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Abstract 
According to the classical nineteenth century worldview, 
physical systems followed precisely defined trajectories that 
evolved according to deterministic laws. Physical theory 
was causally closed, having no place for interventions into 
its unfolding. Early in the twentieth century, this classical 
picture was overturned by a new fundamental physical 
theory. Unlike its classical predecessor, quantum theory is 
stochastic and causally open. Quantum theory represents not 
only the passive evolution of closed physical systems, but 
also the effects of interventions.  According to quantum 
theory, the behavior of a quantum system in response to 
interventions is intrinsically unpredictable and follows a 
stochastic law. Stochastic theories of the effects of interven-
tions have become popular recently in artificial intelligence. 
In these theories, the behavior of an undisturbed system is 
represented as a graph in which nodes represent variables 
and directed arcs represent cause and effect relationships. A 
causal theory specifies both the behavior of the undisturbed 
system and how it responds to interventions. Interventions 
act as local surgery to cut the causal links into one or more 
manipulated variables, and to set the manipulated variables 
to values specified from outside the model. This paper 
describes quantum theory as a theory of the effects of 
interventions, relates it to currently popular theories of 
causality, and formalizes quantum evolution in terms of 
graphical probability models defined on density operators.  

Introduction   
Bohm (1951) said that the quantum state has been called 

a wave of probability, but it is more accurate to call it a 
“wave from which many related probabilities can be cal-
culated.”  In other words, the quantum state predicts not 
what will occur, nor a single probability distribution for 
what will occur, but rather a set of probability distribu-
tions, one for each conceivable intervention that could be 
made on a quantum system. An intervention results in a 
stochastic transformation from the state just prior to the 
intervention to one of the allowable results of the interven-
tion.  Quantum theory specifies a probability distribution 
for the outcome of each such intervention. Thus, quantum 
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theory is naturally viewed as an interventionist theory of 
causality of the sort that has become popular recently in 
statistics and the social sciences (Woodward, 2001). Inter-
ventionist theories define causal relationships as those in 
which interventions that change a cause tend to produce 
changes in the effect. While this view of causality has great 
intuitive appeal, it has been criticized as being imprecise 
and potentially circular. One key difficulty is ruling out 
manipulations that can produce an effect by some means 
other than the putative cause.  A commonly cited example 
from medicine is the placebo effect, in which administer-
ing a drug can produce a cure due to patients’ belief in the 
drug’s efficacy, regardless of its actual efficacy.  It is 
essential both practically and philosophically to ensure that 
theories of causality and procedures for drawing causal 
inferences are not led astray by such spurious effects. 

In his seminal book on causality, Pearl (2000) argues 
that philosophical confusion and the lack of a formal 
mathematics of causality have hampered our ability to 
draw sound scientific conclusions about causal relation-
ships. While there is an extensive formal mathematics for 
the study of logical deduction and statistical association, 
formal tools for the study of causal relationships have 
received much less attention. Pearl argues forcefully 
against the historical tendency among philosophers and 
scientists to rely on intuition to extract causal conclusions 
from empirical data. He makes a strong case that formal 
mathematics is necessary to protect against the biases and 
errors to which unaided intuition is prone.  A formal 
mathematical theory of causation provides a sound 
scientific basis for comparing rival causal theories and 
evaluating their relative degrees of evidential support. 
Recent developments by Pearl and others (see Woodward, 
2001 for references) have gone a long way toward 
addressing the need for a philosophically coherent and 
mathematically sound framework for analyzing causal 
relationships.  

Causal claims are stronger than statistical claims. A 
causal claim asserts not only that the values of two quanti-
ties are related to each other, but also that the association is 
stable under interventions that do not disturb the causal 
connection. For this reason, Pearl argues that the language 
of statistical association alone is insufficient for formulat-
ing theories of cause and effect relationships, and that new 
tools and techniques are needed. Drawing on concepts and 



methods from the theory of structural equations in econo-
metrics and graphical probability models, Pearl has devel-
oped a formal mathematics for describing cause and effect 
relationships, inferring causal relationships from empirical 
data, predicting the effects of interventions, and drawing 
inferences about counterfactuals.  

Pearl’s early writings on causality were based on a 
probabilistic view of Nature. In his more recent work, 
Pearl makes an explicit shift toward the Laplacian view of 
a fundamentally deterministic physical world in which 
probabilities arise only because of ignorance of boundary 
conditions: 

…the Laplacian conception is more in tune with in-
tuition. The few esoteric quantum mechanical ex-
periments that conflict with the predictions of the 
Laplacian conception evoke surprise and disbelief, 
and they demand that scientists give up deeply en-
trenched intuitions about locality and causality. Our 
objective is to preserve, explicate, and satisfy – not 
destroy – those intuitions. 
Pearl argues for a deterministic theory primarily based 

on its intuitive appeal. Yet, nearly a century of empirical 
tests have firmly rejected Laplacian determinism in favor 
of a fundamentally probabilistic alternative.  Furthermore, 
the rival that superseded Laplacian determinism is exactly 
the kind of theory Pearl says is needed: a formal 
mathematical theory of the evolution of the behavior of 
physical systems when subjected to interventions.  The 
purpose of this paper is to explicate quantum theory as a 
theory of the effects of interventions, to relate it to recent 
work in the mathematics of causality, and to develop a 
physically well-founded family of graphical probability 
models for quantum systems.  

