent queries. This aspect of MEDUSA is some-
what ad-hoc. We have considered methods to formalize it,
such as including the decision of whether to query within
the POMDP decision-making (Jaulmes et al., 2005a). How-
ever solving this optimally proves intractable for all but the
smallest problems (e.g. 2 states, 2 actions), therefore we
continue to use the heuristics mentioned above.

Experimental validation of the MEDUSA technique has
focused on a scenario where the SmartWheeler must navi-
gate in an environment, with the goal of autonomously find-
ing a caregiver that is also mobile. Similar versions of this
problem have been studied before in the POMDP literature
under various names (Hide, Tag, Find-the-patient). Previous
work always assumed a fully modeled version of this prob-
lem, where the person’s location is unknown, but the per-
son’s motion model is precisely modeled, as are the robot’s
sensor and motion models. We now consider the case where
in addition to not knowing the person’s position, we are also
uncertain about the person’s motion model and the robot’s
sensor model. In total, MEDUSA is trying to learn 52 dis-
tinct parameters. We consider the environment shown in
Figure 3. Planning and learning are done over a discretized
version; the associated POMDP has 362 states, 24 observa-
tions and 5 actions. We assume a fixed-resolution grid (fu-
ture plans include integration of the method describe in the
previous section). Execution assumes the continuous state
representation and in that case belief tracking is done on-
board Carmen using the full particle filter.

During learning, MEDUSA makes several queries about
the state. Since there is no model uncertainty about the

Figure 3: Map of the environment used for the robot simu-
lation experiment.

robot’s motion, this is equivalent to asking the caregiver to
reveal his/her position so that MEDUSA can infer his/her
motion model. The answer to the queries can be provided
by a human operator, though for convenience of carrying out
multiple evaluations, in our experiments they are produced
using a generative model of the caregiver.

As we can see from Figure 4, MEDUSA converges within
roughly 12,000 time steps, after having received answers to
approximately 9,000 queries. While this may seem large,
it is worthwhile pointing out that MEDUSA’s oracle can in
fact take the form of a high-precision sensor. It is realistic
to assume for example that the caregiver will carry around a
GPS sensor that can answer queries automatically during the
learning phase, and that this will play the role of the oracle.
In such a setup, 9,000 queries seems a small price to pay
to obtain a full probabilistic model of the person’s motion
model.

(a) Discounted reward as a function of the number of time steps.

(b) Number of queries as a function of the number of time steps.

Figure 4:Results for the robotic task domain.



The other reason why MEDUSA requires so many queries
for this problem is that the experiment assumed completely
uninformed initial priors on the robot’s sensor model and
the caregiver’s motion model. Using a more informed prior
would lead to faster learning, but would require more knowl-
edge engineering. Finally, to further reduce the number of
queries, we could also build a simpler model with fewer
Dirichlet parameters, in effect assuming stronger correla-
tions between model parameters.

Further information on this component is available
in (Jaulmes et al., 2005a; Jaulmes et al., 2005b; Jaulmes et
al., 2007).

Large-scale dialogue management
A natural medium for communication between a user and an
intelligent system is through voice commands. While many
commercial software solutions are available for speech
recognition and synthesis, there is no commercial equiva-
lent for handling the actual dialogue (i.e. production of re-
sponses by the robot). In fact, in a spoken dialogue system,
determining which action the robot (or computer) should
take in a given situation is a difficult problem due to the un-
certainty that characterizes human communication.

Earlier work pioneered the idea of POMDP-based dia-
logue managers, but were limited to small domains (e.g. 2-3
topics in a question-answer format). This prompted an in-
vestigation of new techniques for tracking the dialogue state
and efficiently selecting dialogue actions in domains with
large observation spaces. In particular, we study the appli-
cability of two well-known classes of data summarization
techniques to this problem.

