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Abstract

When a physicist performs a quantic measurement, new in-
formation about the system at hand is gathered. This pre-
sentation studies the logical properties of how this new in-
formation is combined with previous information. It presents
Quantum Logic as a propositional logic under two connec-
tives: negation and the and then operation that combines old
and new information. The and then connective is neither
commutative nor associative. Many properties of this logic
are exhibited, and some small elegant subset is shown to im-
ply all the properties considered. No independence or com-
pleteness result is claimed. Classical physical systems are
exactly characterized by the commutativity, the associativ-
ity, or the monotonicity of the and then connective. Entail-
ment is defined in this logic and can be proved to be a par-
tial order. In orthomodular lattices, the operation proposed
by Finch in (Finch 1969) satisfies all the properties studied
in this paper. All properties satisfied by Finch’s operation
in modular lattices are valid in Quantum Logic. It is not
known whether all properties of Quantum Logic are satisfied
by Finch’s operation in modular lattices. Non-commutative,
non-associative algebraic structures generalizing Boolean al-
gebras are defined, ideals are characterized and a homomor-
phism theorem is given '

Introduction
Background

Since its foundation in (Birkoff & Von Neumann 1936),
an impressive amount of different systems have been pro-
posed for Quantum Logic. This paper proposes a mini-
malistic syntax: one unary, —, and one binary, *, connec-
tives. The binary connective is not the commutative and as-
sociative conjunction proposed by Birkhoff and von Neu-
mann but the non-commutative, non-associative conjunc-
tion proposed by Finch in (Finch 1969)that is interpreted in
this paper as an and then connective acting on experimen-
tal propositions. The minimalistic syntax provides algebraic
properties that have an immediate meaning for the logic of
measurements in Quantum (and classical) Physics. Central
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properties of interest are properties of the binary connec-
tive, *, alone, that do not mention —. The algebraic struc-
tures, NCNAB-algebras, that correspond to this Quantum
Logic are non-commutative, non-associative algebras that
generalize Boolean algebras. The algebraic properties of the
conjunction define an orthomodular partial order on the el-
ements. The commutative NCNAB-algebras are exactly the
Boolean algebras, fitting the accepted wisdom that Classical
Physics is the special case of Quantum Physics one obtains
when all observables commute.

This should be contradistincted with traditional presenta-
tions of Quantum Logic which:

e use a syntax including one unary connective and at least
two binary connectives: conjunction, disjunction and of-
ten one or more implications,

e interpret conjunction as the (commutative) intersection of
closed linear subspaces of Hilbert space, which is seman-
tically problematic since the projection on the intersection
A N B of two closed subspaces cannot be defined using
the two projections on A and B,

e leads to a presentation in which the central properties con-
sidered such as distributivity, modularity or orthomodu-
larity involve more than one connective, and have no ob-
vious meaning for proof-theory.

Previous work on the non-commutative conjunction pro-
posed by Finch (1969), such as (Roman & Rumbos 1991)
have always considered this connective as defined in terms
of more basic connectives. This paper is closely connected
to (Lehmann, Engesser & Gabbay 2006). The main differ-
ence is that, there, the basic operation was composition of
projections and, here, the basic operation is the projection of
one closed subspace on a closed subspace.

This paper leaves many questions unsolved.

Plan of this paper

In Section the formal framework of Quantum Mechanics
is presented and the representation of knowledge about a
quantic system in this framework is discussed. Section
presents the syntax of the language that will be used to talk
about quantic systems. Section presents a semantic ac-
count of this language and defines Hilbert Space Quantic
Logic. Section defines the corresponding first-order struc-
tures, called NCNAB-algebras. They generalize Boolean al-



gebras. It provides an in-depth study of NCNAB-algebras.
Section shows that orthomodular lattices, under Finch’s
(Finch 1969) interpretation of the and then connective sat-
isfy a list of central properties of NCNAB-algebras. All
properties of even modular lattices, under this interpretation
of the and then connective, hold in NCNAB-algebras. Sec-
tion studies ideals in NCNAB-algebras and proves a homo-
morphism theorem. Section is a summary and conclusion.

