
A Framework for Unifying Problem-Solving Knowledge and Workflow Modeling

Juan C. Vidal and Manuel Lama and Alberto Bugarı́n
Departament of Electronics and Computer Science

Facultad de Fı́sica, Edificio Monte da Condesa
15782 Santiago de Compostela, Spain

Abstract
Usually a workflow is described from its control struc-
ture and its participants but without taking into account
the knowledge used to execute it. This paper outlines
a new framework for workflows specification which
extends the Unified Problem-solving Method descrip-
tion Language and approaches workflows design from a
knowledge perspective. Within this framework, the re-
sources and the control flows that define the traditional
workflow framework are defined as knowledge compo-
nents and are enriched with a knowledge dimension that
deals with the definition of the knowledge that is used
in its modeling, resource assignments and execution.

Introduction
Workflows are increasingly being used to model processes
because they facilitate the communication, coordination and
collaboration between the participants of the business pro-
cess. In last years, a number of specifications have arose
for describing processes or workflows such as BPEL4WS
(Andrews et al. 2003), BPMN (Obj 2006), or the XPDL
standard defined by the Workflow Management Coalition
(WfMC) (Wor 2005). Most of these languages specify a
workflow on the basis of (i) its control structure where the
execution control of the activities is defined and (ii) its par-
ticipants, that specify which agents execute the workflow
activities. However, these approaches do not incorporate ex-
plicitly the problem-solving knowledge in the workflow defi-
nition: this knowledge is implicitly used its control structure
and in its organizational structure, but as it is not explicitly
represented, it cannot be shared or reused. For dealing with
this drawback, workflows need to be specified as a new com-
ponent at the knowledge-level (Newell 1982).

Since the introduction of the knowledge-level con-
cept, several approaches have been proposed to represent
knowledge components and, more specifically, problem-
solving knowledge components. Between these approaches
the Unified Problem-solving Method description Language
(UPML) (Fensel et al. 2003) can be considered as the de
facto standard. The main drawback of UPML to be appli-
cable for solving a given problem is that it does not de-
fine an operational description for those methods that are

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

not simple and decompose into subtasks: it assumes that
this description is at the symbolic level. Based on UPML
and from the perspective of semantic web services, there
are some approaches, such as IRS-III (Cabral et al. 2006)
and WSMO (de Bruijn et al. 2005), that propose an opera-
tional description for the methods. These proposals based on
the UPML specification, however, do not use workflows for
modeling the execution coordination of the tasks that com-
pose a method (or a service).

In this paper we describe a framework which captures
the problem-solving knowledge used to define and execute a
workflow. This framework extends the UPML specification
by incorporating both the control structure and the partici-
pants of a workflow as two new knowledge components. The
structure of these new components is based on two ontolo-
gies: the High-Level Petri Nets ontology (Vidal, Lama, &
Bugarı́n 2006a) and the TOVE ontology (Fox & Gruninger
1998) for process representation and organization modeling,
respectively. Figure 1 depicts the stack of the ontologies that
describes semantically the different dimensions of a work-
flow. In this paper when we refer to a workflow, we will
take all these dimensions into consideration.

Workflows Specification Framework
Framework architecture, depicted in Figure 2, is composed
by a set of boxes, which represent knowledge components,
that are connected by a set of ellipses, which represent
bridges. Specifically, we define six knowledge components
that capture each one of the aspects of a workflow. The
first four components, ontologies, tasks, methods and do-
main models are captured by the UPML model, and describe

High-Level Petri Net

Ontology

Hierarchical HLPN

Ontology

BPMNBPEL4WS XPDL

UPML Ontology TOVE Ontology

Workflow Description Ontology

Figure 1: Ontology stack for the representation of workflows

UPML model

Method-Domain

Bridge

Task

Refiner

Task

Domain

Refiner

Domain

Model

Ontology

Refiner

Ontologies

Method-Task

Bridge

Task-Domain

Bridge

Method

Refiner

Method

ModelControl-Method

Bridge

Control

Refiner

Control

Model

Process model

Resource

Refiner

Resource

Model

Resource-

Domain

Bridge

Resource model

Figure 2: Knowledge-based Workflow Framework

the concept of problem-solving method. The last two com-
ponents, the resource models and the control models, com-
plements the problem-solving method specification to cover
the definition of the workflow participants and the work-
flow control structure. Bridges define the adapters to con-
nect the knowledge components. For example, bridges are
used to relate the control flow to a method, the participants
of a workflow or the domain to which the problem-solving
method will be applied.