The theory presented here differs from Tucci (1995), in 
that quantum causal networks formalize cause and effect 
relationships, whereas Tucci’s quantum Bayesian networks 
simply generalize ordinary non-causal Bayesian networks 
to quantum systems. 

Causal Bayesian Networks 
In Pearl’s theory, a causal model consists of a joint prob-
ability distribution over a set of variables, together with a 
set of “local surgery” rules that specify the effects of inter-
vening to set the states of some of the variables to specified 
values. The surgery rules amount to cutting the links from 
causes of a manipulated variable, so that their effects are 
nullified, and allowing the variable’s value to be specified 
freely via external manipulation. Other causal links, in-
cluding downstream effects of the variable whose state has 
been manipulated, are not affected.  The result of local 
surgery is a new joint probability distribution that differs 
from the original one in that the manipulated variable has a 
specified state and the rest of the system has a probability 
distribution determined by the original causal model and 
the surgery rules that interrupt the normal causal chain to 
the manipulated variable but leave all other mechanisms 

undisturbed. Pearl (2000) discusses two kinds of causal 
model: causal Bayesian networks and structural equation 
models. In this paper we focus on causal Bayesian 
netowrks, generalizing them to a class of graphical 
probability models for quantum systems. Future research 
will consider quantum analogues for structural equation 
models. 

A Bayesian network is a formal representation of the 
probabilistic relationships among uncertain features of the 
world. An uncertain feature of the world is represented as a 
random variable X, which takes values in a set X called the 
possible values for X.  A Bayesian network B = (G, P) 
represents a joint probability distribution for a collection 
X1, X2, …, Xn of random variables. The first component, G, 
is a directed graph containing no directed cycles, in which 
the nodes are in one-to-one correspondence with the ran-
dom variables. The second component, P, is a collection of 
local probability models, one for each of the random vari-
ables. The random variables that have edges into Xi are 
called the parents of Xi, denoted pa(Xi). The local prob-
ability model for Xi is denoted Pr(Xi | pa(Xi)), and specifies 
a set of probability distributions for Xi, one for each com-
bination of values of the parents of Xi in G (or a single 
probability distribution if Xi has no parents). Pr(Xi | pa(Xi)) 
is specified by defining a rule for obtaining the probability 
of any possible value xi ∈ Xi as a function of the values of 
pa(Xi).  

The graph and the local distributions for a Bayesian 
network define a joint distribution on the random variables 
as follows: 
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A causal Bayesian network (CBN) is a Bayesian 
network in which the edges represent causal relationships.  
In Pearl’s (2000) formalism, a CBN augments an ordinary 
Bayesian network with a set of operators do(Xi=xi). The 
operator do(Xi=xi) is interpreted as a surgical intervention 
that disconnects Xi from its parents and sets its value to xi, 
while leaving the remainder of the causal relationships and 
local probability models undisturbed. If V = (Xi1

, …, Xik
) 

denotes a subsequence of the random variables, and Pr*(X1, 
…, Xn | do(V=v)) denotes the probability distribution 
obtained by applying the do(·) operator to set the random 
variables in V to the values v = (xi1

, …, xik
), then Pr*(X1, …, 

Xn | do(V=v)) is also a Bayesian network. The graph for 
this new Bayesian network is obtained by deleting from G 
all edges that point to nodes in V.  The local distributions 
for variables in V place probability 1 on the value set by 
intervention, i.e., Pr*(Xi = xi) = 1 for i = i1, …, ik.  The local 
probability models for the other random variables are the 
same as in the undisturbed Bayesian network, i.e.,  Pr*(Xi | 
pa(Xi)) = Pr(Xi | pa(Xi)) for i ≠ i1, …, ik. 



Quantum Theory 

Quantum States 
States of a quantum system are represented as density 
operators on a Hilbert space associated with the system. A 
density operator can be identified with a complex-valued 
square matrix (possibly infinite-dimensional) that is 
positive and has unit trace, i.e., its eigenvalues are non-
negative and sum to one. A density operator is called a 
pure state if it has rank one; otherwise, it is called a mixed 
state. If σ is a rank k density operator on a Hilbert space H, 
then there exist pure states σ1, …, σk, and positive real 
numbers p1, …, pk, such that Σi pi = 1 and Σi piσi = σ.  For 
this reason, mixed states can represent uncertainty about 
the state of a system. That is, Σi piσi can represent a system 
that has probability pi of being in pure state σi. This 
decomposition into a weighted sum of pure states may not 
be unique. A state σ = Σi piσi = Σi riρi with two different 
decompositions as probability-weighted sums of pure 
states could represent either a system having probability pi 
of being in state σi, or a system having probability ri of 
being in state ρi. There is no way to distinguish between 
these possibilities from the state σ alone. 

