The AAA Architecture: An Overview

Marcello Balduccini* and Michael Gelfond
Computer Science Department
Texas Tech University
Lubbock, TX 79409 USA

marcello.balduccini@gmail.co

Abstract

This paper describes the AAA architecture for intelli-
gent agents reasoning about, and acting in, a changing
environment. The architecture is based on a simple con-
trol loop. Both the description of the domain’s behavior
and the reasoning components are written in Answer Set
Prolog. The architecture is designed to make the agents
capable of planning and of detecting, interpreting, and
recovering from, unexpected observations. Overall, the
design and the knowledge bases el@horation toler-

ant Another distinguishing feature of the architecture
is thatthe same domain description is shared by all the
reasoning components

I ntroduction

In this paper we describe tHeAA architecturdor intelligent
agents capable of reasoning about, and acting in, a changing
environment:

The AAA architecture is used for the design and imple-
mentation of software components of such agents and is ap-
plicable if: (1) The world (including an agent and its en-
vironment) can be modeled by a transition diagram whose
nodes represent physically possible states of the world and
whose arcs are labeled by actions. The diagram therefore
contains all possible trajectories of the system; (2) Thanag
is capable of making correct observations, performing ac-
tions, and remembering the domain history; KBrmally
the agent is capable of observing all relevant exogenous
events occurring in its environment. The agent, whose mem-
ory contains knowledge about the world and agents’ capabil-
ities and goals,

1. Observes the world, explains the observations, and up-
dates its knowledge base;

. Selects an appropriate go&t,
. Finds a plan (sequence of acti@is. .. ,a,) to achieves;

. Executes part of the plan, updates the knowledge base,
and goes back to step 1.

Copyright(©) 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

*Present address: Eastman Kodak Company, Rochester, NY
14650-2204 USA

LAAA stands for “Autonomous Agent Architecture.”

m, michael.gelfond @ttiu.e

The loop is called th®©bserve-Think-Act Loo@he knowl-
edge of the AAA agent is encoded by a knowledge base
in knowledge representation language Answer Set Prolog
(ASP) or its extensions (Gelfond & Lifschitz 1991; Balduc-
cini & Gelfond 2003b; Baral 2003). ASP is selected be-
cause of its ability to represent various forms of knowledge
including defaults, causal relations, statements refgno
incompleteness of knowledge, etc. This contributes to mak-
ing the overall design and knowledge baskboration tol-
erant(McCarthy 1998). A knowledge base (or program) of
ASP describes a collection ahswer sets- possible sets of
beliefs of a rational agent associated with it. The agea#sr
soning tasks, including those of explaining unexpected ob-
servations and planning, can be reduced to computing (parts
of) answer sets of various extensions of its knowledge base.
In the case of original ASP, such computation can be rather
efficiently performed by ASP solvers, which implement so-
phisticated grounding algorithms and suitable extensidns
the Davis-Putnam procedure. Solvers for various extession
of ASP expand these reasoning mechanisms by abduction
(Balduccini 2007a), constraint solving algorithms andres
lution (Mellarkod & Gelfond 2007), and even some forms
of probabilistic reasoning (Gelfond, Rushton, & Zhu 2006).

This architecture was suggested in (Baral & Gelfond
2000). Most of its refinements were modular (Balduccini
& Gelfond 2003a; Balduccini, Gelfond, & Nogueira 2006;
Balduccini 2007b). Throughout the paper we illustrate the
architecture and its use for agent design using the scenario
based on the electrical circuit described below. The exampl
is deliberately simple but we hope it is sufficient to illus-
trate the basic ideas of the approach. It is important to,note
though, that the corresponding algorithms are scalable. In
fact, they were successfully used in rather large, indaistri
size applications (Balduccini, Gelfond, & Nogueira 2006).

The rest of the paper is organized as follows. We begin by
describing the behavior of a simple circuit. Next, we discus
how the agent finds plans and explanations for unexpected
observations. Finally, we give a brief summary of the se-
mantics of ASP and conclude the paper.

Building the Action Description

The electrical circuit used in this paper is depicted in Fégu
1. CircuitCy consists of a battenpgtt), two safety switches
(swg, sw), and two light bulbslg;, by). By safety switches

batt
+

p1LO) 2.0
SWJ(P/(SW%P/(

Figure 1:Cy: A simple electrical circuit

we mean switches with a locking device. To move a switch
from its current position, the switch must first be unlocked.
The switch is automatically locked again after it is moved.
If all the components are working properly, closing a switch
causes the corresponding bulb to light up. Next, we describe
in more detail how we model the circuit, and introduce some
useful terminology.