UPML Model
The core of the modeling of problem-solving methods is de-
fined in the UPML model (see Figure 2). Although UPML
model is out of the scope of this work, it describes problem-
solving methods by means of the following components:

• Task. A task describes an operation, specifying the re-
quired input and output parameters and the pre- and post-
conditions. We must remark a task only defines an opera-
tion and not the way in which this operation will be solved
nor the resources that will participate in its solution.

• Method. A method details the reasoning process to
achieve a task. Like tasks, they specify the required input
and output parameters and the pre- and postconditions.
However, methods can be split in two types depending on
their structure: non-composite and composite methods.

On the one hand, non-composite methods define a rea-
soning step that cannot be decomposed in more primitive
steps. The execution of this methods is in charge of the
(human and non-human) resources that participate in the
workflow. On the other hand, composite methods decom-
pose into subtasks and specify the control structure over
the subtasks. The operational description of these meth-
ods is the meeting point with control structure of work-
flows. Current implementations of the UPML framework
represent the control-flow in a program like way (Motta
1998) and are not well suited for being reused. Our frame-
work deals the operational description of the method as a
new component that defines the control of the execution
coordination of the method subtasks. This solution facili-
tates the reuse of both the methods and the control models:

– Several control structures can be associated (through a
bridge) with the same method, which enriches the se-
lection of the most suitable method configuration for
solving a task. A business level criteria may define
which is the best control structure for a given method.
This criteria may be based on organization practices,
logistics, fault tolerance, and so forth.

– The same control structure can be reused for differ-
ent methods because it does not depend on the method
decomposition. In our framework, the subtasks are
mapped by a bridge with the control structure. There-
fore both the method (and its task decomposition) and
the control structure (on the tasks) can be defined and
reused independently.

• Domain. A domain model describes the knowledge of a
domain of discourse. The domain model introduces do-
main knowledge, merely the formulas that are then used
by problem-solving methods and tasks.

• Ontology. An ontology defines a terminology and its
properties, used by resources, control structures, tasks,
problem-solving methods, and domain models. The core
of an ontology specification is its signature definition,
which defines signature elements that hold terms. The on-
tology also provides the axioms that characterize logical
properties of the signature elements.

Control Model
The control model deals with the definition of the control-
flow specifying the activities coordination and the condi-
tions that they must verify to enable their execution. A
control model is a knowledge component of the proposed
framework that captures a process-oriented perspective of
the workflow. This model will provide the execution level
semantics (Sheth & Gomadam 2007; Sivashanmugam et al.
2003) of the control structure and the reusable structures that
methods will adapt to define their operational description.

Process modeling techniques are wide and heterogeneous:
process algebra’s, Petri nets, and vendor specific diagrams
are the most representative solutions. At present there is
no standard language for workflow specification, but in our
opinion a solid theoretical foundation with a graphical se-
mantics is needed to make the definition of processes easier.

In this framework, we used high-level Petri nets (ISO/IEC
15909-1 2002) to design processes structure, because (i)
they are a formalism with a graphical representation and
(ii) they provide the explicit representation of the states and
events of processes. In order to incorporate the process
structure as a knowledge component, we have developed
a high-level Petri net ontology (Vidal, Lama, & Bugarı́n
2006a) which captures both the static elements and dynamic
behavior of this kind of nets in a declarative way. The on-
tology describes high-level Petri nets as graphs which is a
common way to describe these kind of nets. Based on this
representation, this component provides the properties that
allow the definition of these graphs. For example, they de-
fine:
• The nodes which capture the vertices of the graph. High-

level Petri nets are bipartite directed graphs and thus are
defined by two disjoint sets of vertices called places and
transitions. As it is depicted in Figure 3, places are graphi-
cally represented as circles while transitions as rectangles.

• The arcs capture the directed edges that connect a source
node to a target node. An arc connects places with tran-
sitions and transitions with places but never nodes of the
same type.