States of composite quantum systems are represented as 
density operators on tensor product spaces. A tensor 
product state is the quantum analogue of a Cartesian 
product state space for classical random variables. A 
product state, written σ1⊗σ2⊗…⊗σp, represents a 
composite system in which the ith subsystem is in state σi. 
A separable state is state that can decomposed as a linear 
combination Σi pi σi1⊗σi2⊗…⊗σip of product states such 
the pi are non-negative real numbers and Σi pi = 1. A state 
of a composite system that is not separable is called 
entangled.  

Given a quantum state σ on a tensor product space 
H1⊗…⊗Hp, a reduced density operator σi on the ith 
Hilbert space can be obtained via an operation called the 
partial trace.  More generally, if i(1), …, i(k) is a 
subsequence of the integers 1, …, p, then the partial trace 
operator can be used to obtain a reduced density operator 
Si(1)i(2)…i(k) on the Hilbert space Hi(1)⊗ Hi(2)⊗…⊗ Hi(k). The 
reduced density operator is the quantum analogue of the 
marginal distribution for a classical joint distribution. The 
reduced density operator correctly describes the statistical 
properties of observable quantities, when attention is 
restricted to quantities pertaining to the given subsystem.  

An important property of entangled systems is that the 
reduced density matrix can be in a mixed state even when 
the composite system is in a pure state. When this happens, 
the subsystem cannot be said to possess a definite state. 
Mixed states reflecting uncertainty about definite pure 
states are called proper mixtures; mixed states arising from 
entanglement are called improper mixtures. Proper and 
improper mixtures cannot be empirically distinguished if 
observations are restricted to those pertaining to the system 
alone, but can be distinguished if the system and its 
environment can be observed jointly. 

Cerf and Adami (1999) propose a quantum analogue for 
the classical conditional distribution; Warmuth and 
Kuzmin (2006) propose a generalization of the Bayesian 
probability calculus to density matrices. These authors do 
not address causality. 

Unitary Evolution and Stochastic Reduction 
Quantum theory as formalized by von Neumann (1955) 

specifies two kinds of transformations quantum systems 
can undergo. Passive evolution of an isolated quantum 
system follows a continuous and reversible process called 
Shrödinger evolution.  Given an initial state σ(t0), the state 
at time t1 > t0 will be: 

σ (t1) = U(t1-t0) σ (t0) U(t1-t0)*, (2) 
where U(t) is a unitary operator given by: 

U(t) = exp{ -iHt/h-  }; (3) 
H is a Hermitian (i.e., self-adjoint) operator on H called 
the Hamiltonian; and h-   is Planck’s constant divided by 2π. 

The other kind of transformation is a stochastic state 
change that has been called state reduction, projective 
measurement, or more picturesquely, collapse.  In this 
paper, the term reduction is preferred because it is more 
neutral than collapse and applies to a broader class of 
problems than laboratory measurements. Reduction is 
represented mathematically as a discontinuous transfor-
mation at time t from the state σ(t-) to the state σ(t+). With 
a reduction is associated a set {Pi} of mutually orthogonal 
projection operators on H that sum to the identity, i.e.: 

i. Pi
2 = Pi;  

ii. PiPj = 0 for i≠j; and  
iii. Σi Pi = I.  

The possible outcomes of the reduction are density 
operators Piσ(t-)Pi/Tr(σ(t-)), where Tr(·) denotes the trace 
operator, or sum of diagonal elements of the matrix. 
Division by Tr(σ(t-)), or normalization, preserves the unit 
trace property of density operators. Conditional on the time 
t at which the reduction occurs and the set {Pi} of 
projection operators, the outcome probabilities are given 
by the Born rule: 

Pr(σ(t+) = Piσ(t-)Pi)/Tr(σ(t-) | σ(t-); {Pi})  
 = Tr(Piσ(t-)Pi)/Tr(σ(t-)). (4) 
Because there are at most n mutually orthogonal 

projection operators of dimension n, the number of 
possible outcomes of any reduction can be no more than 
the dimension of the system’s Hilbert space. Thus, a 
density operator on an n dimensional Hilbert space is the 
quantum analogue of a probability distribution for a ran-
dom variable with n possible outcomes. Whereas a classi-
cal random variable represents outcome probabilities for a 
single experiment with a given set of n possible outcomes, 
a density operator represents outcome probabilities for an 
infinite collection of experiments, each with a different set 
of n possible outcomes. Quantum probabilities are 
contingent: if the experiment associated with the set {Pi} is 
carried out, then the outcome probabilities are given by 
Equation (4).   



Quantum probabilities satisfy a noncontextuality 
property. When a projection operator P has rank less than 
one minus the dimension of the Hilbert space, there are 
uncountably many sets of projectors that contain P and 
satisfy Conditions i-iii above. Equation (4) implies that the 
probability Tr(PσP)/Tr(σ) of the outcome PσP/Tr(σ) 
depends only on the projector P and the pre-reduction state 
σ, and not on the other projectors in the orthogonal set.  

