
Architectures for Agents in TAC SCM

John Collins
Dept of CSE

University of Minnesota
Minneapolis, MN

Wolfgang Ketter
Dept of DIS

Erasmus University
Rotterdam, NL

Maria Gini∗
Dept of CSE

University of Minnesota
Minneapolis, MN

Abstract

An autonomous trading agent is a complex piece of software
that must operate in a competitive economic environment.
We report results of an informal survey of agent design ap-
proaches among the competitors in the Trading Agent Com-
petition for Supply Chain Management (TAC SCM).

Introduction
Organized competitions can be an effective way to drive re-
search and understanding in complex domains, free of the
complexities and risk of operating in open, real-world eco-
nomic environments. Artificial economic environments typ-
ically abstract certain interesting features of the real world,
such as markets and competitors, demand-based prices and
cost of capital, and omit others, such as personalities, taxes,
and seasonal demand.

Our primary interest in this paper is to provide an
overview of the design choices made by the designers of
agents for the Trading Agent Competition for Supply-Chain
Management (Collinset al. 2005) (TAC SCM), and to de-
scribe the design of the MinneTAC trading agent, which has
competed effectively in TAC SCM for several years.

Overview of the TAC SCM game
In a TAC SCM game, each of the competing agents plays
the part of a manufacturer of personal computers. Agents
compete with each other in a procurement market for com-
puter components, and in a sales market for customers. A
game runs for 220 simulated days over about an hour of real
time. Each agent starts with no inventory and an empty bank
account. The agent with the largest bank account at the end
of the game is the winner.

Customers express demand each day by issuing a set of
RFQs for finished computers. Each RFQ specifies the type
of computer, a quantity, a due date, a reserve price, and a
penalty for late delivery. Each agent may choose to bid on
some or all of the day’s RFQs. For each RFQ, the bid with
the lowest price will be accepted, as long as that price is at or
below the customer’s reserve price. Once a bid is accepted,

∗Supported in part by the National Science Foundation under
award NSF/IIS-0414466.
Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

the agent is obligated to ship the requested products by the
due date, or it must pay the stated penalty for each day the
shipment is late. Agents do not see the bids of other agents,
but aggregate market statistics are supplied to the agents pe-
riodically. Customer demand varies through the course of
the game by a random walk.

Agents assemble computers from parts, which must be
purchased from suppliers. When agents wish to procure
parts, they issue RFQs to individual suppliers, and suppliers
respond with bids that specify price and availability. If the
agent decides to accept a supplier’s offer, then the supplier
will ship the ordered parts on or after the due date (supplier
capacity is variable). Supplier prices are based on current
uncommitted capacity.

Once an agent has the necessary parts to assemble com-
puters, it must schedule production in its finite-capacity pro-
duction facility. Each computer model requires a speci-
fied number of assembly cycles. Assembled computers are
added to the agent’s finished-goods inventory, and may be
shipped to customers to satisfy outstanding orders.

An agent for the TAC SCM scenario must make the fol-
lowing four basic decisions during each simulated “day” in
a competition:

1. decide what parts to purchase, from whom, and when to
have them delivered (Procurement).

2. schedule its manufacturing facility (Production).
3. decide which customer RFQs to respond to, and set bid

prices (Sales).
4. ship completed orders to customers (Shipping).

These decisions are supported by models of the sales and
procurement markets, and by models of the agent’s own pro-
duction facility and inventory situation. The details of these
models and decision processes are the primary subjects of
research for participants in TAC SCM. Many factors, such
as current capacity, outstanding commitments of suppliers,
sales volumes and price distribution in the customer market,
are not visible to the agents.

Designs of agents for TAC SCM
We report findings from an informal survey which we sent
to the TAC SCM community via the TAC SCM discussion
email list in May 2007. The questionnaire was closed by
September 2007 and was completed by the best teams in



Team University Team contact and role
Botticelli (B) Brown University (USA) Victor Naroditskiy

(team member for 4 years)
CMieux (CM) Carnegie Mellon University (USA) Michael Benisch

(team leader 2005/2006)
CrocodileAgent (CA) University of Zagreb (Croatia) Vedran Podobnik

(team leader)
DeepMaize (DM) University of Michigan (USA) Chris Kiekintveld

(team member for 5 years)
Foreseer (F) Cork Constraint Computation David Burke

Centre (Ireland) (main developer)
Mertacor (M) Aristotle University of Andreas Symeonidis