• The signature define the set of sorts and operators a high-
level Petri net can use. These sorts and operators will be
used to define the algebraic specification for annotating
the places, transitions and arcs of the net. As it is depicted
in Figure 3, a place is annotated with a sort (concept) at
the top of the circle (e.g. Case), a transition is annotated
with a condition in brackets at the bottom of the rectangle
which define its enabling condition (e.g. [true]), and an
arc is annotated with a term that can be a variable (e.g. x)
or an operator application (e.g. F(x)).
In our framework, a control structure, as any other knowl-

edge component, uses ontologies to define its properties. In
this case, the ontologies will be used to define the signature
of the net, that is, the sorts and operators used to annotate
the net.

Resource Model
Although the main attention of workflow researchers has fo-
cused on the process perspective, i.e. the control-flow, the
resource perspective, i.e. the people and machines actually
doing the work, is essential for successful implementation
of workflow technology.

Our framework addresses this issue through the resource
model (see Figure 2) which structure is based on the TOVE
ontology (Fox & Gruninger 1998). We created this model
as a special class of domain model that must be explicitly
defined because it plays an important role both in the defi-
nition and execution of workflows. In this sense, a resource
model cannot be designed like a classic domain model since
(i) each resource of the model needs to define a binary re-
lation with the domain model itself in order to define the
knowledge it manage and (ii) each resource also needs to
define the methods it can execute.

The resource model extends therefore the domain model
with the properties of the TOVE ontology. In this context,

ADAPTER

Assessment

Method
PROBLEM-SOLVING

METHOD LAYER

Evaluation

Method decomposition

Task Mappings

Assessment

CONTROL LAYER

(subtasks)
- sample - result

Input roles Output roles

Input Mappings Outputs Mapping

AND

SPLIT

make

evaluation1

make

evaluation2

AND

JOIN

take

decision

Case

Evaluation

EvaluationCase

Case

Evaluation x Evaluation Decision

abstract

case

abstract

case

abstract

case

evaluation1

evaluation2

evaluations decision

x

x

x

x

x G(x)

F(x)

z

y

(y,z) (y,z) D(y,z)

[true]
[true]

Figure 3: Relation between the problem-solving method and
the Petri net that defines the control structure of the work-
flow. The mappings between the two layers are defined with
dotted arcs.

a resource is a member of an organization that is capable of
doing work. A resource has a specific position in that orga-
nization with specific privileges associated with it. He may
also be a member of one or more organizational units which
are permanent groups of resources within the organization,
e.g. product department, development unit. A resource may
also have one or more associated roles. Roles serve as an-
other grouping mechanisms for human resources with simi-
lar job roles or responsibility levels, e.g. managers, technical
(Russell et al. 2004).

Our framework defines two types of resources: human
and non-human. We restrict non-human resources to exter-
nal services which call will be in charge of the workflow
system. In the case of human resources, the system does
not take the initiative and the resources (users) are in charge
of retrieving their work list, performing their work and no-
tifying their results. Thus, tasks assigned to non-human re-
sources are called automatic tasks. In any case, resources
will be in charge of the execution of non-composite meth-
ods.

Bridges
The reuse of the knowledge components is achieved through
the adapters such as they are defined in the UPML frame-
work (Fensel et al. 2003). The framework provides two
types of adapters to define binary relationships between
knowledge components: bridges and refiners. Bridges ex-
plicitly model the relationships between two distinguished
knowledge components, while refiners are used to con-
straint the definition of a knowledge component. Besides the
bridges that are defined in UPML for describing problem-
solving methods, our framework adds two bridges:

• Method-Control bridge relates a composite method with
a high-level Petri net. As it is depicted in Figure 3, this
bridge maps:

– The inputs and outputs of the method with places of the

WORKFLOWS COMPOSICIÓN

WORKFLOWS DESCRIPTION

Workflow Management Server

(WMS)

WORKFLOW RESOURCES COORDINATION

Message Broker

EIS Adapter EIS Adapter

EIS Service EIS Service External Web Service

ENTERPRISE APPLICATION INTEGRATION (EAI)

External Web Service

EXTERNAL RESOURCES INVOCATION

Web Service Adapter Web Service Adapter

Control Structure

(High-level Petri Nets)

A B

C

D

UPML Knowledge

Components

A

KJIHGFE

DCB

RQPENML R

Director

Responsable

Empleado

Unidad de
Producto

Unidad de
Fabricación

Unidad
Desarrollo

de Producto

Unidad
Comercial

Recursos

Unidades Organizativas

Roles

Unidad
Recursos
Humanos

Director de

Proyecto

Agente

Autónomo

Organization Structure

Figure 4: Infrastructure for the execution of knowledge-enriched workflows

Petri net (e.g. the sample input with the abstract case
place).