What is a quantic proposition?

When, in (Birkoff & Von Neumann 1936), Birkhoff and
von Neumann introduced Quantum Logic, they argued that
an experimental proposition must be mathematically repre-
sented by a closed (linear) subspace of a Hilbert space. Let
us develop this point.

The formalism generally accepted for Quantum Mechan-
ics, brought to its final form by von Neumann in (vonNeu-
mann:Quanten 1943), considers the set of possible states of
a system to be the rays (i.e., one-dimensional subspaces) of a
Hilbert space, say H. A fundamental principle of Quantum
Mechanics claims that if, from all one knows, the system
could be in any one of two different states, then it could be
in any one of the many different superpositions of those two
states. Therefore propositions must be represented by linear
subspaces of H. Birkhoff and von Neumann argue that such
subspaces must be closed.

Their argument is essentially the following. The basic
pieces of information one can gather about a system are of
the type: the system is in the eigensubspace of some self-
adjoint operator for some eigenvalue \. The eigensubspaces
of any bounded linear operator are closed, and self-adjoint
operators are bounded. Then they explain that the informa-
tion one can gather about any system is built out of those ba-
sic pieces by intersection (for information given by different
commuting operators) and linear sum (for different possible
eigenvalues). They argue that, even for infinite such sums,
the result has to be understood as the closure of the linear
span of the closed subspaces considered.

If a proposition is represented by a closed subspace A, one
may, at least in principle, test the system for this proposition.
The measurement, represented by the projection on A will,
if the system is in a state that satisfies the proposition (i.e., in
A), give the corresponding eigenvalue with probability one
and, if the system does not satisfy the proposition, the mea-
surement will give, with some strictly positive probability,
some other eigenvalue.

Consider now a totally unknown system on which one
performs a sequence of two measurements. Before the first
measurement, our knowledge is represented by the whole
(closed) space H. After the first measurement, our knowl-
edge is represented by the closed subspace A that is the
eigensubspace corresponding to the result obtained. After
the second measurement, one knows, not only that the sys-
tem is in the closed subspace B corresponding to the result
obtained in the second measurement, but also that it is in
the projection on B of some ray of A. We must therefore
consider that, if A and B are meaningful closed subspaces,
then the projection of A on B, i.e., the direct image of A

under the transformation E, which is the projection on B, is
a meaningful proposition. If one has performed a measure-
ment whose result indicates A and, subsequently, one per-
forms a measurement whose result indicates B, the knowl-
edge that one possesses about the system is encapsulated in

the subspace B(A).

At this point, a very fundamental remark kicks in. The
projection E(A) of a closed subspace A on a closed sub-
space B is a subspace but is not always closed. I am in-
debted to Semyon Alesker, Joseph Bernstein and Vitali Mil-
man for enlightening me and providing me with an explicit
counter-example. The counter-example is based on an un-
bounded operator whose graph is closed. By a result of Ba-
nach (1932) no such operator can be defined on the whole
space, and one must build one such operator defined on only
part of the space.

There is no way, then, we can consider an arbitrary Hilbert
space H and the family of all closed subspaces of H. We
could decide to consider only those Hilbert spaces H for
which the set of all closed subspaces is closed under projec-
tions, but there is absolutely no reason to stick to the idea,
discussed critically by Birkhoff and von Neumann, that we
should consider all closed subspaces of . It seems much
more natural not to put restrictions on H but to consider only
families of closed subspaces that are closed under projec-
tions. This is what will be done in Section .

Syntax

A syntax for denoting measurements and propositions to talk
about them will be described now. Terms denote measure-
ments.