Thessaloniki (Greece) (team member 2006)
MinneTAC (MT) University of Minnesota (USA) John Collins

(team leader and designer)
Southampton (S) University of Southampton (UK) Minghua He

(designer and programmer)
TacTex (TT) University of Texas (USA) David Pardoe

(main developer for 5 years)
Tiancalli (T) Benemerita Universidad Daniel Macas Galindo

Autonoma de Puebla (Mexico) (team leader)

Table 1: Participating teams in the TAC SCM architecture questionnaire.

previous tournaments. In Table 1 we list the teams who re-
sponded to the questionnaire. We categorize the results ac-
cording to our understanding of the research agendas of the
teams, and by the specific architectural emphases the teams
identified in their agent designs (see Table 2).

Constraint optimization. A supply-chain trading agent
must make its decisions subject to a number of internal and
external constraints. These constraints apply to parts of the
supply-chain, such as procurement (availability of supplies,
reputation), production (limited production capacity), sales
(limited demand, variable pricing), and fulfillment (ship-
ments limited by finished goods inventory). Nearly all the
teams who answered our questionnaire used some form of
constraint optimization, so we list here the ones who high-
lighted it. The teams who focus on realtime optimization,
Botticelli (Benischet al. 2004), DeepMaize (Kiekintveldet
al. 2006), Foreseer (Burkeet al. 2006), MinneTAC (Ket-
ter et al. 2007) use mainly third party optimization pack-
ages, including CPLEX1, and lpsolve2. An exception is
CMieux (Benischet al. 2006) which uses an internally-
developed algorithm to solve a continuous knapsack prob-
lem for pricing customer offers.

Machine learning. Many agents use machine learning al-
gorithms to learn from historical market data and have some
ability to learn during operation to adapt to changing situ-
ations. CMieux (Benischet al. 2006), MinneTAC (Ketter
et al. 2007), and TacTex (Pardoe & Stone 2006) identified
the need to support learning and adaptation as primary con-
cerns in the design of their agents. Both CMieux (Benischet

1http://www.ilog.com/products/cplex/
2http://sourceforge.net/projects/lpsolve

al. 2006) and TacTex (Pardoe & Stone 2006) use the Weka3

machine learning tool set. MinneTAC is using Matlab4 in
combination with the Netlab5 neural network toolbox to de-
velop and train market models, and to bootstrap the agent
with the resulting models. At runtime, MinneTAC updates
and adjusts those models using feedback and machine learn-
ing algorithms embedded in Evaluators.
Management of dynamic supply chains. The TAC SCM
simulation is an abstract model of a highly dynamic di-
rect sales environment. Many teams have a strong research
focus on dynamic supply-chain behavior. These include
CMieux (Benischet al. 2006), Foreseer (Burkeet al. 2006),
Mertacor (Kontogounniset al. 2006), MinneTAC (Ketteret
al. 2007), and Tiancalli (Galindo, Ayala, & Lopez 2006). As
a consequence teams strive for high flexibility in their agent
design, so that they can easily accommodate changes.
Telecommunication. The CrocodileAgent (Podobnik, Pet-
ric, & Jezic 2006) group is part of a larger group that fo-
cuses on autonomous agents for management of large-scale
telecommunication networks. They view TAC SCM as a
challenge in building an agent that can operate in a dynamic
environment, but they are also concerned with scalability
and other issues that go far beyond TAC SCM. They base
their design on the JADE6 framework, which is well-proven
for large-scale multi-agent systems.
Architecture. CrocodileAgent (Podobnik, Petric, & Jezic
2006) and Southampton SCM (Heet al. 2006) have struc-
tured their agent decision processes around the the IKB (In-

3http://www.cs.waikato.ac.nz/ml/weka/
4http://www.mathworks.com/
5http://www.ncrg.aston.ac.uk/netlab/
6http://jade.tilab.com/



Research Agenda Team Architectural Emphasis
Constraint optimization B, CM, DM, F, MT 3rd party packages
Machine learning CM, MT, TT External analysis framework, 3rd party packages
Dynamic supply-chain CM, F, M, MT, T Flexibility
Telecommunication CA Scalability
Architecture CA IKB model for physical distribution

MT Blackboard architecture with evaluator chain
Empirical game theory DM External analysis framework
Decision coordination CM, DM, M, MT, S Modularity
Dealing with uncertainty B, S Modularity

Table 2: Research agendas of teams and their architectural emphasis.

formation, Knowledge, and Behavior) model (Vytelingum
et al. 2005), a three layered agent-based framework. The
first layer contains data gathered from the environment, the
second knowledge extracted from the data, and the third en-
capsulates the reasoning and decision-making components
that drive agent behavior. CrocodileAgent (Podobnik, Pet-
ric, & Jezic 2006) has also adopted the IKB approach. An
advantage of using JADE is that the separation of I, K &
B layers enables physical distribution of layers on multi-
ple computers. Information layer agents parse out informa-
tion from the TAC SCM server messages, while informa-
tion and knowledge flows are implemented as JADE agent
communication-based messages.