– The subtasks of the composite methods with the transi-
tions of the Petri net (e.g. the evaluation task with the
make evaluation1 place).

– The signature used in the definition of the method with
those of the Petri net, that is, it provides a different in-
terpretation of the annotations, sorts and operations of
the Petri net.

• Resource-Domain Model bridge. Individual resources
may also possess capabilities that further clarify its suit-
ability for executing various kinds of tasks. These may
include qualifications and skills as well as other attributes
such as specific responsibilities held or previous work ex-
perience. They features could be of interest when allocat-
ing tasks (work items).

Finally, we must mention the behavior of the Domain-
Method bridge when this bridge relates a resource with a
method. In this case, it relates the roles, units and par-
ticipants of the resource model with a method. When a
method is non-composite, then this association implies that
the resource will perform the method, e.g. a web ser-
vice. Resources cannot be associated to composite methods
since these methods are decomposed in subtasks and will be
solved by another methods.

Workflows Execution
Taking the previously described framework into account,
Figure 4 depicts the infrastructure for a service-oriented ex-
ecution of knowledge-enriched workflows. It defines a four
layers model which captures the components that are in-
volved in the execution:

• The first layer of the infrastructure provides the access to
the description of the workflows that must be executed.
This layer creates this description from its knowledge
components, that is, from the control structures, organiza-
tion structures, problem-solving methods, tasks, and do-
main models. Following the philosophy of UPML, these
components are glued through a set of adapters which de-
fine the way these knowledge components can be related
and the conditions under which they can be combined.
This feature makes the reuse of workflows easier since it
only implies the redefinition of the adapters.

• The second layer handles the execution and composition
of the workflows. This layer uses the first layer in order
to obtain the workflow description and thus each one of
the tasks that must be executed. This layer performs the
following operations:

– Execution. The execution of a task implies that the
most suitable method and resources must be selected
in order to drive its execution. When the selected
method is non-composite, this entails the selection of
the most suitable (i) resource-method adapters that re-
late the task that must be performed with the resources
that have permissions to perform it and (ii) resource-
domain adapters that match the knowledge required by
the tasks with those provided by the resource. From
this information, the scheduler of the workflow engine
assigns the work to the most suitable resource (the in-
tersection between the two adapters). When the work
is assigned to a software resource then the workflow
engine (i) searches the service description in its repos-
itory (which acts as a service registry) and (ii) call this
service through the third layer of the infrastructure.
Figure 5 depicts the knowledge components that partic-

ipate in a typical execution of a workflow. If we obvi-
ate the resources, a workflow is described as a task that
is solved by a problem-solving method which opera-
tional description is defined as a Petri net-based pro-
cess structure. The first layer of the Figure 5 repre-
sents this structure where each one of the transitions
depicted in the net represents a task to be performed.
Therefore, this example describes the structure of a
composite problem-solving method composed of four
tasks (second layer): abstract, evaluate case, revise
case, and create order. In the third layer of the Figure
5 a problem-solving method is assigned to each task.
When the method that solves the task is non-composite,
such as the method that solves the abstract task, then
the tree structure defined by the execution has reached
a leaf. However, when method is composite, such as
the evaluate case method that solves the CAD assess-
ment task, then a new non-leaf node is defined. This
new node will define another execution structure simi-
lar to those depicted in Figure 3, that is, the method will
define a new tasks decomposition structured according
to a Petri net. In the assessment method scenario, the
method is composed of two tasks (Evaluation and As-
sessment) that are mapped with two transitions of the
Petri net that define its control structure.

– Composition. When the method that solves a task is
composite then it will be composed by a set of tasks
controlled by another Petri net structure. The composi-
tion between the different Petri nets implies the defini-
tion of a hierarchical net (Gomes & Barro 2005). The
transition that represents the task solved by the com-
posite problem-solving method is substituted by the
Petri net that defines its control structure.
The assessment method depicted in Figure 5 is subject
of such composition although it is not detailed in the
figure. In this case, the evaluate case transition (task) of
the upper Petri net must be linked with the lower Petri
net that substitutes the assessment method. That is, the
input and output places of the evaluate case transition
are fused with those of the substitute net. As result of
this fusion, the behavior of the evaluate case transition
is assumed by the lower Petri net.