Definition 1 Let V' be a denumerable set (of atomic terms).
The set of quantic terms over V will be denoted by
QTerms(V) and is defined inductively by:

an element of V' (an atomic term) is a quantic term,

1 is a quantic term,

if x is a quantic term, then —x is a quantic term,
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if x and y are quantic terms, then x * y is a quantic term,
and

5. these are the only quantic terms.

We shall write quantic terms using parentheses when useful
and assuming that — has precedence over .

One could consider a more extreme minimalistic ap-
proach based on the following remark. If one reflects on
the two expressions (x * y) x z and x * (y * z), one notices
that the former has an immediate experimental interpreta-
tion: the system may result from a measurement = followed
by y followed by z. The latter expression does not present
such a natural interpretation. Its meaning is that the system
may result from a measurement of x and then a measure-
ment that it could have been the case that y and then z were
measured: a quite unnatural proposition to make, since it is
not clear how one could measure that the system could have
been in a state satisfying y and then z without measuring
first y and then z. Therefore, one could have restricted the
rule 4) above to: if x is a quantic term and y is a literal (i.e.,



atomic term or negation of an atomic term), then x * y is a
quantic term. This interesting possibility would probably be
best treated in the framework of a calculus of sequents, and
is left for future work.

Propositions talk about terms.

Definition 2 A simple quantic proposition on V is a
pair of elements of QTerms(V), written =1y for
x,y € QTerms(V). The conditional quantic propositions
on'V are defined in the following way:

1. a simple quantic proposition is a conditional quantic
proposition,

2. if x = y is a simple quantic proposition and P is a condi-
tional quantic proposition then if x =y then P is a condi-
tional quantic proposition, and

3. these are the only conditional quantic propositions.

Notation:The proposition if w = x then if y = z then P
will be denoted: if w = x and y = z then P. The simple
proposition x x y = x will denoted x < .

In Section we shall propose a semantics for the calculus
of conditional quantic propositions, based on the geometry
of Hilbert spaces.

Semantics

We shall formally define the families of closed subspaces we
are interested in.

Definition 3 Let H be a Hilbert space and M be a family
of closed subspaces of H. The family M is said to be a P-
family iff

e He M,

o forany A € M, A+ € M,

e forany A,B € M, E(A) e M.

Set-theorists: note that we use the term family only for con-
venience since the families considered are sets. Note that, as
mentioned in Section , the projection B(A) is not always
a closed subspace: M is a P-family only if such projec-
tions amongst members of the family are closed. There are
many examples of P-families. For example, the set of all
closed subspaces of a finite-dimensional Hilbert space is a
P-family. For any Hilbert space H, the family containing
two elements: H and the null subspace is a P-family.

An interpretation f of QT erms(V') into a P-family M of
'H associates with every quantic term an element of M such
that:

° f(l) =H,
o f(=z) = f(a)*,
o flzxy) = f(y)(f(@))

Definition 4 If x = y is a simple quantic proposition over
V, and f is an interpretation of QTerms(V) into a P-
family M, we shall say that x = vy is satisfied under f iff
f(x) = f(y). For a conditional quantic proposition if x =y
then P we shall say that it is satisfied under f iff either P is
satisfied under f or x = y is not satisfied under f. A simple
(resp. conditional) proposition is valid in a P-family M iff
it is satisfied under any interpretation f into M. A simple

(resp. conditional) proposition is Hilbert-valid iff it is valid
in any P-family.

The relation < defined following Definition 2 is inter-
preted as subset inclusion.

Lemma 1 Let f be an interpretation of QT erms(V') into a
P-family M. The simple proposition x < vy is satisfied under
i f(z) € f(y)

Hilbert Space Quantic Logic is defined to be the set of all
Hilbert-valid conditional propositions.