Quantum theory as thus formulated is an explicitly tem-
poral theory. Unitary evolution proceeds from past to fu-
ture. Reductions are instantaneous discontinuous state 
changes that affect the future evolution of the system but 
not its past. In relativistic physics, the temporal ordering of 
two events may depend on the frame of reference. Quan-
tum theory as described in this section is consistent with 
relativity theory if it is assumed that reductions occur along 
spacelike surfaces in spacetime (cf. Stapp, 2001). 

Quantum theory provides precise predictions for the 
evolution of isolated systems undergoing Schrödinger 
evolution and for the probabilities of the outcomes of re-
ductions, but there is no accepted theory for when and how 
reductions occur.  For this reason, intense effort has been 
devoted to dispensing with reductions by explaining them 
in terms of unitary evolution of entangled systems. Despite 
considerable research effort, there remains strong 
disagreement among physicists about whether this is 
possible. Because there is no question that von Neumann 
theory is in accord with observation, and because it 
provides a natural quantum analogue to classical causal 
Bayesian networks, we adopt the terminology of reduction 
in this paper. A deeper debate on the ontological status of 
reductions is beyond the scope of this paper. 

Quantum Operations 
Recently, unitary transformations and stochastic reduc-

tions have been subsumed into the formalism of quantum 
operations. Quantum operations provide a powerful 
mathematical tool for representing general transformations 
of both isolated systems and quantum systems that interact 
with their environments. The formalism of quantum opera-
tions is equivalent to the von Neumann formalism de-
scribed above, in that any quantum operation can be repre-
sented as a composition of unitary operators, stochastic 
projections and partial traces (Nielsen and Chuang, 2000). 
Because of their generality and their discrete-time 
formulation, quantum operations are seeing wide applica-
tion to analyzing the behavior of quantum systems, 
especially in quantum computing and quantum information 
theory. 

Quantum operations are especially useful for a theory of 
quantum causality, because they can describe quantum 
transformations in which the input and output systems are 
different. That is, quantum operations can represent inter-
actions in which the behavior of one system has a causal 
impact on the state of a second system, without requiring 
an explicit representation of the prior state of the affected 
system or the post-interaction state of the system producing 
the effect.  

A quantum operation A(σ) is a linear map that trans-
forms operators on an input Hilbert space to operators on 
an output Hilbert space, such that the following conditions 
are satisfied: 

1. Tr(A(σ)) ≤ Tr(σ); 
2. A(⋅) is a completely positive map. That is, if σ is a 

positive operator on the input space, then A(σ) is a 
positive operator on the output space. Furthermore, 
if n is a positive integer, ρ is a positive operator on 
the tensor product of an auxilliary n-dimensional 
Hilbert space and the input space, and Ip is the iden-
tity operator on the auxiliary space, then  (Ip⊗A)(ρ) 
is a positive operator. 

The partial trace operation that maps a density operator 
for a composite system to the reduced density operator for 
a subsystem is an example of a quantum operation. Unitary 
transformations are also quantum operations.  If P is a 
projection operator, the map from σ to PσP is a quantum 
operation that does not preserve the trace. Trace-preserving 
quantum operations correspond to deterministic state tran-
sitions or stochastic transitions in which the outcomes are 
not distinguishable. Trace-reducing quantum operations 
represent stochastic transformations with distinguishable 
outcomes. Consider a set A1(⋅), …, An(⋅) of trace-reducing 
quantum operations such that Σi Tr(Ai(σ)) = Tr(σ) for all 
σ. This set represents a process in which a transformation 
is chosen by a stochastic rule. The probability that the ith 
transformation occurs is given by Tr(Ai(σ)), and the result 
of the ith transformation on input σ is Ai(σ)/Tr(σ). In par-
ticular, state vector reduction with orthogonal projector set 
{Pi} is an example of a quantum operation with a stochas-
tic outcome.  

To bring the theory of quantum operations into concor-
dance with relativity theory, the output system for a quan-
tum operation must be localized in a region of spacetime 
that does not overlap the past light cone of the input sys-
tem. For stochastic projection operations, the output sys-
tem may have a spacelike separation from the input sys-
tem. For time evolution quantum operations, the output 
system must be localized within the future light cone of the 
input system. 

Fiducial Projections 
When the state space has dimension n, there exists a set 

F1, …, Fn2 of projection operators, such that the state is 
characterized by the Born probabilities associated with the 
Fi (Nielson and Chuang, 2000; Hardy, 2002). Any such 
collection {Fi} is called a set of fiducial projections 
(Hardy, 2002).  If {Fi} is a fiducial set, and σ and ρ are 
two density operators such that Tr(FiσFi) = Tr(FiρFi) for i 
= 1, …, n2, then σ = ρ. The fiducial projections can be 
chosen to have rank 1. In this case, the fiducial projections 
are themselves density operators, and they represent pure 
states of the system.  Because Fi is a projection operator 
with rank 1, it can be shown that if FiσFi ≠ 0, then 
FiσFi/Tr(FiσFi)  = Fi.   