The state of the circuit is modeled by the followithgents
(properties whose truth changes over timejosed SW):
switch SW is closed;locked SW): switch SW is locked;
on(B): bulb B is on; ab(B): bulb B is malfunctioning;
down(BATT): batteryBAT T has run down. When a fluent
f is false, we write-f.

The agent interacts with the circuit by means of the
following actions flip(SW): move switch SW from
open to closed, or vice-versanlock SW): unlock SW,
replacéBATT); replacgB): replace the battery or a bulb.

Sometimes actions occur in the domain that are not con-
trolled by the agent (e.g., a bulb blowing up). These actions
are calledexogenous Relevant exogenous actions for this
domain are:run.downBATT): batteryBATT runs down;
blow_up(B): B blows up. Note that actions can occur con-
currently. We distinguish betweeatementary actionsuch
as the ones listed above, andmpound actionsi.e. sets
of elementary actions, intuitively corresponding to the-co
current execution of their components. In the rest of this
paper we abuse notation slightly and denote singletons by
their unique component. Similarly, we use the term “action”
to denote both elementary and compound actions.

The behavior of the domain is described by laws. De-

where SWB,S are variables ranging, respectively, over
switches, bulbs, and non-negative integers denoting steps
the evolution of the domain. The first law intuitively states
that unlockingSW causes it to become unlocked. Laws de-
scribing, such as this, ttdirect effectof actions are some-
times referred to adynamic laws The second and third laws
encode the effect of flipping a switch. The last law says that,
if SWis closed and connected to some bBllin working
order while the battery is not down, thé&nis lit. Note that
this law describes thimdirect effect, or ramificationof an
action. Such laws are sometimes calt#dtic lawsor state
constraints

Similar laws encode the effects of the other actions, as
well as the behavior of malfunctioning bulbs and battery.
The encoding of the model is completed by the following
general-purpose axioms:

holds(F,S+ 1) — holdgF,S),not ~holdF, S+ 1).
—holdgF, S+ 1) — —holds(F,S), not holds(F, S+ 1).

whereF ranges over fluent§over steps. The rules encode
the principle of inertia “things normally stay as they are.”

Planning Scenario

Let us now look at a scenario in which the main reasoning
componentis planning. We will use this scenario to illustra
how planning is performed in the AAA architecture.

Examplel Initially, all the bulbs of circuit G are off, all
switches open and locked, and all the components are work-
ing correctly. The agent wants to turn og.b

The intended agent behavior is the following. At step 1 of
the Observe-Think-Act loop, the agent gathers observation
about the environment. In general, the observations need
not be complete, or taken at every iteration. Let us assume
however for simplicity that at the first iteration of the agen
observations are complete. At step 2, the agent selects goal
G =on(b;). At step 3, it looks for a plan to achiev®and
finds (unlock(swy), flip(swy)). Next, the agent executes
unlocksw), records the execution of the action, and goes
back to observing the world.

Suppose the agent observes that is unlocked. Then,
no explanations for the observations are needed. The
agent proceeds through steps 2 and 3, and selects the plan

pending on the approach used, the laws can be written using (flip(sw)). Next, it executeslip(swy) and observes the

action languageéGelfond & Lifschitz 1998) and later trans-
lated to ASP, or encoded directly in ASP. For simplicity, in
the examples in this paper we use the direct encoding in ASP.
A possible encoding of the effects of actionslock'SW)
andclosgB) is:

—holdglocked SW), S+ 1) — occurgunlockSW), S).

holdgclosedSW), S+ 1) «— occurg flip(SW),S),
—holdgclosedSW), S).

—holdgclosed SW), S+ 1) — occurg flip(SW),S),
holdgclosedSW), S).

holdqon(B),S) — holdgclosedSW),),
connectedSW B), —holdgab(B),S),
—holdgdown(batt),S).

world again. Let us assume that the agent indeed finds out
thatb, is lit. Then, the agent’s goal is achieved.

