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Abstract

Events play an essential role in business processes and
some forms of business rules. Often they require de-
tection of complex events, that is, events or situations
that cannot be inferred from looking only at single
events but that manifest themselves in certain combi-
nations of several events. This entails a natural need for
high-level query and reasoning languages for complex
events. This position paper explores issues related to
the design of such languages.

Introduction
Events play an essential role in business processes and some
forms of business rules. A business process is initiated by
some event from the outside world. For example, a customer
sending a purchase order event will initiate a corresponding
business process at the seller. Progress and control flow in a
running process also depend on events. For example, a pur-
chase order process will have to wait for an event generated
by the warehouse system confirming the product’s availabil-
ity and proceed according to the availability information.

Business processes not only consume events in order to
drive their own execution, they also produce and publish
events to the outside world. First, such events can initi-
ate further processes, both as sub-processes or independent
processes. For example, order processing might generate
an event requesting to check product availability, which is
then performed as a sub-process. Similarly, order processing
might generate an event that the purchase order has been ac-
cepted, which initiates shipping as an independent process.
Second, events can also be used by other systems outside the
context of a business process. For example, acceptance of a
purchase order might cause the warehouse system to adjust
the number of items on stock accordingly. Third, events can
be used for monitoring purposes. For example, a business
activity monitoring (BAM) application might count all pur-
chase order events as well as all events where an order can-
not be satisfied. Their ratio can serve of a key performance
indicator and warnings can be generated automatically when
a high ratio of orders cannot be fulfilled.
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Also some forms of business rules explicitly refer to
events. For example, a rule might state that a purchase or-
der will be immediately rejected if the customer has an out-
standing debt of more than $10 000. Often these are rules
that guide, constrain, or implement parts of business pro-
cesses, but they can also be rules that govern the behavior of
services and applications. Again business rules can be both
consumers and producers of events, i.e., both react to and
publish events.

This position paper argues that high-level query and rea-
soning languages for events considerably help taking full ad-
vantage of events and the information they provide. They are
particularly needed to detect and react to complex events,
that is, situations that cannot be inferred from looking only
at single events but that manifest themselves in certain com-
binations of several events over time. We discuss in this
paper design issues for these languages, presenting our po-
sitions as five “rules”:

• Business processes and rules have a natural need for ex-
pressive high-level complex event query and reasoning
languages. Traditional query languages and knowledge
representation formalisms are not suitable for events.

• Deductive rules about events are an essential abstraction
and reasoning mechanism. Resorting to reactive rules for
implementing such deductive rules is undesirable.

• An event query language must support at least the four
complementary dimensions of data extraction, event com-
position, temporal relationships, and event accumulation.

• Expressiveness and ease of use of an event query language
can only be achieved through a separated treatment of the
four dimensions in syntax and semantics.

• Querying events is a young field that has still many emerg-
ing research issues. Among current approaches, there is
no silver bullet, yet.

The issues and positions presented here have influenced
and are influenced by our current work on the high-level
event query language XChangeEQ (Bry & Eckert 2006;
2007a; 2007b; 2007c) as well as by earlier, ongoing work
on the reactive Web language XChange (Bry, Eckert, &
Pătrânjan 2006a) and on the Web query language Xcerpt
(Schaffert & Bry 2004).



Rule 1: Need for High-Level Event Languages
Business processes and rules have a natural need for ex-

pressive high-level complex event query and reasoning lan-
guages. Traditional query languages and knowledge repre-
sentation formalisms are not suitable for events.

In many scenarios, it is not sufficient to query and react
to only single, “atomic” events. Instead, events have to be
considered with their relationship to other events in streams
of events. Such events (or situations) that do not consist of
one single atomic event but have to be inferred from some
pattern of several events over time are called complex events
(or composite events). Such situations are especially com-
mon in business processes and rules, because their context
requires integration of applications (Hohpe & Woolf 2003)
and they have little control over which (types of) events are
generated by these applications.