A fiducial projection operator Fi thus represents both a 
pure state of the system and an intervention that has Fi as 
one of its possible outcomes. If the intervention Fi is ap-
plied to a system whose pre-intervention state is σ, then the 
probability is Tr(FiσFi) that the post-intervention state is to 
Fi. Because of noncontextuality, these probabilities hold 
for any intervention in which Fi is one of the possible 
outcomes, regardless of the other possible outcomes of the 
intervention. 

Just as quantum states can be characterized by the prob-
abilities associated with fiducial operators, quantum op-
erations can be characterized by how they act on fiducial 
operators.  Specifically, let F1, …, Fn2 be a set of fiducial 
projectors on an n-dimensional input Hilbert space and let 
G1, …, Gm2 be a set of fiducial projectors on an m-dimen-
sional output space. Suppose that A(⋅) and A’(⋅) are  com-
pletely positive maps such that Tr(GjA(Fi)Gj) = 
Tr(GjA’(Fi)Gj) for i=1,…,n and j=1,…,m. Then A(⋅) is 
equal to A’(⋅) (Nielsen and Chuang, 2000, sec. 8.4.2). 

Graphical Models for Quantum Systems 

Sequenced Association Graphs 
Sequenced association graphs are proposed as a quan-

tum analogue to the acyclic directed graphs used to model 
dependence relationships in CBNs. Sequenced association 
graphs represent allowable kinds of dependencies for 
quantum systems.   

In a CBN, the arcs are directed and the probabilistic 
dependencies are causal.  Of course, it is easy to find real-
world examples of correlations that do not correspond to 
causal relationships. Nevertheless, outside the quantum 
realm, it is generally assumed that Riechenbach’s principle 
of common causes holds. That is, when two quantities are 
correlated, it is assumed either that one is a cause of the 
other or that there is another variable that is a common 
cause of both. When the principle of common cause holds, 
one can construct a CBN by inserting hidden variables to 
represent common causes of correlated variables. 

In quantum systems, although entanglement can give 
rise to correlations between spacelike separated events, 
causal influence can operate only between timelike sepa-
rated events, and only from past to future. This fundamen-
tal difference between correlations involving spacelike and 
timelike separated events is represented in sequenced asso-
ciation graphs by using directed arcs to represent causal 
influences from the past to the future, and undirected arcs 
to represent correlations between contemporaneous entan-
gled systems. 
Definition 1: Let G be a graph, and let A and B be nodes 

of A. Then A and B are contemporaneous if (i) there is an 
undirected edge connecting A and B, or (ii) there is an un-
directed edge between A and a node contemporaneous with 
B.  If A and B are contemporaneous, we write A ~T B. 
Definition 2: Let G be a graph, and let A and B be nodes 

of A. Then A precedes B if (i) there is a directed edge from 

A to B, or (ii) there is a directed edge from A to a node that 
precedes B. If A precedes B, we write A  ! T B. 

A straightforward inductive argument shows that ~T is 
an equivalence relation and  ! T is transitive. 
Definition 3: A graph G is a sequenced association 

graph (SAG) if there is no pair of nodes A and B such that 
(i) A precedes B and (ii) B precedes or is contemporaneous 
with A. 

The directed arcs in a sequenced association graph es-
tablish a partial order on the nodes. When a SAG is used to 
model a physical process, each node is associated with a 
physical system localized within a region of spacetime. 
Directed edges connect timelike separated systems, and are 
oriented from past to future. Undirected edges connect 
spacelike separated systems that are correlated due to en-
tanglement.   

Because contemporaneity is an equivalence relation, it 
partitions the nodes of a SAG into equivalence sets. The 
elements of this partition are called CN-sets.  
Definition 4: Let G be a sequenced association graph. A 

CN-set is a maximal subset of mutually contemporaneous 
nodes of G. A root CN-set is a CN-set in which none of the 
arcs in G enters any of the nodes in the CN-set. A CN-set 
that is not a root CN-set is called a child CN-set. 

Figure 1 shows a SAG containing five CN-sets, enclosed 
in dotted ovals and numbered 1A through 4.  The 
numbering scheme indicates the time order if it can be 
established from the graph. Letters are appended to the 
numbers to label nodes for which the order cannot be 
distinguished. The time ordering of CN-sets 1A and 1B 
cannot be determined from the graph; the CN-sets 2 
through 4 follow these sets in temporal order. 

A Simple Two-Node Quantum Causal Network 
A quantum causal network (QCN) is proposed as a quan-
tum analogue to a CBN. Like a Bayesian network, a QCN 
uses a graph to represent qualitative relationships and local 
probability models to represent numerical likelihood in-
formation. Whereas the graph for a CBN is an acyclic di-
rected graph, the graph for a QCN is a sequenced associa-
tion graph. Density matrices and quantum operations rep-
resent numerical likelihood information in a QCN.  