The key feature that allows to exhibit the behavior
described above is in the capability to find a sequence
of actions (ay,...,a) that achievesG. The task in-
volves bothselectingthe appropriate actions, aratder-
ing them suitably. For example, the sequence of actions
(unlockswe), flip(swy)) is not a good selection, while
(flip(swy),unlocksw,)) is improperly ordered.

To determine if a sequence of actions achieves the goal,
the agent uses its knowledge of the domain to predict the
effect of the execution of the sequence. This is accom-
plished by reducing planning to computing answer sets of
an ASP program, consisting of the ASP encoding of the do-
main model, together with a set of rules informally stating

that the agent can perform any action at any time (see e.qg.
(Lifschitz 1999; Nogueirat al. 2001)).

This technique relies on the fact that the answer sets of
the ASP encoding of the domain model together with facts
encoding the initial situation and occurrence of actiores ar

in one-to-one correspondence with the corresponding paths

in the transition diagram. This result, as well as most of the
results used in this and the next section, are from (Baldiicci
& Gelfond 2003a). We invite the interested reader to refer
to that paper for more details. Simple iterative modificasio

of the basic approach allow one to find shortest plans, i.e.
plans that span the smallest number of steps.

To see how this works in practice, let us denotedythe
action description from the previous section, and consider
a simple encodingQ;, of the initial state from Example 1,
which includes statements

holdglocked'sw),0), —holdgclosedsw),0),
—holdgon(b;),0)

(more sophisticated types of encoding are possible.). A sim
ple yet generaplanning module Py which finds plans of
up ton steps, consists of the rule:

occurgA,S) orR —occurgA,S) «+— cS< S< cS+n.

whereA ranges over agent actiorspver steps, andSde-
notes the current step (0 in this scenario). Informally, the
rule says that any agent actiBmmay occur at any of the next

n steps starting from the current one. The answer sets of the
programil; = ADUO; UPM; encode all of the possible tra-
jectories, of lengt, from the initial state. For example, the
trajectory corresponding to the executionuoflocksw,) is
encoded by the answer set:

O, U{occurgunlockswe),0), -holdglocked sw,), 1),
—holdqon(b;),1),...}.

Note that-holdgon(b;), 1) is obtained byD; and the inertia
axioms.

To eliminate the trajectories that do not correspond to
plans, we add td1; the following rules,

goal_achieved— holdqon(bl),S).
< not goal_achieved

which informally say that goan(b1) must be achieved. Let
us denote the new program By;. It is not difficult to see
that the previous set of literals is not an answer sétpfOn
the other hand, (ifi > 2) M/ has an answer set containing

O, U{occurgunlocksw),0), -holdglocked'sw), 1),
occurg flip(swy),1),holdgclosedsw), 2),
holdgon(b1),2)},

which encodes the trajectory corresponding to the exetutio
of the sequencéunlocksw), flip(swy)).

Interpretation Scenario

To illustrate how a AAA agent interprets its observations
about the world, let us consider the following example.

Example 2 Initially, all the bulbs of circuit G are off, all
switches open and locked, and all the components are work-
ing correctly. The agent wants to turn of.tAfter planning,

the agent executes the sequerierlocksw), flip(swy)),

and notices that is not lit.

The observation is unexpected, as it contradicts the effect
the actions the agent just performed. A possible explanatio
for this discrepancy is thd; blew up while the agent was
executing the actions (recall that all the components were
initially known to be working correctly). Another explana-
tion is that the battery ran dowfn.

To find out which explanation corresponds to the actual
state of the world, the agent will need to gather additional
observations. For example, to test the hypothesis that the
bulb blew up, the agent will check the bulb. Suppose it is
indeed malfunctioning. Then, the agent can conclude that
blow_up(b1) occurred in the past. The fact tHat is not lit
is finally explained, and the agent proceeds to step 3, where
it re-plans.

The component responsible for the interpretation of the
observations, often callediagnostic componentis de-
scribed in detail in (Balduccini & Gelfond 2003a). Two
key capabilities are needed to achieve the behavior destrib
above: the ability to detect unexpected observations, and
that of finding sequences of actions that, had they occurred
undetected in the past, may have caused the unexpected ob-
servations. These sequences of actions correspond to our
notion ofexplanations

The detection of unexpected observations is performed
by checking the consistency of the ASP progréig, con-
sisting of the encoding of the domain model, together with
the history of the domain, and the Reality Check Ax-
ioms and Occurrence-Awareness Axiom, both shown be-
low. The history is encoded by statements of the form
obgF, S truth_val) (wheretruth_val is eithert or f, intu-
itively meaning “true” and “false”) antipd(A, S), whereF
is a fluent andA an action. An expressioobgF,St) (re-
spectively,obqF, S f)) states thaF was observed to hold
(respectively, to be false) at st&pAn expressiompd(A, S)
states thaf\ was observed to occur & The Reality Check
Axioms state that it is impossible for an observation to con-
tradict the agent’s expectations:

— holdqF,S),obqF,S, f).
— —holdgF,S),obqF,St).