As an example where complex event detection is needed,
consider a scenario where whenever an order has been com-
pleted some reaction is necessary (e.g., initiate billing pro-
cess). Involved systems might not generate an “order com-
pleted” event; however it might be inferred from a combina-
tion of other events: an order has been taken (with number
n), followed by a shipping (of order n with tracking number
t), followed by a delivery (with tracking number t). Note
that for it would not be sound to react only to the last event
(“delivery”) in the sequence. First, the “delivery” event here
contains only a tracking number, but for the “order com-
pleted” event we would be interested in the order number.
Second, “delivery” events might also be generated for items
that are not actually orders (e.g., gifts, replacements).

While it is of course possible to implement detection of
such complex events using general purpose programming
languages, it is much more desirable to use a high-level
event query language. This allows to specify the event query
on a high abstraction level that focuses on the query’s logic
rather than programming on a low level an actual detection
algorithm. Even when they don’t aim for high performance,
detection algorithms are usually complicated since they in-
volve state maintenance (events and partial query answers)
and require a form of manual “garbage collection” (remov-
ing events and partial answers that become irrelevant). Also,
high-level languages make the resulting code much easier to
maintain, which is especially important since business pro-
cesses and rules are expected to change frequently. Finally,
high-level event query languages give rise to query compil-
ers that do automatic performance optimization, thus tak-
ing this burden off the programmer’s shoulders. This last
point is especially important since many query optimization
techniques (such as multi-query optimization which exploits
similarities between several queries) conflict with maintain-
ability when they are programmed manually.

Querying and reasoning with events has much in common
with traditional (database) query languages and knowledge
representation formalisms.1 However, there are important
differences which make those unsuitable for dealing with

1We use in the following the term “database” as an umbrella
term for all kinds of traditional knowledge representation systems.

events and entail a need for tailored event query and rea-
soning languages:

• Events are received over time in a stream-like manner,
while in a database all facts are available at once and usu-
ally stored on disk.

• Event streams are unbounded into the future, potentially
infinite, whereas databases are finite. This has especially
consequences for non-monotonic query features such as
negation or aggregation.

• Relationships between events such as temporal order or
causality play an important role for querying events. In
databases, relationships between facts are usually part of
the data (e.g., references with foreign keys).

• Timing of answers has to be considered when querying
events: event queries are evaluated continously against
the event stream and generate answers at different times.
These answers may trigger actions such as updates to
a database. Typically actions are sensitive to ordering;
hence it is important when an answer is detected.

• Query evaluation and optimization for event streams re-
quire different methods than for databases. In event
streams a large number of (standing) queries are evaluated
against small pieces of incoming data (events). Evalua-
tion is thus usually data-driven, rather than query-driven.
Many optimizations rely on exploiting similarities be-
tween queries rather than clustering and indexing data.

Rule 2: Support for Deductive Rules
Deductive rules about events are an essential abstraction

and reasoning mechanism. Resorting to reactive rules for
implementing such deductive rules is undesirable.

Deductive rules allow to define new, “virtual” events from
the existing ones (i.e., those that are received in the incoming
event stream), much in the same fashion as one uses views
(or rules) in databases to define new, derived data from ex-
isting base data. For example the “order completed” event
from above could be defined by a deductive rule, and then in
turn be used in other complex event queries.

Only very few event languages support such purely de-
ductive rules, even though support is highly desirable for a
number of reasons: Rules serve as an abstraction mecha-
nism, making query programs more readable. They allow to
define higher-level application events from lower-level (e.g.,
database or network) events. Different rules can provide dif-
ferent perspectives (e.g., of end-user, system administrator,
corporate management) on the same (event-driven) system.
Rules allow to mediate between different schemas for event
data. Additionally, rules can be beneficial when reasoning
about causal relationships of events (Luckham 2002).

Event-based systems usually provide reactive rules, typ-
ically Event-Condition-Action (ECA) rules or production
rules, to specify reactions to the occurrences of certain
events (Berstel et al. 2007). While deductive rules can be,
and often are, implemented using reactive rules, we argue
that deductive (event) rules are inherently different from re-
active rules because they aim at expressing “virtual events,”
not actions. Accordingly and importantly, deductive rules



are free of side-effects. Implementing deductive rules using
reactive rules blurs this distinction. This has negative conse-
quences for development and maintainability, and restricts
optimization: techniques that are applicable for deductive
rules, such as backward chaining or program rewriting, are
not generally applicable to reactive rules.