Non-Commutative, Non-Associative Boolean
algebras

In this section, an effort is made to try and define the alge-
braic structures that can be taken as the essence of Quantum
Logic. Three principles are guiding us:

e Language: we are looking for a family of general algebras
whose type consists of two constants, a unary operation
and a binary operation. Clearly other presentations may
be considered, in a way that is similar to the many pre-
sentations of Boolean algebras. The only properties that
we shall consider are properties that can be expressed as
conditional propositions.

e Every P-family defines a structure in the family. This
is a disputable assumption: one may think that not all
P-families are meaningful for Quantum Mechanics and
therefore that we may have to consider a subclass of P-
families. In this paper only conditional propositions that
are valid amongst all P-families will be considered.

e Every Boolean Algebra is an algebra of the family. This
assumption is based on the strong feeling that Quantum
Logic should not be seen as incompatible with classical
logic, as is the case with the currently prevailing view
of Quantum Logic, as attested by the results of Kochen
and Specker, but that classical logic should be a special
case of Quantum Logic. More precisely, classical logic
is Commutative Quantum Logic (when for every z, vy,
TxY =1Y*IT).

We consider structures (M, 0,1, -, ) where M is a non-
empty set, 0 and 1 are elements of M, — is a unary function
M — M and x* is a binary function M x M — M.

Definition 5 A structure  (M,0,1,-,%) is a non-
commutative, non-associative Boolean algebra (NCNAB-
algebra) iff it satisfies, for all interpretations of atomic
terms in M, all conditional quantic propositions valid in
Hilbert Space Quantum Logic.

Note that Definition 5 does not require that 0 be different
from 1.

It would be nice to be able to present now a list of condi-
tional quantic propositions valid in Hilbert Space Quantum
logic and show that any structure satisfying those propo-
sitions is (isomorphic to) an NCNAB-algebra. This paper
does not provide such a completeness result.

We shall present a number of conditional quantic propo-
sitions that are valid in Hilbert Space Quantum Logic



and prove interesting properties for all structures that sat-
isfy those properties, and therefore also for any NCNAB-
algebra. No claim is made about the completeness of the
list, and no claim is made about the independence of the
properties listed in the sequel.

In Section , we shall present propositions that do not con-
tain —. A first result claims that they are valid in Hilbert
Space Quantum Logic. A second result shows that in any
structure satisfying those propositions, the relation < is a
partial order. In Section , we shall present propositions that
deal with —, claim that they are valid in Hilbert Space Quan-
tum Logic (proof postponed) and show that any structure
that satisfies those propositions and those of Section and is
commutative (or associative, or monotonic) is a Boolean al-
gebra. In Section we shall present valid propositions which,
at this stage, cannot be proven to follow from the proposi-
tions of Sections and . The reader should notice that all the
propositions presented below have a natural flavor.

Properties of and then

Our first set of propositions deal with * only. We shall say
that x and y commute if x xy = y * x.

Theorem 1 The following conditional quantic propositions
are valid in Hilbert Space Quantum Logic.

1. Global Cautious Commutativity if zxy <z then
THY =Y,

2. Cautious Associativity if = «xy = y x x, then, for any
zE€M, zx(xxy) =(z2xx)*y,

3. Local Cautious Commutativity if (z xxz)*xy < x and
(zxy)xx <y, then (zxx)*xy = (z*xy)*x,

4 Z0xx=0=xx*0,

S5 Nlxz=x=xx1,

6. Left Monotony if x < vy, then, x x z < y * 2.
Remarks:

e the binary operation * is not assumed to be associative or
commutative.

e Taking M to be a Boolean algebra, 0 to be the bottom ele-
ment, 1 the top element, — to be complementation and * to
be greatest lower bound, one obtains a model of all of the
properties above, in which x is associative and commuta-
tive, as well as a model of the properties of Theorems 3
and 6.

e Global Cautious Commutativity (GCC) is a weak com-
mutativity property, it claims that, under certain circum-
stances, * is commutative. The commutativity property
asserted = * y = y * x represents a global commutation
property: x and y commute in any context. Commutation
in a specific context z, a local commutation property, is
expressed as (z x x) * y = (2 x y) x x and appears in the
property of Local Cautious Commutativity (LCC) be-
low. Theorem 2, item 9) shows that two propositions that
commute globally, commute locally in any context.