Finally, the Occurrence-Awareness Axiom ensures that the
observations about the occurrences of actions are reflected
in the agent’s beliefs:

occurgA,S) — hpd(A,).

It can be shown that prografiy is inconsistent if-and-only-
if the history contains unexpected observations.

To find the explanations of the unexpected observations,
the agent needs to search for sequences of exogenous actions
that would cause the observations (possibly indirectffy), i

20f course, it is always possible that the bulb blewanul the
battery ran down, but we do not believe this should be the first
explanation considered by a rational agent.

they had occurred in the past. A simple diagnostic module
DM; is the one consisting of the rule:

occurg§E,S) or —occur§E,S) — S< cS

where E ranges over exogenous actions, &S are as

in the planning module. Informally, the rule says that any
exogenous actioiE may have occurred at any time in the
past.

To see howbM; works, consider the prografi, consist-
ing of AD and the encoding of the initial sta from the
previous sectiof) together with the Occurrence-Awareness
Axiom, moduleDM;, and the history

H1 = {hpd(unlock'sw),0), hpd(flip(sw;), 1),
obgon(by),2, f)}.
It can be shown that the answer set$efare in one-to-one

correspondence with all the trajectories from the initiates
that include all the actions that the agent has observes glu

A sequence of actions expected to achieve this goal
is (unlock(swy), flip(swy),unlocksws), flip(swy)). Let us
suppose that this is the plan found at step 3 of the Observe-
Think-Act loop. The agent will then execute part of the plan

— supposeunlocksw;) — and observe the world again. As-

suming that there are no unexpected observations, the agent
proceeds with the rest of the pfaand executeslip (sw).
This time, the agent finds thbt is not lit and hypothesizes
thatb; blew up at step 1. To store this piece of information,
it then adds a statemehpd(blow_up(bz),1) to the history
of the domair?

The agent now looks for a new plan. Because of the ad-
ditional constraint on bulb replacement, the agent willehav
to flip swy open before replacinb;. A possible plan that
achieves the goal from the new state of the world is:

(flip(swy),replaceby), flip(swy), unlockswe), flip(swy)).

number of additional exogenous actions. That is, the answer 1,¢ agent then proceeds with the execution of the plan, and,

sets off1, will encode the trajectories corresponding to the
sequences of actions:

({unlock(swy), run_down(batt)}, flip(swy))

(unlock(swy),{ flip(swy),blow_up(by)})
({unlock(swy), blow_up(by)}, { flip(swy),blow.up(by)})

Note that the first and third sequences of actions explain the

observation aboub; from H;, while the second one does

not. The sequences of actions that do not explain the unex-

assuming that no other unexpected observations are encoun-
tered, will eventually achieve the goal.

CR-Prolog to Interpret the Observations

In this section we discuss a modification of the AAA ar-
chitecture based on a different technique for the interpre-
tation of the agent’s observations. This technique allows
a more elegant representation of exogenous actions, which
includes the formalization of information about relatihe t

pected observations can be discarded by means of the Re-likelihood of their occurrence, and guarantees that alhef t

ality Check Axiom. Letl), consist off1; and the Reality
Check Axiom. It is not difficult to see that no answer set

of M}, encodes the second sequence, while there are answe

sets encoding the first and third.

It should be noted that some of the explanations found by
DM; are not minimal (in set-theoretic sense). For example,
the third explanation above is not minimal, because remov-
ing blow_up(b,) yields another valid explanation. Diagnos-

tic algorithms have been developed that extend the approach

explanations returned by the diagnostic module are minimal
(in set-theoretic sense).

r The approachis based on the use of the extension of ASP

called CR-Prolog (Balduccini & Gelfond 2003b; Balduccini
2007a). In CR-Prolog, programs consist of regular ASP
rules, and ofcr-rules and preferences over cr-rules. A cr-
rule is a statement of the form:

r:IoiIl,...,Im,notlml,...,notln.

shown here to find minimal diagnoses. Another technique, \yherer is the name of the cr-rule arids are ASP literals.
which we discuss in the next SeCtion, avoids the use of such The rule says “iﬂla . _7|m hold and there is no reason to

algorithms by employing a recent extension of ASP for the
formalization of exogenous actions.