• The third layer of the infrastructure facilitates the coor-
dination of the resources that participate in the workflow.
This layer is defined by a message broker which estab-
lishes the logic of the messages exchange. Through this
solution the heterogeneity of the resources that participate
in the workflows is hidden by the message broker. This
architecture also uses the publication/subscription inter-
action model.

• Finally, the fourth layer depicted in Figure 4 integrates
the systems that will execute the non-composite methods,
such as the Enterprise Information Systems (EIS) or Web
services published by external providers. This integration
is performed through adapters which will participate in
the execution like any other resource. This layer enables
the access to all the systems with the same programming
model and data formats.

CONTROL LAYER

Assessment

MethodPROBLEM-SOLVING METHOD LAYER

TASK LAYER

Solved by

Evaluation

Method

decomposition

ADAPTER

Assessment

ADAPTER

Task to solve

CAD

Assessment

Case

case abstract

Case

abstract
case

evaluate
case

Decision

decision

create

order

Order

order

revise
case

x A(x) x E(x)

y

y

O(y)

Figure 5: Example of execution of a knowledge-enriched
workflows

Conclusions and Future work
This work describes a new knowledge-based framework for
workflow specification. The proposed framework extends
the UPML framework for problem-solving method descrip-
tion with (i) a high-level Petri net ontology for describing
the operational description of composite methods and (ii)
an organization ontology for describing the organizational
structure. With these extensions the definition of a work-
flow can be viewed as the specification of a problem-solving
method that includes the process structure (through a Petri
net) as the operational description and, when it is necessary,
the external agents that execute a non-composite method.

Our framework is related with current proposals for defin-
ing an ontology-based infrastructure to develop, discover
and compose semantic web services (de Bruijn et al. 2005;
Battle et al. 2005; Martin et al. 2004). Particularly, the
WSMO approach (de Bruijn et al. 2005) shares with our
framework that is also based on the UPML specification,
and therefore it inherits from UPML the concept of ontolo-
gies, tasks (aka goals), and adapters (aka mediators), which
enable the connection between all the components of the
framework. The main difference between our approach and
WSMO is that WSMO does not introduce the concept for
workflow in its specification: it uses abstract state machines
to define the structure of the choreography and orchestration
of semantic web services. Our approach, however, consid-
ers as an assumption the use of workflows, and particularly
of Petri nets, because they are accepted in the industry and
academic domains as a paradigm for process modeling.

From this perspective, the main advantage of the proposed
framework is due to its architecture which facilitates the
definition of workflows through a set of knowledge compo-
nents. Since each one of the components is defined indepen-
dently from the others, this framework facilitates the reuse
and composition of workflows: through the bridges different
parts of several workflows (tasks, process structure, organi-
zation description, etc.) could be used to compose a new
workflow.

Based on this framework a service-oriented architecture
for the definition and execution of workflows has been de-
veloped (Vidal, Lama, & Bugarı́n 2007). This architecture
is currently being applied in the domains of (1) furniture
industry where it is being used to define the business pro-
cesses associated to the creation of designs and assembly
of the pieces of a given furniture (Vidal, Lama, & Bugarı́n
2006b), and (2) eLearning for the execution of learning de-
signs which are modeled through workflows with teachers
and students as the participants that execute the learning
tasks.

Acknowledgments
Authors wish to thank the Xunta de Galicia and the Min-
isterio de Educacin y Ciencia for their financial support
under the projects PGIDIT06SIN20601PR and TSI2007-
65677C02-01.