MinneTAC uses a component based framework. All data
to be shared among components are kept in the Repository,
which acts as a blackboard (Buschmannet al. 1996). Min-
neTAC is the only team that emphasized a design that at-
tempts to minimize the learning curve for a researcher who
wishes to work on a specific subproblem.
Empirical game theory. The DeepMaize team pursues
empirical game-theoretic analysis as one of their major re-
search cornerstones. They employ an experimental method-
ology for explicit game-theoretic treatment of multi-agent
systems simulation studies. For example, they have de-
veloped a bootstrap method to determine the best config-
uration of the agent behavior in the presence of adversary
agents (Jordan, Kiekintveld, & Wellman 2007). They also
use game-theoretic analysis to assess the robustness of tour-
nament rankings to strategic interactions. Many of their ex-
periments require hundreds to thousands of simulations with
a variety of competing agents. To support their work they
have developed an extensive framework for setting up and
running experiments, and for gathering and analyzing the
resulting data.
Decision coordination. The supply-chain scenario places
a premium on effective coordination of decisions affecting
multiple markets and internal resources. Decision coordina-
tion is an explicit emphasis for the DeepMaize (Kiekintveld
et al. 2006), MinneTAC (Ketteret al. 2007), and Southamp-
ton (He et al. 2006) teams. This problem is commonly
viewed as one of enabling independent decision processes to
coordinate their actions while minimizing the need to share
representation and implementation details.

MinneTAC uses a blackboard approach to allow decision

processes to coordinate their actions through a common state
representation. Southampton uses the hierarchical IKB ap-
proach, in which the Knowledge layer can be viewed as a
type of blackboard. DeepMaize (Kiekintveldet al. 2006)
treats the combined decisions as a large optimization prob-
lem, decomposed into subproblems using a “value-based”
approach. The result is that much of the coordination among
decision processes is effectively managed by assigning val-
ues to finished goods, factory capacity, and individual com-
ponents over an extended time horizon.
Dealing with uncertainty. TAC SCM is designed to
force agents to deal with uncertainty in many dimensions.
Sodomka et al. (Sodomka, Collins, & Gini 2007) provide a
good overview of the sources of uncertainty in the context
of an empirical study of agent performance. The Botticelli
group clearly identifies the problem of dealing with uncer-
tainty as one of their main research goals in (Benischet al.
2004). SouthamptonSCM (Heet al. 2006) employs a bid-
ding strategy that uses fuzzy logic to adapt prices according
to the uncertain market situation.

The design of MinneTAC
In designing MinneTAC we follow a component-oriented
approach. The idea is to provide an infrastructure that
manages data and interactions with the game server, and
cleanly separates behavioral components from each other.
This allows individual researchers to encapsulate agent de-
cision problems within the bounds of individual components
that have minimal dependencies among themselves. Two
pieces of software form the foundation of MinneTAC: the
Apache Excalibur component framework7 and the “agent-
ware” package distributed by the TAC SCM organizers. Ex-
calibur provides the standards and tools to build components
and configure working agents from collections of individual
components, and the agentware package handles interaction
with the game server.

A MinneTAC agent is a set of components layered on
the Excalibur container, as shown in Figure 1. In the stan-
dard arrangement, four of these components are responsi-
ble for the major decision processes: Sales, Procurement,
Production, and Shipping. All data that must be shared
among components is kept in the Repository, which acts as

7http://excalibur.apache.org/



a blackboard (Buschmannet al. 1996). The Oracle hosts
a large number of smaller components that maintain market
and inventory models, and do analysis and prediction. The
Communications component handles all interaction with the
game server. By minimizing couplings between the compo-
nents, this architecture completely separates the major deci-
sion processes, thus allowing researchers to work indepen-
dently. Ideally, each component depends only on Excalibur
and the Repository.

Repository

Shipping Sales

Procurement Production

Communications Oracle

Excalibur Container

Figure 1: MinneTAC Architecture. Arrows indicate depen-
dencies.