o Cautious Associativity (CA) is a weak associativity
property: under certain circumstances, i.e., if x and y
commute, we have associativity for z, z and y.

e LCC is a weak commutativity property, it claims that, un-
der certain circumstances, propositions x and y commute
locally, i.e., in the context of z.

e Z expresses the fact that 0 is a zero for the operation .

e N expresses the fact that 1 is a neutral element for the
operation .

e Left Monotony (LM) expresses the fact that the opera-
tion * is monotone, with respect to <, in its left argu-
ment. A symmetric property of right monotony would
imply commutativity since z < 1 would imply y * 2 <
y * 1 =y and GCC would then imply = *x y = y * x.

We may now prove that any structure satisfying the prop-
erties of Theorem 1 has many interesting properties.

Theorem 2 The following properties hold in any structure
that satisfies the properties GLC, CA, LCC, Z, N, and LM of
Theorem 1:

0<z <1,

rxy <y,

x < z, i.e., the relation < is reflexive, i.e., v x x = x,

if v <y then x and y commute,

the relation < is antisymmetric,

the relation < is transitive,

the relation < is a partial order,

if xxy= y=xx, then, for any z &€ M we have:
zx(yxx)=zx(x*xy)=(zxx)xy=(2%y)xz,

if xxy=yx*xx, then, for any z € M we have:
(zxx)xy <z (and (zxy) *x < y),

10. if x < vy, then forany 2 € M: zxx = (z x y) * .

o N &N R o~
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Properties of negation

We shall now deal with properties that involve both * and —.
We shall write x | y forz xy = 0.

Theorem 3 The following conditional quantic propositions
are valid in Hilbert Space Quantum Logic.

I. NPrxsx—x=—-x*xx=0,ie,x L ~xand—-x L x,
2. RNLifz*xz<yandx*x -z < vy, thenx < y.
Remarks:

e NP, and RNL may be considered to be the proof rules
that define negation. NP parallels a left introduction rule.
RNL is a non-commutative left elimination rule.

e The property LNL, dual to RNL and expressed: if
zxx <y and -zxx <y, then x <y is also valid in
Hilbert Space Quantum Logic. It will be described and
discussed in Section .

e The properties RNL and LNL are an important novelty of
this paper. All the properties of Theorems 1 and 3, except
RNL, are satisfied in Hilbert space when x* is interpreted
as intersection and — as orthogonal complement, the in-
terpretation proposed by (Birkoff & Von Neumann 1936).
Neither RNL nor its dual LNL are satisfied in this inter-
pretation. Both are very natural rules that express a very
basic rule of reasoning, reasoning by cases: to prove «
it is enough to prove that a holds if 3 holds and that «



holds if =3 holds. Such reasoning by cases is valid in
classical logic. It is also valid in many (preferential) non-
monotonic logics (Kraus, Lehmann & Magidor 1990). It
is also used in Quantum Physics. The following presents
a use of RNL. To prove that a system prepared in a certain
way has a certain quantic property, it is enough to show
that, after some measurement, all possible resulting sys-
tems have the property. Suppose, for example, that one
prepares many copies of a quantic system and then mea-
sures, on each copy, its spin along some direction d’. One
finds many possible values for the spin along the direc-
tion d’. If, then, on each of the resulting systems (with
different values for the spin along d’) one measures the
value 0 for the spin along a direction d, this is a proof
that the original system (before measuring along d’) had a
zero spin along d. Such a proof-rule seems to be crucially
needed because, even if one measures the spin along d im-
mediately (without measuring first along d’) one cannot,
in effect, exclude the possibility that some interaction be-
tween the system and its environment occured, resulting
in some unknown measurement.

A series of theorems will now describe properties of all
structures satisfying the properties above.