It is worth noticing that the technique described here to
interpret observations is remarkably similar to that used f
planning. In fact, the interpretation of observations sees
tially reduced to “planning in the past.” More importantly,

believely.1,...,In, lo may possibiyhold, but that happens
rarely.” Informally, this possibility should be used only i
the regular rules alone are not sufficient to form a consis-
tent set of beliefs. In the CR-Prolog terminology, we say
that cr-rules are used taestore consistencyreferences are
atoms of the formprefer(ry,r,), wherery andr; are cr-rule

the planning and diagnostic reasoning components share the names. The statement informally means thashould be

same knowledge about the domain
To see the interplay between interpretation of the obser-
vations and planning, consider the following scenario.

Example 3 Initially, all bulbs are off, all switches open and
locked, and all the components are working correctly. The
agent wants to turn onsjband . The agent is also given
the additional constraint thdtulbs cannot be replaced while
they are powered.

3The initial state described b§; could be re-written to use
statement®bgF, S;truth_val), but that is out of the scope of the

paper.

considered only if using; does not restore consistency.
To see how cr-rules work, consider the answer sets of
the programP, = {p<—q. p<—Uu. s<notsnotp. ry:

4In the AAA architecture, checking for the need to re-plan can
be reduced to checking if any unexpected observations were d
tected.

5Storing in the history the conclusions obtained during the i
terpretation of observations can cause problems if evielaot-
lected at later iterations of the loop invalidates the higpsts, but
we will not discuss more sophisticated methods of recordisg
tory because of space considerations.

q & nott.}. Because the regular rules Bf alone are in-
consistenf, r1 is applied, yielding the (unique) answer set
{q,p}. On the other hand, let us consider the progrBsm,
obtained by adding rul¢u.} to P;. Now the regular rules
are sufficient to form a consistent set of beliefs,({}).
Therefore, the cr-rule is not applied, and the answer set of

P is {u,p}. The progranPy, =P, U{r>:u & .} has two
answer sets{q,p}, {u,p}, because either cr-rule can be
applied (but not both, because that would involve the un-
necessary application of one of them). Finally, the pro-
gramPs = P,U {prefer(ri,r2).} has only one answer set,
{q, p}, because the preference statement prevenfsom
being considered if; restores consistency.

Cr-rules and preferences are particularly useful in encod-
ing information about unlikely events, such as exogenous
actions. As described in (Balduccini, Gelfond, & Nogueira
2006), an exogenous actiacan be formalized in CR-
Prolog by one or more cr-rules of the form:

r(e,S): occurge,S) < T. (1)

wherel is a condition under which the exogenous action
may occur. The rule informally states that, under those con-
ditions, the exogenous action may possibly occur, but that i

It is worth noticing that the non-monotonic nature of CR-
Prolog makes it possible, for explanations, which had pre-
viously not been considered (because non-minimal or less-
preferred), to be selected when new information becomes
available. For example, if we upd&®gto include additional
information that the battery is not down, we obtain two (dif-
ferent) answer sets, encode the explanations corresgpndin
to the less-preferred explanations:

({unlock(swy),blow_up(bs)}, flip(swy))
(unlockswy),{ flip(swy),blow_up(bs)}).

Inthe next section, we discuss the specification of policies
in the AAA architecture.

Policies and Reactivity

In this paper, bypolicy we mean the description of those
paths in the transition diagram that are not only possibte bu
alsoacceptableor preferable

The ability to specify policies is important to improve
both the quality of reasoning (and acting) and the agent’s
capability toreactto the environment.

In this paper we show how the AAA architecture, and in
particular the underlying ASP language, allows one to gasil

arare event. Let us now see how it is possible to encode the specify policies addressing both issues.

relative likelihood of the occurrence of exogenous actions
Let us consider two exogenous acti@snde,. To formal-
ize the fact thae; is more likely to occur thae,, we write
preferr(ey,S),r(e,9)).