References
Andrews, T.; Curbera, F.; Dholakia, H.; Goland, Y.;
Klein, J.; Leymann, F.; Liu, K.; Roller, D.; Smith,
D.; Thatte, S.; Trickovic, I.; and Weerawarana,
S. 2003. Business Process Execution Language
for Web Services Version 1.1. IBM. Available at
http://download.boulder.ibm.com/ibmdl/pub/software/dw/
specs/ws-bpel/.
Battle, S.; Bernstein, A.; Boley, H.; Grosof, B.;
Gruninger, M.; Hull, R.; Kifer, M.; Martin, D.; McIl-
raith, S.; McGuinness, D.; Su, J.; and Tabet, S. 2005.
Semantic Web Services Framework (SWSF) Overview.
World Wide Web Consortium (W3C). Available at
http://www.w3.org/Submission/SWSF/.
Cabral, L.; Domingue, J.; Galizia, S.; Gugliotta, A.; Tanas-
escu, V.; Pedrinaci, C.; and Norton, B. 2006. IRS-III: A
broker for semantic web services based applications. In
International Semantic Web Conference, 201–214.
de Bruijn, J.; Lara, R.; Arroyo, S.; Gomez, J. M.; Sung-
Kook, H.; and Fensel, D. 2005. A Unified Semantic
Web Services Architecture based on WSMF and UPML.
International Journal on Web Engineering Technology
2(2):148–180.
Fensel, D.; Motta, E.; Benjamins, V. R.; Crubezy, M.;
Decker, S.; Gaspari, M.; Groenboom, R.; Grosso, W.;
Musen, M.; Plaza, E.; Schreiber, G.; Studer, R.; and
Wielinga, B. 2003. The Unified Problem-solving Method
Development Language UPML. Knowledge and Informa-
tion Systems 5(1):83–131.
Fox, M., and Gruninger, M. 1998. Enterprise Modelling.
AI Magazine 109–121.
Gomes, L., and Barro, J. P. 2005. Structuring and Compos-
ability Issues in Petri Nets Modeling. IEEE Transactions
on Industrial Informatics 1(2):112–123.
ISO/IEC 15909-1. 2002. High-Level Petri Nets - Concepts,
Definitions and Graphical Notation.
Martin, D.; Burstein, M.; Hobbs, J.; Lassila, O.; Mc-
Dermott, D.; McIlraith, S.; Narayanan, S.; Paolucci, M.;

Parsia, B.; Payne, T.; Sirin, E.; Srinivasan, N.; and
Sycara, K. 2004. OWL-S: Semantic Markup for Web Ser-
vices. World Wide Web Consortium (W3C). Available at
http://www.w3.org/Submission/OWL-S/.
Motta, E. 1998. An Overview of the OCML Modelling
Language. In Proceedings of KEML’98: 8th Workshop on
Knowledge Engineering Methods and Languages.
Newell, A. 1982. The knowledge level. Artificial Intelli-
gence 8(1):87–127.
Object Management Group (OMG). 2006. Busi-
ness Process Modeling Notation (BPMN) Speci-
fication Final Adopted Specification. Available at
http://www.bpmn.org/Documents/.
Russell, N.; ter Hofstede, A.; Edmond, D.; and van der
Aalst, W. 2004. Workflow Resource Patterns. BETA
Working Paper Series WP 127, Eindhoven University of
Technology.
Sheth, A. P., and Gomadam, K. 2007. The 4 x 4 se-
mantic model: Exploiting data, functional, non-functional
and execution semantics across business process, work-
flow, partner services an middleware serices tiers. In 9th
International Conference on Enterprise Information Sys-
tems (ICEIS 2007), 1–4.
Sivashanmugam, K.; Verma, K.; A., S.; and Miller, J. 2003.
Adding semantics to web services standards. In 1st Inter-
national Conference on Web Services (ICWS’03).
Vidal, J. C.; Lama, M.; and Bugarı́n, A. 2006a. A High-
level Petri Net Ontology Compatible with PNML. Petri Net
Newsletter 71:11–23.
Vidal, J. C.; Lama, M.; and Bugarı́n, A. 2006b. Integrated
Intelligent Systems for Engineering Design. Frontiers in
Artificial Intelligence and Applications. IOS Press. chapter
Integrated Knowledge-based System for Product Design in
Furniture Estimate, 345–361.
Vidal, J. C.; Lama, M.; and Bugarı́n, A. 2007. Service-
oriented architecture for knowledge-enriched workflows
modelling and execution. In Abramowicz, W., and Maci-
aszek, L., eds., Business Process and Services Computing,
Lecture Notes in Informatics, 69–77.
Workflow Management Coalition (WfMC). 2005. Process
Definition Interface - XML Process Definition Language.
Available at http://www.wfmc.org/standards/docs/.

