
Towards a Framework for Policy-Oriented Enterprise Management

Matthias Kaiser
SAP Research Center Palo Alto

SAP Labs LLC, 3410 Hillview Ave
Palo Alto, CA 94304, U.S.A.

Jens Lemcke
SAP Research, CEC Karlsruhe

SAP AG, Vincenz-Prießnitz-Str. 1
76131 Karlsruhe, Germany

Abstract

Service-oriented architectures have brought significant
progress for more flexible realization of business processes
integrating functionality from heterogeneous sources. While
more and more businesses adopt the new technology it be-
comes obvious that many questions are still not addressed to
make it keep its promises, especially in the area of human
efforts involved in business process composition. We intro-
duce a framework for a possible next generation enterprise
software based on, but going beyond that of service-oriented
architectures utilizing logic programming taking advantage
of formalized explicit policies as substantial constituents of
enterprise systems.

Introduction
The use of software to help manage businesses and enter-
prises has a more than 30 year tradition, going through a
number of changes due to hardware advancements and new
software paradigms (Buck-Emden 1999). However, systems
designed in the 90s were too inflexible to enable efficient
adaptation of functionality to customer company demands.
The result has been the development of service-oriented ar-
chitecture (Woods 2003). While this approach is more flex-
ible, it lacks properties which are critical for use by busi-
nesses. We propose a further development we call policy-
oriented enterprise management (POEM). At the heart of
this approach are, as the name suggests, policies, perceived
as regulations, constraints, and contracts “steering” the be-
havior of, e. g., a company (Kaiser 2007).

In this short paper, we outline the major ideas behind
this approach, its benefits as compared to alternatives—
prominently service-oriented architectures—and describe
some work currently underway to realize this initiative.

The Idea of
Policy-Oriented Enterprise Management

In less than a nutshell, policy-oriented enterprise manage-
ment is computational logic applied to enterprise manage-
ment software. If an enterprise or an organization of any
kind is to be managed, the following knowledge is neces-
sary for a satisfactory handling of this task:

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• knowledge of objects subject to management, their prop-
erties and relations;

• knowledge of policies which regulate and constraint rela-
tions and properties of objects;

• situations which are constellations of objects due to their
properties and relations at a certain point in time;

• goals in form of situations which are chosen to be realized
through change of initial situations; and

• certain facilities to change the properties and relations of
objects taking into account policies and thus realizing new
situations or goals.

If we can formalize the knowledge outlined above in a
declarative way then enterprise software controls the behav-
ior of the system utilizing a generic reasoner throughout all
processes that are comprised by the operations to virtually
“run” the business.

This approach is not strictly new, but has been formulated
in the paradigm of logic programming (McCarthy & Hayes
1969). However, the application of this paradigm for the
management of complex systems such as for the manage-
ment of enterprises—or at least substantial parts of it—has
not been practically implemented yet.

There are a number of benefits that justify such an idea,
some of the more prominent are:
• software is realized from specifications produced by busi-

ness experts rather than actual programming by software
developers;

• a declarative approach facilitates uniform representation
across domains and functionality empowering the adher-
ence to the standards of formalizations;

• the explicit declaration of knowledge greatly improves
understandability and maintenance, promoting dynamic
adaptation for functional changes or simulations of inno-
vative ideas in enterprise management; and

• results of decisions or business process realizations can
be verified and proven on the basis of declarations and
the way they were used by the control mechanisms of a
reasoner.

Our vision is encouraged by multiple trends happening at
a rapid pace, such as the development and implementation
of service-oriented architectures (Bieberstein et al. 2005;
Petrie & Bussler 2003), the advancements in semantic Web
technologies, increased efforts in standardization of for-



mal tools to express and transform knowledge, the for-
mation of ecosystems to distribute software and integrate
open source as well as third party commercial solutions into
enterprise management systems, and the increasing costs
and complexity to manage software developed on the tradi-
tional programming paradigm (Grosof 2007; Margolis 2007;
McComb 2003). However, we are well aware that long-term
research seems still necessary to make this “dream” a reality.

Business Process Emergence in POEM:
An Illustrative Example

Let us try to exemplify our vision with the following enter-
prise story.

Initial Situation
We take the perspective of John’s Tire Center, a car tire
dealer, who takes an order of four high-performance GS21
tires from Dave, a private customer. Unfortunately, John’s
Tire Center does not have the requested four GS21 tires on
stock.

Goal
A business expert from John’s Tire Center wants the system
to achieve the business goal of billing Dave for his order of
four GS21 tires.