To introduce the fundamental concepts, we consider a 
simple two-node graph X → Y. The state space for a CBN 
with this graph is defined by specifying a set of possible 
values for each of the nodes X and Y.  For a QCN, Hilbert 
spaces HX and HY are specified for the nodes X and Y. 
These Hilbert spaces have dimension equal to the 
maximum cardinality of the outcome set of an intervention 
that could be performed at the corresponding node. 

The joint distribution for the undisturbed CBN is 
specified by defining a probability distribution Pr(X) for X, 
and a set Pr(Y|X) of probability distributions for Y, one for 
each possible value of X. It is assumed that exactly one pair 
of possible values will occur. The probability of the value 
(X, Y) = (x, y) is given by Pr(x)Pr(y|x).  The density 
operator for the undisturbed QCN is specified by defining 



density operator σX on HX and a trace-preserving quantum 
operation AY|X(⋅) that maps HX to HY. This defines a density 
operator on the product space HX⊗HY as follows.  It is well 
known that any density operator can be expanded as a 
mixture of mutually orthogonal 1-dimensional density 
operators (cf., Nielsen and Chuang, 2000).  Thus, we can 
write 

!
X
= "

i
Q
i

i

# ,  (5) 

where the Qi are mutually orthogonal one-dimensional 
projection operators on HX, and the θi are non-negative 
numbers that sum to 1. We can also write  

 
 

AY |X (Qi ) = !ijRij
j

" ,
 (6) 

where for each i, the Rij are mutually orthogonal one-di-
mensional projection operators HY, and the ρij are non-
negative numbers that sum to 1.  Note that the mixture 
components Ri1, Ri2, … for AY|X(Qi) may be different for 
different i. Now, we can form a joint density operator on 
the tensor product space as follows: 

! XY = "i#ijQi

i, j

$ % Rij .
 (7) 

 
The density operator τXY represents a quantum state for 

the undisturbed two-node QCN. Applying the partial trace 
yields density operators σX and σY representing the states of 
the X and Y subsystems of the undisturbed joint system.   

An intervention to change X in a CBN would apply 
do(X=x) to replace Pr(X) with a new joint distribution 
Pr*(X) in which X has value x with certainty. The marginal 
distribution of Y would become Pr(Y|X=x). In contrast, 
intervening to change X in a QCN means initiating a 
reduction.  That is, we specify a set P1, …, Pn of 
orthonormal projectors (i.e., operators satisfying i-iii 
above). The outcome of the intervention is stochastic, with 
possible outcomes  σi = PiσXPi/Tr(PiσXPi) i = 1, …, n. The 

outcome probabilities are given by the Born rule (4). If the 
outcome is PiσXPi/Tr(PiσXPi), then the original CBN is re-
placed by a new CBN in which the quantum operation 
AY|X(⋅) associated with Y remains unchanged, and the den-
sity operator associated with X becomes PiσXPi/Tr(PiσXPi).  

The probability distribution for an n-state root node of a 
Bayesian network can be defined by specifying n-1 real 
numbers. The density matrix for an n-dimensional root 
node of a QCN can be defined by specifying n2-1 real 
numbers.  In both cases, one degree of freedom is sub-
tracted to account for the constraint that probabilities sum 
to 1. The conditional distribution for an m-state child node 
with an n-state parent can be defined by specifying n(m-1) 
real numbers. A trace-preserving quantum operation from 
an n-dimensional Hilbert space to an m-dimensional Hil-
bert space can be defined by specifying n2(m2-1) real num-
bers. As above, degrees of freedom are subtracted to ac-
count for the normalization constraint. 

General Quantum Causal Networks 
A general theory of quantum causal networks extends the 
two-node example of the previous section to sequenced 
association graphs having arbitrary number of nodes. 
Definition 5: Let G be a SAG, and let {X1, …, Xk} be a 

child CN-set for G. A node Y is an influencing parent for 
the CN-set if G has a directed edge from Y to one of the Xi, 
and a non-influencing parent for the CN-set if it is 
contemporaneous to a parent for the CN-set. 
Definition 6: Let G be a SAG, let {X1, …, Xk} be a CN-

set for G, and let Hi denote the Hilbert space associated 
with Xi. Let {W1, …, Wr} denote the set of influencing and 
non-influencing parents for {X1, …, Xk}, and let Fi denote 
the Hilbert space associated with Wi.  A local distribution 
Δ(⋅) for {X1, …, Xk} is defined as: 

1. A density operator Δ(X1, …, Xk) on H1⊗…⊗Hk if 
{X1, …, Xk} is a root CN-set; 

2. A quantum operation Δ(X1, …, Xk | W1, …, Wr) from 
F1⊗…⊗Fr to H1⊗…⊗Hk if {X1, …, Xk} is a child 
CN-set. 

Definition 7: Let H1⊗…⊗Hn be a product space. A fi-
ducial reduction is a set of projection operators satisfying 
conditions i-iii, in which each projector in the set is a prod-
uct F1⊗…⊗Fn of fiducial projectors. 
Definition 8: Let G be a SAG, and let {X1, …, Xk} be a 

root CN-set. The local distribution Δ(X1, …, Xk) respects G 
if for any fiducial reduction applied to Δ(X1, …, Xk) and 
any i, the conditional probability of Xi given X1, …, Xi-1, 
Xi+1, …, Xk depends only on the neighbors of Xi in G. 
Definition 9: Let G be a SAG, let {X1, …, Xk} be a child 