We first investigated the use of the K-means algorithm to
find a small set of summary observations. The idea is to
cluster the natural observationsZ into the clustersZ ′, such
that observations with similar emission probabilities over all
states are clustered together. It is crucial to use thenor-
malizedobservation probabilitiesPr(z|s, a)/Pr(z) (rather
than the unnormalizedPr(z|s, a)) to ensure that observa-
tions that are clustered together provide (near-)equivalent in-
ference information over the set of states.

We also investigated the use of a dimensionality reduc-
tion algorithm along the lines of Principal Component Anal-
ysis (with a few added constraints) which finds a good low-
dimensional representation of the observation probability
model. The idea is to use the lower-dimensional projection
during planning, which should reduce computation time.

Both methods have been used in the past to summa-
rize high-dimensional data. In general, common wisdom
might suggest that Principal Component Analysis yields a
higher quality solution, since it projects the entire obser-
vation space. K-means has the advantage that it is usually
much faster to compute for very large observation sets.

Before implementing either method onboard the robot, we
tested both with the SACTI dialogue corpus (Willians and
Young, 2004). The results we obtained suggest that the K-
means clustering works well, even in this complex dialogue
domain. This is encouraging because the clustering algo-
rithm is simple to implement, fast to compute, and generates

intuitive compressed representations. We also found that
a constrained-based PCA performed on par with K-means
on this 450 word domain, however computation was signif-
icantly slower. Further technical details and results are pro-
vided in (Atrash and Pineau, 2005). We are now extending
the results to topics relevant to the robot domain.
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Figure 5: Results for Dialogue POMDP: (a) Expected Re-
ward and (b) Planning time

High-level goal specification
The last component aims at designing and validating a new
communication protocol for allowing users to provide high-
level navigation commands to the wheelchair. Conventional
control of a motorized wheelchair is typically done through
a joystick device. For those unable to operate a standard
joystick, alternatives include sip-and-puff devices, pressure
sensors, etc. Regardless of the device used, the user input set
is restricted to displacement and velocity commands. Opera-
tion of a wheelchair in this manner can result in fatigue over
time, as well it is often difficult to manoeuver the wheelchair
in constrained spaces (e.g. elevators, crowded rooms, etc).



The prototype robotic wheelchair we are developing seeks
to alleviate these challenges by allowing the users to specify
high-level navigation goals (e.g.Go to room 103.) This re-
quires a new communication protocol which will allow the
user to input such commands.

The input protocol we proposed initially for specifying
high-level navigation goals was based on EdgeWrite (Wob-
brock and Myers, 2006), a unistroke text entry method for
handheld devices, designed to provide high accuracy text en-
try for people with motor impairments. We have adapted this
method for the control of a motorized wheelchair by cus-
tomizing the set of strokes, input constraints, and feedback
display, to the task of wheelchair control.

User experiments currently under way are comparing en-
try of robot navigation goals using: direct map selection,
menu selection, and EdgeWrite gesture entry. For each in-
put modality, the user is shown a floor map of a building on
the screen, and guided through a list of locations that must
be selected quickly and accurately using the different input
selection methods. We measure error rate, input time, and
motion time needed to reach the target location. Early re-
sults with a control population indicate that menu selection
(from a static vertical list) was twice as fast as selecting the
targets directly on the map and three times as fast as entering
the corresponding EdgeWrite symbol, which is as expected
for this population. We must now replicate the experiment
with disabled users. Since this population has significant
motor constraints, we may obtain significantly different re-
sults regarding the preferred mode of input.

Discussion
This paper highlights some of the key components of the
SmartWheeler project. We are currently working on their in-
tegration, and planning out a sequence of experiments with
the target population. Through close collaborations with en-
gineers and rehabilitation researchers, we hope to one day
have a positive impact on the quality of life for individuals
with severe mobility impairments.

It is worth noting that many of the techniques devel-
oped in this project are not specific to the mobility-impaired
population, but are relevant to building service robots for
a large number of applications. The SmartWheeler plat-
form is proving to be an exciting new test-bed for explor-
ing novel concepts and approaches in automated decision-
making, human-robot interaction, and assistive robotics.
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