Expected Business Process
Because it does not have the requested tires in stock, John’s
Tire Center contacts the tire manufacturer, Best Tire and
Rubber, with a purchase order. Best Tire and Rubber offers
special conditions for large orders, so John’s Tire Center or-
ders 100 GS21 tires, instead of the four needed for Dave.
Best Tire and Rubber delivers the 100 tires and sends an in-
voice to John’s Tire Center. John’s Tire Center pays the bill
and ships the four requested GS21 tires with a customer in-
voice to Dave.

General Policies
We envision that a policy-oriented enterprise management
system would be shipped with a set of common policies such
as contemporary business software systems are shipped with
some pre-tailored best practice business process templates.
Those general policies would, e. g., state:
• A bill can be issued for a shipment.
• A shipment can be executed from stock.
• If a shipment cannot be fulfilled from stock, the goods to

be shipped must be acquired from an appropriate supplier.
• Goods will be procured from a supplier only if needed.
• A bill from a supplier has to be paid.
• No shipment is done without a prior order.

Specific Policies of John’s Tire Center
Like a business software customer has to configure the pur-
chased system by adding their master data and adapting the
best practices to their business needs today, in our example,
there exist policies specific to the enterprise of John’s Tire
Center:

• We procure any types of tires only from Best Tire and
Rubber.

• We procure GS21 from Best Tire only in amounts equal to
or larger than 100 pieces in a single purchase order (due
to special deals).

Transforming Goals to the POEM System
In order to make the goal meaningful to the policy-oriented
enterprise management system, it needs to be identified in a
way that it can be decomposed into sub goals to be matched
by services regulated by policies. This results in a business
specification of the goal which can be transformed into a
technical use case description. After refinement, an actual
use case is derived in an appropriate form for processing,
why may range from BPMN to first order predicate calculus
(FOPC). The whole transformation process is supported by
the system through proposing matching services and poli-
cies. A planner helps to organize the sequence of sub goals,
and assigns services to realize them under given policies or
constraints.

How POEM Works with Goals and Policies
Policies and situation descriptions are treated as logically
satisfied statements. For example, the fact that there is an
order of four tires from Dave is known. Also, the constraint
is known that each ordered item not on stock must be pro-
cured. A goal is represented as a logically unsatisfied state-
ment. For example, it is not yet true that there is a bill for
Dave’s order. Technically, the goal constitutes an inconsis-
tency in the logical data base. Executing the plan generated
for this goal resolves the inconsistency. Thus, instead of
composing business processes prescriptively—as in today’s
service-oriented architecture approaches—they emerge in
policy-oriented enterprise management based on declared
goals, available functionality (services) and domain-relevant
policies, all declared, which can be changed dynamically as
required.

The Proper Treatment of Policies
While research and development has focused mainly on the
description and utilization of services as the “active” pieces
of software that change objects, policies as directives, and
constraints of changes have in our opinion not received due
integration yet. They play usually a minor role in service-
oriented architectures, although more research is on the way
(Tonti et al. 2003; Uszok et al. 2004). As has been shown
in past endeavors in knowledge representation, the acquisi-
tion, representation and maintenance of knowledge—such
as policies from real world scenarios—poses special chal-
lenges to humans and machines. In the following, we will
outline some directions towards the treatment of policies for
enterprise management.

Acquisition and Representation of Policies
The first question we are confronted with is the acquisition
of policies in a way that we can explicitly represent them for
reasoning in a software environment. In order to be able to



do this, it is often necessary to “translate” policies in compli-
cated wording into a formal representation in some kind of
declarations. Ideally, we would like to arrive at a represen-
tation which can easily be obtained from the original form,
and which can be represented to be processable by the soft-
ware and easy to understand by a human at the same time.

One interesting venue which we think could bridge the
gap between ordinary expression of policies and a formal
representation accessible and usable for automated reason-
ing is the reformulation of policies in controlled natural
language (Fuchs, Kaljurand, & Schneider 2006; Schwitter
2002). A controlled natural language is a restricted subset
of a natural language—such as English—which is defined
by a controlled grammar and lexicon to ensure unambigu-
ous and precise declarations. This way, a controlled nat-
ural language is really a formal language that can be pro-
cessed by the computer and used to reason over the content
expressed. Such a representation can easily be transformed
into a commonly used logic form such as first order predi-
cate calculus as input for a reasoning system. On the other
hand, it is close enough to a natural language, and thus a user
can read it without any training, and write it with compara-
tively little effort. Intelligent authoring tools may support
the user to avoid grammatical, lexical or orthographic mis-
takes through instant detection, and the possibility for easy
correction, including assistance for the incremental exten-
sion of the language itself. A controlled natural language
could not only be used to mediate information between hu-
mans, machines, and the other way round—by means of
automated generation of controlled natural language—but
we can imagine to use controlled natural language even as
the “lingua franca” to communicate between software and
hardware components of a system or infrastructure. The big
advantage of such an approach lies in the understandability
of information exchanged between components of a system
such as in an enterprise infrastructure.