Theorem 4 The following properties hold in any structure
that satisfies the properties GLC, CA, LCC, Z, N, and LM of
Theorem 1 and the properties NP and RNL of Theorem 3.
—(—z) =z,

0=-1land1 = -0,

the relation 1 is symmetric,

r<yiffe L -y,

z<yiff y <z,

ife <yandy L z, thenx 1 2,

ify<zandy < —x theny =0,

ifx <yand ~x <y, theny =1,

O %0 N SR W~

ife<yandx <z thenx <yxz,
The next lemma deals with commuting propositions.

Lemma 2 In any structure that satisfies the properties of
Theorems 1 and 3:

if all three propositions x, y and z commute pairwise, then
x commutes with y * z,
2. if x commutes with y, then © commutes with —vy,

3. if x and y commute, then x * y is their greatest lower
bound and —(—x * —y) their least upper bound,

4. if x and y commute, then —(x x y) xy < -z,

5. Robbins equation if x and y commute then x =
(@ y) * —(x x y)),

6. Orthomodularity if x <y, then y is the least upper
bound of x and —x x y.

Definition 6 A structure is commutative iff for any
r,y €M, xxy = yx*z. A structure is associative iff for
any x,y,z € M, (xxy)*xz= xx(y*z). A structure is
monotone iff for any x,y € M, x xy < x.

Theorem 5 For a structure A = (M,0,1,—, %) satisfying
the properties of Theorems 1 and 3 the following proposi-
tions are equivalent:

1. Ais associative,

2. A is monotone,

3. A is commutative,

4. Ais a Boolean algebra.

The failure of monotonicity is a hallmark of the approach to
Quantum Logic taken in (Engesser & Gabbay 2002). Theo-
rem 5 shows that this failure is inherently linked to the fail-
ure of associativity and commutativity. It was the feeling
of many that, since the hallmark of Quantum Mechanics, as
opposed to Classical Mechanics, is the non-commutativity
of operators, Quantum Logic should, in some way, be non-
commutative. Theorem 5 shows why it also has to be non-
associative, a property that is more surprising.

Definition 7 Let M be any NCNAB-algebra and let
X C M be a set of propositions of M. The sub-algebra
generated by X, M(X) is the smallest sub-algebra of M
containing X.

Note that M (X) is an NCNAB-algebra since the intersec-
tion of a family of NCNAB-algebras is an NCNAB-algebra
due to the conditional-equational form of the properties
defining an NCNAB-algebra.

Lemma 3 Let M be any NCNAB-algebra and let X C M
be a set of pairwise commuting propositions: i.e., for any
z,y € X x*xy =yx*x, then the sub-algebra of M gener-
ated by X, M (X) is a commutative NCNAB-algebra.

Additional propositions valid in Hilbert Space
Quantum Logic

Some additional propositions that are valid in Hilbert Space
Quantum Logic will be presented here. The question
whether these properties follow from those of Theorems 1
and 3 is still open.

Theorem 6 The following properties hold in any NCNAB-
algebra.

1. INLifzxx <yand ~zxx <y, thenx <y,

2. NNife <yandx x—z <y, thenxxz <y,

3. Fhdyx(zxy) <a

LNL is the dual of RNL. NN is a paradoxical rule of proof:
to prove y after one measures x and z, it is enough to prove
NN is a rule of cautious monotony and the converse of RNL.
F4 is not easily interpreted in terms of quantic measure-

ments. F4 is property (4) of Finch (Finch 1969). A special
case was proved in Lemma 2, item 4.

Lemma 4 In any structure that satisfies the properties of
Theorems 1 and 3 and F4, we have x  (x x y)' < y'.

Orthomodular and Modular Quantum Logic

A different, weaker, semantics, based on orthocomple-
mented lattices may be considered. It was proposed by Finch
in (Finch 1969).