CN-set, and let {W1, …, Wr}  denote its influencing and 
non-influencing parents. The local distribution Δ(X1, …, Xk 
| W1, …, Wr) respects G if the following condition holds. 
For i=1,…, r, let Fi denote a  fiducial projector on the Hil-
bert space for Wi. Let Δ(X1, …, Xk | W1, …, Wr)(F1⊗…⊗Fr) 
denote the quantum operation Δ(X1, …, Xk | W1, …, Wr) 
applied to the product projector F1⊗…⊗Fr.  Then the 
conditional probability assigned by Δ(X1, …, Xk | W1, …, 
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Wr)(F1⊗…⊗ Fr) to Xi given X1, …, Xi-1, Xi+1, …, Xk 
depends only on those Xj that are neighbors of Xi in G and 
those Wj that are parents of Xi in G.  
Definition 10: Let G be a sequenced association graph. 

Let {Hi} be a collection of Hilbert spaces, one for each 
node Xi of G.  Let {Pr(⋅)} be a set of local distributions, one 
for each CN-set of G. Then Q = (G, {Hi}, {Pr(⋅)}) is a 
quantum causal network if each of the local distributions 
respects G. 

The density operator for a root CN-set of a QCN re-
quires at most n2-1 real numbers to specify, where n is the 
product of the dimensions of the Hilbert spaces for the 
nodes in the CN-set. The quantum operation for a child 
CN-set requires at most n2(m2-1) real numbers, where m is 
the product of the dimensions of the Hilbert spaces for the 
parent nodes and n is the product of the dimension of the 
nodes in the child CN-set. The independence assumptions 
encoded in G reduce the number of parameters needed to 
specify these local distributions.  

As for the two-node example described above, a general 
QCN induces a density operator at each of its nodes. 
Propagating the quantum operations forward in the 
direction of the causal arcs induces a density operator on 
each CN-set. A generalization of the construction (5) – (7) 
can be applied to construct a density operator on the tensor 
product space. A reduced density matrix for each node can 
be obtained via the partial trace operation.  These density 
matrices represent undisturbed evolution of the quantum 
system. Undisturbed evolution changes the state 
deterministically, although non-unitary quantum operations 
in which the input and output state spaces are the same 
increase quantum entropy (Nielsen and Chuang, 2000).  

Interventions General QCNs 
If Q is a QCN, an intervention at a single target node T 

is modeled as follows.  Let CN(T) denote the CN-set of T.  
Let HCN(T) denote the associated Hilbert space, and let 
σCN(T) denote the reduced density operator for CN(T). Let 
P1, …, Pn be a set of orthonormal projection operators (i.e., 
satisfying Conditions i-iii above) on HCN(T), such that each 
Pi acts as the identity on all nodes except T.  The 
intervention results in a new QCN Q*, where: 

1. The graph G* of Q* is obtained from graph G of Q 
by removing all directed arcs entering CN(T). 

2. The new local distribution for CN(T) is chosen 
stochastically. The possible values are σi = 
PiσCN(T)Pi/Tr(PiσCN(T)Pi), for i = 1, …, n. The  
probability of obtaining σi is Tr(PiσCN(T)Pi). Note 
that all independence relationships among nodes in 
CN(T) that existed in σCN(T) are preserved in σi. 
Therefore, σi respects G*. 

3. The local distributions for all nodes not in CN(T) are 
unchanged. 

As a result of the intervention, the target node takes on 
one of the allowable results for the projection set 
associated with the reduction operation. If the target node 
is entangled with contemporaneous neighbors, intervening 
at the node may affect these neighbors even though the 

projector acts as the identity on these nodes. Post-
intervention states for descendants of the target node’s CN-
set are obtained by forward propagation. 

To see how this works, consider the example of a pair of 
qbits in an entangled state. Let ↑ (up) and ↓ (down) denote 
two orthogonal states for the qbits.  Suppose the system 
begins in a pure state having equal amplitude on the ↑↓  
and ↓↑ states.  The reduced density matrix for each indi-
vidual qbit is a mixed state with 50% weight on ↑ and 50% 
weight on ↓.  This means that an intervention to force the 
first qbit into either the ↑ or the ↓ state will give a 50% 
chance for each of the two possibilities. After reduction, 
the second qbit is certain to have value opposite to the first.  
That is, the intervention result will be ↑↓ with 50% prob-
ability and ↓↑ with 50% probability. Both possible out-
comes of the intervention are different from the original 
entangled state. Nevertheless, if we do not condition on 
which outcome has occurred, the conditional probability 
that a projection of either qbit onto ↑ or ↓ will yield the ↑ 
state remains at its pre-reduction value of 50%.  Physically, 
the original situation represents a pure state of an entangled 
system, in which reduced density operators for the individ-
ual qbits are mixed states that place 50% weight on each 
alternative. These reduced density operators do not corre-
spond to true mixtures. Rather, the 50% weights represent 
conditional probabilities that if an intervention forces the 
qbit into the ↑ or ↓ state, each possibility will occur with 
50% probability. The post-reduction state represents a true 
mixture. The reduction has already forced a choice be-
tween the ↑ or ↓ states, but which of these has occurred 
has not been specified. The global 2-qbit system is no 
longer in a pure entangled state, but is in an unknown 
product state. These two possibilities, entangled pair or 
unknown product state, cannot be distinguished by ob-
serving either qbit in isolation. However, the behavior of 
the composite 2-qbit system is different in the two cases. 
Entanglement is responsible for many of the most inter-
esting aspects of quantum systems. It is believed that 
quantum computers are intrinsically more powerful than 
classical computers, and entanglement is the source of this 
power. 