Maintenance of Policies
Maintenance has to ensure the adequacy and validity of poli-
cies at any given point in time. This may be particularly
challenging in a dynamic environment. We distinguish the
following prominent cases for policy maintenance. First,
policies are out of date. Second, policies are inconsistent
(conflicting). And third, policies do not cover a relevant cir-
cumstance in the environment.

But also, efficiency how policies can be used is impor-
tant for real world applications. This includes considering
the computational complexity regarding reasoning. For this,
modularity and scope of policies could be evaluated and uti-
lized to optimize their computation. In addition, a caching
approach of explicit factual policies may bring advantages
compared to implicitly inferring policies all over again.

In the next section, we outline a framework for effi-
cient policy-oriented enterprise management motivated by
the above questions.

Efficient Handling of Policies in POEM
Usually, enterprises are highly structured entities, organized
in departments where individuals perform tasks according

to their role assignments, etc. Consequently, many policies
are relevant for certain substructures of the enterprise while
others are of more general nature. This fact is the starting
point for our proposed policy organization which follows the
structuring of a corresponding enterprise model. So, policies
have scopes determined by the roles which they impact. We
reflect this with a model of an enterprise as an agent popula-
tion. Every agent is assigned one or more roles but may have
“virtual” personal features if required. So, we can specify
for each agent which policies it must adhere to.

We can think of agents as representatives of real enterprise
components, prominently people, fulfilling their tasks—or
at least some of them—while providing all they do trans-
parently to human inspectors who might approve or modify
behavior as they see fit. Agents are responsible to analyze
situations represented as states of objects, detect relevant
circumstances according to their domain of responsibilities,
specify goals in response to those circumstances, which con-
sequently will be achieved through the generation and invo-
cation of appropriate business processes, orchestrated from
services as constituents of a service-oriented architecture.
Every agent consists of the following principle components:

a forward chaining rule system consisting of rules where
their antecedent matches with certain circumstances in a
situation while their consequences describe a high-level
goal which is to be achieved in case the circumstance
arises;

a planner which, if supplied with a high-level goal such
as provided by the consequence of a rule for situation-
relevant circumstance detection, will trigger a plan gener-
ation to produce as result a state in which the high-level
goal is satisfied;

a set of facts and rules in form of a logical program which
empower the planning strategy;

a set of constraints in form of policies that regulate which
subgoals on the way to achieving the high-level goal and
including the high-level goal itself must be obeyed.

This approach to model the agents as active “citizens” of
a “virtual enterprise” is very similar to those described in
(Kowalski 2005). Every agent needs to take into account a
subset of policies which makes scalability of reasoning in
presence of those policies much more feasible. Agents can
be personalized, distributed, and easily adapted, and are thus
in harmony with the service-oriented architecture approach.

In order to function correctly, regulating policies must be
kept in a state of sufficiently precise reflection of the real
world. Of special importance is the elimination of incon-
sistencies, at least the detection thereof for further human
attendance. It is crucial to note, though, that policies in dif-
ferent subdomains may contradict. For example, one depart-
ment may have different standards than another. To ease the
coping of these phenomena is another good reason to divide
the policy set of an enterprise into subdomains, e. g., defined
by roles and utilized by agents as described above.

Besides the maintenance of contradictory policies,
“holes” of situational circumstances which are not dealt with
effectively—due to missing or defective policies—is of rel-



evance. Incremental policy acquisition on the basis of ac-
curate and understandable justifications and explanations of
agent actions seems a good starting point for filling those
“holes,” though research is necessary to realize a practical
methodology.

Besides qualitative maintenance of policies, quantitative
issues may also be highly critical. Crucial is the scalability
of reasoning on the basis of policies. For example, it might
be possible to reason correctly on a policy set over a num-
ber of reasoning steps. On the other hand, one could just
explicitly write a policy which states effectively the result of
the reasoning process. This may be relevant if this reason-
ing procedure occurs frequently and threatens to become a
scalability hazard.