Because cr-rules are applied only if needed, testing for

We begin by considering policies allowing one to improve
the quality of reasoning. More details can be found in (Bal-
duccini 2004; Balduccini, Gelfond, & Nogueira 2006). In
the circuit domain, one policy addressing this issue coald b
“do not replace a good bulb.” The policy is motivated by the

unexpected observations and generating an explanation canconsideration that, although technically possible, th®ac

be combined in a single step. Going back to Example 2, let
EX be the set of cr-rules:

r(run_down(BATT),S) : occurgrun_downBATT),S) <~ .
r(blow.up(B),S) : occurgblow.up(B),S) <

—.
informally stating thatrun_.downBATT) and blow_up(B)
may possibly (but rarely) occur. Consider now progfag
obtained fronTl, by replacingdM; by EX. Itis not difficult
to show that the answer setsl®f correspond to theinimal
explanations of the observations lify. If no unexpected
observations are presentlif, the answer sets will encode
an empty explanation.

of replacing a good bulb should in practice be avoided. A
possible ASP encoding of this policy is:

«— occurgreplaceB),S),—holdgab(B),S).

Note that, although the rule has the same form of the exe-
cutability conditions, it is conceptually very differertlso
note that this is an example of sdrict policy because it
will cause the action of replacing a good bulb todleays
avoided.

Often it is useful to be able to specifiefeasible policies
that is policies that araormally complied with but may be
violated if really necessary. Such policies can be elegantl

The preference statements of CR-Prolog can be used 10 gncoded using CR-Prolog. For example, a policy stating “if

provide information about the relative likelihood of the-oc

at all possible, do not have both switches in the closed posi-

currence of the exogenous actions. For example, the fact {jgn at the same time” can be formalized as:

thatrun_downBAT T) is more likely thanblow_up(B) can
be encoded by a statement

{prefer(r(run.downBATT),S),r(blow.up(B),9)).}.

To see how all this works, consider prograhy, obtained
by adding the above preference statemenflto It is not
difficult to show that'14 has only two answer sets, encoding
thepreferred, minimaéxplanations corresponding to the se-
guences of actions:

({unlockswy),run_down(batt)}, flip(swy))
(unlock(swy), { flip(swy), run_down(batt) }).

6Inconsistency follows from the third rule and the fact thas
not entailed.

— holdgclosedsw),S),holdqclosedsw,),S),
not canviolate(p;).

r(py) : canviolate(py) < .

The first rule says that the two switches should not be both
in the closed positionnless the agent can violate the policy
The second rule says that it is possible to violate the policy
but only if strictly necessary (e.g., when no plan existd tha
complies with the policy).

Now let us turn our attention to policies improving the
agent'scapability to react to the environmentWhen an
agent is interacting with a changing domain, it is often im-
portant for the agent to be able to perform some actions in

response to a state of the world. An example is leaving the of the issues of inter-agent communication and cooperation

room if a danger is spotted. Intuitively, selecting the ac-

can be found in (Gelfond & Watson 2007). A prototype

tions to be performed should come as an immediate reaction of the implementation of the architecture can be found at:
rather than as the result of sophisticated reasoning. We dis http://krl ab. cs. ttu. edu/ ~mar cy/ APLAgent Mgr/ .

tinguish two types of reactionmmediate reactioandshort
reaction Immediate reaction is when actions are selected
based solely on observations. An example from the circuit
domain is the statement “if you observe a spark from closed
switch SW, open it,” which can be formalized as (assume
SWis unlocked and fluergpark from(SW) is available):

occurg flip(SW),S) — obgspark from(SW), S),
obgclosedSW),S).
A short reaction is the occurrence of an action triggered by
the agent’s beliefs. This includes conclusigmerred from

observations and possibly other beliefs. An example is the
statement “if a battery is failing, replace it,” encoded as:

occurgreplacgBATT),S) < holdq failing(BATT),S).
Appendix: Semantics of ASP

In this section we summarize the semantics of ASP. Recall
that an ASP rule is a statement of the form

hy OR ... ORhy«—I1,...,Im, N0t Iy 1,...,not .