Control Through Intervention 
According to quantum theory, the kind of intervention 

represented by Pearl’s do(X=x)  operator, in which a 
random variable is set to a specified value, is not 
physically realizable. If a random variable X has value x 
initially, then any quantum intervention in which x is one 
of the possible outcomes will result in x with probability 1. 
An intervention changes the state only when there are 
several possible outcomes that are not orthogonal to the 
initial state.  

In his proof that the entropy of a pure quantum state is 
zero, von Neumann (1955; chapter V.2) showed how to 
transform a pure state x to an orthogonal pure state y by 
applying a sequence of projectors in rapid succession, each 
of which superposes the states x and y, and in which the 
magnitude of the weight on y increases as the sequence 



progresses. Although almost all treatments of interventions 
in the quantum theory literature are heuristic and informal, 
the ability to control the behavior of quantum systems by 
means of interventions is an essential aspect of how 
quantum theory is applied in practice. The lack of a 
mathematically rigorous theoretical framework for ana-
lyzing the effects of interventions has sowed confusion and 
hindered advances in practical applications of quantum 
theory. As a formal theory of the effects of interventions, 
QCNs are a useful tool for analyzing quantum systems and 
their behavior. 

The predictions of quantum theory have been subjected 
to extensive empirical testing for a wide variety of quan-
tum processes, with stunning agreement between theory 
and empirical results. However, quantum theory as pres-
ently formulated contains a major explanatory gap.  The 
theory has nothing at all to say about when a reduction will 
occur and which set of orthogonal projection operators will 
correspond to the possible results. Despite intense effort 
over many years, no one has yet found a satisfactory way 
to dispense with reductions and still bring quantum theory 
into concordance with the results of measurements, and 
physicists disagree strongly about the feasibility of the 
endeavor. Because reductions are associated with scientists 
performing measurements, the lack of a theory for state 
reduction has been called the “measurement problem.” 

Rather than attempt to dispense with reductions, the ap-
proach taken in this paper is to formalize reductions as 
external interventions in a causal graphical model formu-
lation of quantum theory.  The content of the theory de-
scribed here fully consistent with standard von Neumann / 
Copenhagen quantum theory, but it is explicated in a lan-
guage that ties it firmly to recent work on probabilistic 
models of causality. It is hoped that formulating a quantum 
version of causal graphical models will shed light on the 
physical realizability of causal theories. 

In particular, Pearl’s do-calculus can be viewed as a 
classical approximation to a more physically realistic 
quantum theory of causation. One role for a quantum the-
ory of causality is to explicate conditions under which such 
an approximation is adequate. A Pearl-style causal Baye-
sian network is a reasonable approximation when: (1) 
decoherence effects nearly eliminate the off-diagonal ele-
ments of the density operator for all subsystems under 
consideration, rendering the global system essentially 
equivalent for all practical purposes to a statistical mixture 
of quasi-classical states; and (2) it is possible to apply a 
von Neumann style sequence of operators in rapid succes-
sion to drive the state of any subsystem to any desired 
state, without major disturbance to other subsystems.  The 
first condition holds in many cases of practical interest, but 
the second condition may be more problematic. 

A more physically realistic quantum theory of causation 
may open up new avenues of investigation.  Specifically, it 
opens the door to new, theoretically well-founded research 
into the kinds of interventions that are physically achiev-
able the conditions under which they can be applied with-

out disturbing the states of and causal interactions among 
subsystems other than the targets of intervention.  

Discussion 
A quantum state is defined as a set of potentialities, that is, 
conditional probabilities for the results of any conceivable 
interventions that can be applied to it. Thus, quantum the-
ory is at its core an interventionist causal theory of the sort 
recently popularized by Pearl and others.  The formalism 
of quantum causal networks provides a language for repre-
senting cause and effect interactions among quantum 
systems, and for posing questions about the effects of 
interventions.  It is anticipated that the theory will prove 
useful for analyzing and designing quantum computing 
devices and algorithms. Artificial intelligence systems 
must be implemented in hardware, and physical hardware 
obeys the laws of quantum theory. Quantum graphical 
probability models may ultimately replace classical 
computability theory as a theoretical foundation for an 
artificial intelligence grounded firmly in physical theory. 
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