Of Agents and Humans
If a system takes over responsible tasks which may have a
profound impact on the real world, the liability of the pro-
cesses performed lies, of course, with the people who “set
the system to work.” Therefore, it is of paramount impor-
tance to offer accurate and efficient human-machine inter-
faces. We have developed an approach to equip the outlined
agents with intelligent user interfaces we call “proactive user
interfaces” (Kaiser & Mueller 2005) to facilitate the commu-
nication and particularly the cognitive support for the user to
assist in the supervision of a policy-oriented enterprise man-
agement system. A proactive user interface consists of four
main components:

Situation analyzer. This component reports which situa-
tional circumstances are relevant for an agent for further
actions.

Goal recommender. Reports goals chosen and recom-
mended to achieve as reaction on the detected situational
circumstances.

Guide. Communicates a synthesized plan to achieved a rec-
ommended and accepted goal.

Explainer. Justifies the chosen process steps, which poli-
cies are relevant, and reports.

In addition, more user interfaces are needed, e. g., for
maintaining data and policies, which will be subject of fur-
ther research.

Conclusions
In this short paper, we have outlined our fundamental views
on further development of current enterprise management
systems which are formulated and pursued in our project
policy-oriented enterprise management (POEM). We focus
on the realization of our objectives utilizing computational
logic applied to policy acquisition, representation, and uti-
lization on top of a service-oriented architecture.

References
Bieberstein, N.; Bose, S.; Walker, L.; and Lynch, A. 2005.
Impact of service-oriented architecture on enterprise sys-
tems, organizational structures, and individuals. IBM Syst.
J. 44(4):691–708.

Buck-Emden, R. 1999. The SAP(R) R/3 System: An
Introduction to ERP and Business Software Technology.
Addison-Wesley Professional.
Fuchs, N. E.; Kaljurand, K.; and Schneider, G. 2006. At-
tempto Controlled English Meets the Challenges of Knowl-
edge Representation, Reasoning, Interoperability and User
Interfaces. In Proceedings of 19th International Florida
Artificial Intelligence Research Society Conference, Mel-
bourne Beach, Florida, USA (11th–13th May 2006), 664–
669. The Florida Artificial Intelligence Research Society.
Grosof, B. 2007. Commercializing semantic web: Rules,
services, and roadmapping. Invited Keynote Presentation
(1-hour) at the 1st European Semantic Technology Confer-
ence (ESTC-2007), Vienna, Austria.
Kaiser, M., and Mueller, C. 2005. The shopping scout:
A framework for an intelligent shopping assistant. In
Proceedings of the 2nd International Conference on e-
Business and Telecommunication Networks, Reading, UK.
Kaiser, M. 2007. Toward the realization of policy-oriented
enterprise management. IEEE Computer Society Special
Issue on Service-Oriented Architecture forthcoming.
Kowalski, R. A. 2005. The logical way to be artificially
intelligent. In Toni, F., and Torroni, P., eds., CLIMA VI,
volume 3900 of Lecture Notes in Computer Science, 1–22.
Springer.
Margolis, B. 2007. SOA for the Business Developer: Con-
cepts, BPEL, and SCA. Mc Press.
McCarthy, J., and Hayes, P. J. 1969. Some philosophi-
cal problems from the standpoint of AI. In Meltzer, B.,
and Michie, D., eds., Machine Intelligence, volume 4, 463–
502. American Elsevier.
McComb, D. 2003. Semantics in Business Systems: The
Savvy Manager’s Guide. Morgan Kaufmann.
Petrie, C., and Bussler, C. 2003. Service agents and virtual
enterprises: A survey. IEEE Internet Computing 7(4):68–
78.
Schwitter, R. 2002. English as a formal specification lan-
guage. In DEXA Workshops, 228–232. IEEE Computer
Society.
Tonti, G.; Bradshaw, J. M.; Jeffers, R.; Montanari, R.; Suri,
N.; and Uszok, A. 2003. Semantic web languages for pol-
icy representation and reasoning: A comparison of KAoS,
rei, and ponder. In Fensel, D.; Sycara, K. P.; and Mylopou-
los, J., eds., International Semantic Web Conference, vol-
ume 2870 of Lecture Notes in Computer Science, 419–437.
Springer.
Uszok, A.; Bradshaw, J. M.; Jeffers, R.; Tate, A.; and Dal-
ton, J. 2004. Applying KAoS services to ensure policy
compliance for semantic web services workflow composi-
tion and enactment. In McIlraith, S. A.; Plexousakis, D.;
and van Harmelen, F., eds., International Semantic Web
Conference, volume 3298 of Lecture Notes in Computer
Science, 425–440. Springer.
Woods, D. 2003. Enterprise Services Architecture
(O’Reilly Field Guide to Enterprise Software). O’Reilly
Media, Inc.