whereh;’s andl;’s are literals (atoms or their strong nega-
tion, e.g. —a). The intuitive meaning of the rule is “if
l1...Im hold and there is no reason to belidyg;...In, a
rational reasoner should believe onehgé.” Given a rule

r, we call {h;...h} the headof r, denoted byheadr);
l1,...,lmyImt1,...,In is called thebody of r (bodyr));
pogr) and nedqr), respectively, denotgl,...,Im} and
{lmt1,---,In}. A programis a set of rules. Adefault-
negation-free prograns a program whose rules do not con-
tain default negation “not.” We say that a set of literals
closed under a default-negation-free progranif, for every
ruler of N, headr)NS# 0 whenevepogr) C S. A set of
literalsSis consistentf it does not contain two complemen-
tary literalsf, = f. A consistent set of literalSis an answer
set of a default-negation-free prograinf Sis the smallest
set closed unddn. Given an arbitrary prografi and a set
Sof literals, thereductlS is obtained fronT1 by deleting:
(1) each ruler, such thahegr)\ S# 0, and (2) all formulas
of the form notl in the bodies of the remaining rules. A set
of literals Sis ananswer sebf 1 if it is an answer set dfl S,

Conclusions

In this paper we have described the ASP-based AAA ar-
chitecture for intelligent agents capable of reasoninguabo
and acting in changing environments. The design is based
on a description of the domain’s behavior that is shared by
all of the reasoning modules. We hope we demonstrated
how the agent'’s ability to generate and execute plans is in-
terleaved with detecting, interpreting, and recoverirogrfy
unexpected observations. Although in this paper we focused
on explaining unexpected observations by hypothesiziag th

undetected occurrence of exogenous actions, the architec-
ture has also been extended with reasoning modules capa-

ble of modifying the domain description by means of in-
ductive learning (Balduccini 2007b). An initial exploraiti

Acknowledgments: The development of the AAA archi-
tecture was supported in part by NASA contract NASA-
NNGO5GP48G and ATEE/DTO contract ASU-06-C-0143.

References

Balduccini, M., and Gelfond, M. 2003a. Diagnostic rea-
soning with A-Prolog.Journal of Theory and Practice of
Logic Programming (TPLP3(4-5):425-461.

Balduccini, M., and Gelfond, M. 2003b. Logic Programs
with Consistency-Restoring Rules. In Doherty, P.; Mc-
Carthy, J.; and Williams, M.-A., eddnternational Sympo-
sium on Logical Formalization of Commonsense Reason-
ing, AAAI 2003 Spring Symposium Series, 9-18.
Balduccini, M.; Gelfond, M.; and Nogueira, M. 2006. An-
swer Set Based Design of Knowledge Systesnals of
Mathematics and Artificial Intelligence

Balduccini, M. 2004. USA-Smart: Improving the Quality
of Plans in Answer Set Planning. PADL'04, Lecture
Notes in Artificial Intelligence (LNCS).

Balduccini, M. 2007a. CR-MODELS: An Inference En-
gine for CR-Prolog. I.PNMR 200718-30.

Balduccini, M. 2007b. Learning Action Descriptions with
A-Prolog: Action Language C. In Amir, E.; Lifschitz, V,;
and Miller, R., eds.Procs of Logical Formalizations of
Commonsense Reasoning, 2007 AAAI Spring Symposium

Baral, C., and Gelfond, M. 2000. Reasoning Agents In
Dynamic Domains. IWorkshop on Logic-Based Artificial
Intelligence 257-279. Kluwer Academic Publishers.

Baral, C. 2003. Knowledge Representation, Reasoning,
and Declarative Problem SolvingCambridge University
Press.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databaddsw Generation
Computing365-385.

Gelfond, M., and Lifschitz, V. 1998. Action Languages.
Electronic Transactions on Ad(16).

Gelfond, G., and Watson, R. 2007. Modeling Cooperative
Multi-Agent Systems. IiProceedings of ASP'QB7-81.
Gelfond, M.; Rushton, N.; and Zhu, W. 2006. Combining
Logical and Probabilistic Reasoning. AMAI 2006 Spring
Symposiumb0-55.

Lifschitz, V. 1999. Action Languages, Answer Sets, and
Planning The Logic Programming Paradigm: a 25-Year
Perspective. Springer Verlag, Berlin. 357-373.

McCarthy, J. 1998. Elaboration Tolerance.

Mellarkod, V. S., and Gelfond, M. 2007. Enhancing ASP
Systems for Planning with Temporal Constraints. LP+
NMR 2007 309-314.

Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.;
and Barry, M. 2001. An A-Prolog decision support system
for the Space Shuttle. IRADL 2001 169-183.