Rule 3: Four Dimensions of Event Queries
An event query language must support at least the four com-
plementary dimensions of data extraction, event composi-
tion, temporal relationships, and event accumulation.

A sufficiently expressive event query language should
cover (at least) the following four complementary dimen-
sions. How well a language covers each of these dimensions
gives a practical measure for its expressiveness.

Data extraction: Events contain data that is relevant to
decide whether and how to react to them. The data of events
must be extracted and provided (typically as bindings for
variables) to test conditions (e.g., arithmetic expressions)
inside the query, construct new events (e.g., by deductive
rules), or trigger reactions (e.g., updates). Often, events are
transmitted as messages in XML formats; examples for such
message formats include SOAP (Gudgin et al. 2007), Com-
mon Base Event (CBE) (IBM 2004), and the Facility Con-
trol Markup Language (FCML) (Bry et al. 2008). The struc-
ture of data in such XML messages can be quite complex,
which gives a strong motivation to embed an XML query
language into an event query language.

Event composition: To support complex events, i.e.,
events that consist out of several events, event queries must
support composition constructs such as the conjunction and
disjunction of events (more precisely, of event queries).
Composition must be sensitive to event data, which is often
used to correlate and filter events (e.g., consider only “order”
and “shipping” events with the same order number for com-
position). Since reactions to events are usually sensitive to
timing and order, an important question for complex events
is when they are detected. In a well-designed language, it
should be possible to recognize when reactions to a given
event query are triggered without difficulty.

Temporal relationships: Time plays an important role in
event-driven applications. Event queries must be able to ex-
press temporal conditions such as “shipping happens more
than 24 hours after the order.” Qualitative relationships con-
cern only the temporal order of events (e.g., “shipping after
order”). Quantitative (or metric) relationships concern the
actual time elapsed between events (e.g., “shipping and or-
der more than 24 hours apart”).

Event accumulation: Event queries must be able to ac-
cumulate events to support non-monotonic features such as
negation of events (understood as their absence) or aggre-
gation of data from multiple events over time. The reason
for this is that the event stream is (in contrast to extensional
data in a database) unbounded (or “infinite”); one therefore
has to define a scope (e.g., a time interval) over which events
are accumulated when aggregating data or querying the ab-
sence of events. Event accumulation is particularly required
in many queries from business activity monitoring, e.g., to
watch for situations where “a customer’s order has not been

shipped within 2 days” (negation) or where “the sum of all
orders on a business day is below $1M” (aggregation).

Rule 4: Separation of Concerns
Expressiveness and ease of use of an event query language

can only be achieved through a separated treatment of the
four dimensions in syntax and semantics.

Many event query languages are based on composition
operators constructing complex event queries from atomic
event queries (in this context often also called event types)
and composition operators (Gehani, Jagadish, & Shmueli
1992; Gatziu & Dittrich 1993; Chakravarthy et al. 1994;
Zimmer & Unland 1999; Adi & Etzion 2004; Bry, Eckert,
& Pătrânjan 2006a). Such languages are also often called
event algebras, since they consist of a set (the event types)
and operations on it (composition operators). Composition
operators can be understood as functions whose input and
output are streams of events. For example, binary compo-
sition operators such as conjunction (often written A ∧ B
or A4B) or sequence (often written A;B) take as input
two event streams, the results of the queries that are their
arguments, and produce as output another event stream con-
taining the complex events. There is a wide spectrum of
further operators supported by different languages and no
agreement on a standard set of operators.