An interpretation f of QTerms(V) into an orthocomple-
mented lattice (X, L, T, ’, <) associates with every quantic
term an element of M such that:

e (=T,

o f(mx) = f(=),

o flaxy)=(f2)VF))AfY)

Quantic propositions are given the obvious interpretation.
Validity is defined as usual, for diferent families of or-
thocomplemented lattices: orthomodular, modular, and
Boolean algebras. Orthomodular (resp. modular, Boolean)
Quantum Logic is the set of all conditional propositions
valid in orthomodular (resp. modular, Boolean) lattices. It is
easy to see that in Boolean lattices, one has: x xy =z Ay
and therefore Boolean Quantum Logic is classical logic. But
even in modular lattices * is different from A: consider the
modular lattice of all subspaces of a Hilbert space.

Let us now sort out the relations between all those log-
ics we considered: Hilbert Space Quantum Logic (HSQL),
Orthomodular Quantum Logic (OQL), Modular Quantum
Logic (MQL) and Boolean Logic (BL).

Theorem 7

OQL C MQL C HSQL C BL.

The rightmost inclusion is strict. It is not known whether
OQL and HSQL are different.

In (Birkoff & Von Neumann 1936), Birkhoff and von
Neumann proposed modular lattices as the structure of
Quantum Logic. The research community did not chose this
path and pursued the orthomodular path. Theorem 7 shows
that, for the limited language considered in this paper, one
may go the modular way.

Orthomodular Quantum Logic is a subset of Modular
Quantum Logic since any modular lattice is orthomodular.
We do not know whether the inclusion is strict. To see that
Modular Quantum Logic is a subset of Hilbert Space Quan-
tum Logic consider that any P-family is part of a modular
lattice: the lattice of all subspaces of H. Complementa-
tion in the lattice is orthogonal complementation in Hilbert
space. We are left to show that, in a P-family, the lattice op-
eration defined by Finch is projection. In other terms, that
given any two closed subspaces A and B of the P-family, the

projection of A on B, B(A), is (A + B+) N B.

Lemma 5 Let ‘H be Hilbert. If A is any (not necessarily
closed) linear subspace of H and B is any closed subspace

of M, then B(A) = (A+ B+)n B.

It is not known whether Hilbert Space Quantum Logic is
different from Modular Quantum Logic, or even whether it
is different from Orthomodular Logic. The orthoarguesian
law of (Greechie 1981) that traditionally separates Hilbert
space logic from orthomodular logic is not obviously ex-
pressible in terms of * and — only.

Hilbert Space Quantum Logic is a strict subset of Boolean
Logic. Indeed any Boolean Algebra is a field of subsets
of some set X. Consider now the Hilbert space whose or-
thonormal basis is X. The elements of the field are closed
subspaces and they form a P-family. MQL is therefore a

subset of Boolean Logic. It is a strict subset since HSQL is
not commutative.

We shall now prove that all the properties of HSQL that
were mentioned in Section are part of OQL, the weakest of
our logics, therefore proving Theorems 1, 3 and 6.

Let us assume an orthomodular lattice and define a * b =
(aVV')Ab. First, note that the relation < we define in
NCNAB-algebras coincides with the ordering of the lat-
tice. If we use < to represent the order of the lattice:
z <y iff x x y = x. Proof: Assume = < y, then, by ortho-
modularity z = y A (z V /), i.e., = x * y. Conversely, if
z=yA(xVy) thenz <y.

Lemma 6 Ifz+xx <y, then z*xx < zx (x Ay).

Lemma 7 If
z* (x Ay).
Lemma8 (2 Vy)A(zVy)=zV(zVy)Ay.
Theorem 8 Properties GCC, CA, LCC, Z, N, LM, NP, RNL,

LNL and NN are valid in Orthomodular Quantic Logic and
therefore in Hilbert Space Quantic Logic.

(zxx)*xy <, then  (zxx)xy=

Ideals and a homomorphism theorem

In this section, we generalize the notions of homomor-
phisms, kernels and ideals that are fundamental in the study
of Boolean algebras. We present a generalized homomor-
phism theorems: in non-commutative algebras kernels and
ideals coincide.