Consider an event query asking for events A, B, C, and
D to happen, with the constraints that A happens before B,
A before C, and C before D. One might be tempted to write
this query in an event algebra as (A;B)4(A;C)4(C;D).
This however does not yield the intended result since differ-
ent instances of A and C can be used to match this expres-
sion (while the query requires using the same instances). A
correct way to express the query would be A; (B4(C;D)).
Consider now just adding an additional constraint that B
happens before D. The new expression bears only little re-
semblance to the old: A; (B4C);D. In fact, even though
we have added a constraint in our specification, the query
has the same number of operators in the event algebra! This
is quite unnatural and might easily cause programming er-
rors.

To deal with queries that involve also metric temporal
constraints such as “events A and B happen within 1 hour,”
many event algebras extended the basic operators with tem-
poral constraints. For example, (A;B)1h would denote that
B happens within 1 hour after A. However, a query asking
for A to happen, then B to happen within 1 hour of that A,
and then C to happen within 1 hour of that B, is not express-
ible with such an operator.

Note that in this argument, we take the interval-based
interpretation of the sequence operator as in (Zhu &
Sethi 2001; Galton & Augusto 2002; Adaikkalavan &
Chakravarthy 2005; Bry, Eckert, & Pătrânjan 2006b), where
the occurrence time of (A;B) here the time interval cover-
ing both A and B. Would we understand as occurrence time
of (A;B) only the time point of B, as in some earlier works
(Gehani, Jagadish, & Shmueli 1992; Gatziu & Dittrich 1993;
Chakravarthy et al. 1994), we actually could express the
query as ((A;B)1h;C)1h. However then the modified query



where C is supposed to happen after B and within 2 hours of
A (as opposed to within 1 hour of B) cannot be expressed.

Composition operators mix the event querying dimen-
sions (e.g., event composition and temporal relationships in
the case of the sequence operator). This leads to the exem-
plified difficulties in correctly expressing and understanding
some event queries and also to a certain lack in expressive-
ness. Furthermore there is some confusion in the interpre-
tation of operators: even for the seemingly simple sequence
operator, at least four different interpretations are conceiv-
able (Zhu & Sethi 2001).

We therefore argue that an expressive high-level event
query language should treat the querying dimensions sep-
arated from each other in syntax and semantics. We have
applied this principle in the language design of XChangeEQ

with good results in terms of expressiveness and ease of use.
All query examples can be expressed in XChangeEQ and in
a manner quite similar to the natural language descriptions
given above.

Rule 5: No Silver Bullet, yet
Querying events is a young field that has still many emerg-

ing research issues. Among current approaches, there is no
silver bullet, yet.

While a lot of progress in research and industry has been
made on querying events, it is still a young field. We detail
now some of emerging issues that are query features which
are difficult to handle with current approaches.

Event instance selection and event consumption (Zimmer
& Unland 1999) have been introduced early (Chakravarthy
et al. 1994), but are still little understood. Event instance
selection allows to restrict the instances of one event type
that are considered for a composition with other events so
that, e.g., only the first, n-th, or last instance is consid-
ered. Event consumption allows to invalidate certain events
so that, once they have been used in one answer to a query,
they cannot be used in other, later answers. Note that con-
sumption has direct impact on semantics and should be dis-
tinguished from event deletion as a “garbage collection”
mechanism in evaluation algorithms. In general, both in-
stance selection and event consumption should be sensitive
to event data (e.g., for each sensor identifier select the last
event), an aspect that has usually been ignored so far. Fur-
ther, the necessary notions such as first, last, or next event
only have an intuitive meaning when there is a linear order
on the occurrence times of events; however usually there is
no clear linear order when events happen over time intervals
not points. Also instance selection and event consumption
can be argued to have a rather imperative, non-declarative
flavor, making queries hard to use and hard to optimize. We
also refer to (Bry & Eckert 2007c) for deeper explanations.

Another issue is whether certain situations should be
modeled and queried as (complex) events or rather as states.
An inventory application might generate events when items
come in or go out. Expressing a situation where less than
10 items are in store as a complex event is hard with current
approaches, while it is relatively easy with a state-focused
approach such as production rules. The state is modeled
as a counter, which is increased and decreased by events,

and a production rule will fire when the counter sinks below
10. On the other hand, current complex event approaches
are much better suited when situations involve event pattern
matching or negation and aggregation over time.

It is often necessary to combine non-event data with event
data. For example, inventory tracking events might contain
item identifiers and queries require a database lookup to find
out the product group of a given item. When the non-event
data changes during the detection of the (complex) event, it
then becomes relevant when the non-event data is accessed.
This is an emerging issue for both language design and eval-
uation algorithms and closely related to the issue states from
the preceeding paragraph.

An important issue is whether or how knowledge repre-
sentation mechanisms can be applied to events and event
types. We have already argued in rule 2 that deductive rules
are indispensable, and they are already supported by some
query languages (Bry & Eckert 2007a). However other ap-
proaches can be interesting as well. For example it can be
useful to have an ontology that formalizes type hierarchies
of events (e.g., inheritance like “a delivery event is a pack-
age tracking event”) and relationships such as causality, co-
occurrence, or temporal order between events. Whether cur-
rent ontology languages are suited for this task, however, is
still an open question. Representation of knowledge about
events is also discussed in (Adi, Botzer, & Etzion 2000).

The ability to query causal relationships between events
is interesting especially for diagnostic queries (e.g., to tell
apart abortions of business processes caused by user request
or by network failure). One can distinguish horizontal and
vertical causality (Luckham 2002). Vertical causality is be-
tween events on the same abstraction level, e.g., a shipping
event is the cause for a delivery event, and entails that the
causing events happens before the caused event. It is often
modeled as “key” in event data (e.g., the tracking number in
the shipping and delivery events), though other approaches
(e.g., an external table or computable values) are conceiv-
able, too. Horizontal causality is between events on dif-
ferent abstraction levels, e.g., a delivery events is (together
with other events) a cause an order completed event. Hor-
izontal causality is often modeled by means of deductive
rules as illustrated previously. With the notable exception of
the Rapide EPL (Luckham 2002), current event query lan-
guages do not offer an explicit construct for querying causal
relations between events and it has to be done implicitly
(e.g., by correlating event data on a key). One can argue
that a construct for querying causal relationship can be in-
tegrated into an event query language in the same fashion
as the already supported temporal relationships (Bry & Eck-
ert 2006). However the remaining primary problem is the
modeling of causality (esp. vertical causality), which is still
little understood. Furthermore, causality relationships be-
tween events are sometimes simply unknown or unobserv-
able.

To sum up, there are still many emerging issues related to
querying events. At least so far, there is no approach that sat-
isfies all needs. Since there is no silver bullet, the choice of a
particular event query language to solve a concrete problem
is an important one and anything but easy.



Conclusion
There is an obvious need for expressive high-level event
query and reasoning languages in the context of business
processes and rules, but also other areas such as sensor net-
works, service level agreement (SLA) monitoring, and su-
pervisory control and data acquisition (SCADA). In this po-
sition paper, we have presented five “rules” for the design of
such languages. Purposefully, some of these rules might be
controversial. Language design as well as algorithmic issues
still need research and discussions.
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P.-L. 2007. Reactive rules on the web. In Reasoning Web,
Int. Summer School.
Bry, F., and Eckert, M. 2006. A high-level query language
for events. In Proc. Int. Workshop on Event-driven Archi-
tecture, Processing and Systems.
Bry, F., and Eckert, M. 2007a. Rule-Based Composite
Event Queries: The Language XChangeEQ and its Seman-
tics. In Proc. Int. Conf. on Web Reasoning and Rule Sys-
tems.
Bry, F., and Eckert, M. 2007b. Temporal order optimiza-
tions of incremental joins for composite event detection. In
Proc. Int. Conf. on Distributed Event-Based Systems.
Bry, F., and Eckert, M. 2007c. Towards formal foundations
of event queries and rules. In Proc. Int. Workshop on Event-
Driven Architecture, Processing and Systems.
Bry, F.; Lorenz, B.; Ohlbach, H. J.; Roeder, M.; and Wein-
berger, M. 2008. The Facility Control Markup Language
FCML. In Proc. Int. Conf. on the Digital Society.
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