Definition 8 Let S;, i = 1,2 be structures of the type con-
sidered in Section of carriers My and Ms respectively. A
function f : My — Ms is a homomorphism from Sy to So
iff, for any x,y € M:

1. f(0)=0,

2. f(h)y=1

3. f(=z) =~f(x), and

4. flzxy) = fx)* f(y)

Definition 9 If S is a structure of carrier M, a binary rela-
tion ~ on M is said to be a congruence relation iff:

1. ~ is an equivalence relation,

2. ifx ~ y then ~x ~ —y,

3. ifzy ~xoandy; ~ ya then T1 * Y1 ~ T * Ya.

Any homomorphism f defines a congruence relation ~ ¢ by
x ~y¢y iff f(z) = f(y). The kernel of f, Ker(f) is the
equivalence class of 0. We shall now study the relation be-
tween kernels and congruences.

The notion of an ideal is key. We need the following defi-
nition.
Definition 10 Assume M is the carrier of a structure and
I C M. We shall define two binary relations on M :
1. z<pyiffex—y €l and
2. x~ryiffe <jyandy <y x.
Definition 11 Assume S = (M,0,1,—,%) is an NCNAB-

algebra. A set I C M is an ideal of S iff, for any
r,y,z € M:



1. 0el,

2. ifx € I then, foranyy e M xxy € landy*x € 1,

3. for any z,y,z € M, if xxy €1l and zx—y € I then
xxz €1

4. if(xxy) < Izthenx+y ~jyy*uz,

5.0 xTxy~ryxa, then  for  any
(zxx)xy~y 2% (zxy),

6. if (zxx)xy<yx and
(zxx)xy~y (2%xy) *x,

Condition 3 corresponds to the Boolean condition: if  and

y are in [, then x V y is in I: if & and y are in I, then

(xVy)Azand (z Vy) Az arein I and therefore z V y is

in I. Conditions 4, 5 and 6 deal with the non-commutativity

of *: they are trivially satisfied in a commutative structure.

z €M,

(zxy)xx <1y, then

Lemma 9 Assume I is an ideal.
1. ifrelandy < xthenye€ I,
2. ifxxy el thenyxz el

Lemma 10 Let S; be an NCNAB-algebra and f is a homo-
morphism of domain S1, then, its kernel is an ideal.

Lemma 11 If I is an ideal of an NCNAB-algebra of carrier
M, we have:

ife <ythenx <y,

the relation < is transitive, and a quasi-order,

the relation ~ is an equivalence relation,

if v <y then —y <y —x, and

ifev <pythen, forany zx x z <y y * 2,
x<ryiffrxy~yx,

L difxxy ~pyxxthen —x xy ~1 Yy * .

Theorem 9 If I is an ideal of an NCNAB-algebra of carrier
M, then the binary relation ~7 is a congruence relation.

NS U R W~

Note that the converse of Lemma 10 holds. Any ideal is the
kernel of some homomorphism.

Theorem 10 (The homomorphism theorem) If [ is an
ideal, then it is the kernel of some homomorphism f that
is onto.

Future Work
Here is a list of open questions and lines of enquiry.
o Are the properties of Theorems 1, 3 and 6 independent?
e Do they characterize Hilbert Space Quantum Logic?
e Find other structures that define NCNAB-algebras.

e Find representation theorems for NCNAB-algebras, gen-
eralizing known such results for Boolean algebras.

e Consider operations that can be defined using — and x*.
For example, —((x * —y) * (—x * y)) seems to provide a
commutative exclusive disjunction.

o Consider introducing additional operations in the syntax.
For example an implication that would be material im-
plication in Boolean algebras and Sasaki hook in Hilbert
space satisfying z < x — yiff z x ¢ < y, or a disjunction
satisfying z  (z Vy) <wiff zxx <wand z xy < w.

e What is the right definition of morphisms between P-
families?

e Do those morphisms preserve the lattice structure of the
underlying Hilbert spaces?
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