Repository.
The Repository is the one component that is visible to

other components. Its primary functions are storage and
management of agent state, event distribution, and support
of the Evaluation mechanism discussed below. At the be-
ginning of each day of a game, new incoming messages are
received from the game server and deposited into the Repos-
itory. Once the full set of incoming messages has been re-
ceived, events are generated to notify other components to
perform their analyses and decisions. In response to these
events, the decision components retrieve data and evalua-
tions from the Repository, and record their decisions back
into it. Finally, the resulting decisions are retrieved from the
Repository by the Communications component and returned
to the server.

From an architectural standpoint, the Repository plays
the part of the Blackboard in theBlackboard pat-
tern (Buschmannet al. 1996), and the remainder of the com-
ponents, other than the Communications component, act as
Knowledge Sources. The Control element of the Blackboard
pattern is replaced by the Event and the Evaluable/Evaluator
mechanisms, which we now describe.
Events. A TAC Agent is basically a “reactive system” in
the sense that it responds to events coming from the game
server. These events are in the form of messages that inform
the agent of changes to the state of the world: Customer
RFQs and orders, supplier offers and shipments, etc. The
game is designed so that each simulated day involves a sin-
gle exchange of messages; a set of messages sent from the
game server to the agent, and a set returned by the agent
back to the server.

Events are generated in response to state transitions, as
visualized in Figure 2. Each simulated day begins in the
start of daystate, during which the agent waits for the first
message from the server. In thereceivingstate, MinneTAC
handles all incoming data messages by storing them in the
Repository. Completion of the daily batch is signified by re-
ceipt of a “sim-status” message. The Repository responds
with a transition to theevaluatingstate and generation of
thedata-availableevent. When a component receivesdata-
availableit is able to inspect the incoming data for the day’s
transactions and perform whatever analysis is needed to up-
date its models. When this is complete, the Repository
generates thedecisionevent, and transitions to thedecid-
ing state. When a component receives thedecisionevent, it
is expected to finalize its decisions and record its outgoing
messages back in the Repository. At the conclusion of de-
cision processing, the accumulated messages are returned to
the game server, and the Repository returns to thestart of
daystate.

init
start

message/

start of
game

final config message/
start−of−game event

Once per day

start
of day

last
day/

end of
game

evaluating

deciding

sim−status message/
data−available event

receiving

message/
incoming

message/
incoming

game config
message/

/decision event

/send messages

Figure 2: States and transitions in the Repository compo-
nent. Arcs are labeled with event/action pairs.

In processing thedata-availableanddecisionevents, the
Repository acts as Subject and the other components as Ob-
servers in theObserverpattern (Gammaet al. 1995). This
approach has the advantage of eliminating dependency of
the Repository on the specific components. However, an
important limitation of the Observer pattern is that the se-
quence of notifications is not controlled, although in most
(single-threaded) implementations it is repeatable. But the
order of event processing is important for the MinneTAC de-
cision processes. For example, it greatly simplifies the Sales
decision process to know that the current day’s Shipping de-
cisions have already been made. To allow event sequencing
without introducing new dependencies, two events are gen-
erated by the Repository for each day of a game. Thedata-
availableevent is a signal to read the incoming messages
and do basic data analysis. The subsequentdecisionevent
is a signal to make the daily decisions and post the outgoing
messages back in the Repository. The decision event itself
provides an additional level of sequence control by allowing
components to “refuse” the event until one or more other
components (identified by role names) have made their de-
cisions. Components that have refused the event will receive
it again once all other components have had an opportunity
to process it. To ensure that Sales decisions are made after
Shipping decisions, Sales must refuse to accept the decision



event until after it sees “shipping” among the roles that have
already processed it. No additional dependencies are intro-
duced by this mechanism, since the role names are simply
added to the event object itself, and the names come from a
configuration file, not the code.

Oracle. The Oracle component is essentially a meta-
component, since its only purpose is to provide a framework
for a set of small configurable components, instances of the
type ConfiguredObject or its subtypes. These are used to
implement market models and to perform analysis and pre-
diction tasks. The principal subtype is Evaluator, but a few
other types are supported as well. The Oracle itself reads its
configuration data when the agent starts, and uses it to cre-
ate and configure the specified objects. ConfiguredObject is
an abstract class that has a name and an ability to configure
itself, given an XML clause. The Oracle creates Configure-
dObject instances and keeps track of them by mapping their
names to the created instances.

Another interesting subtype of ConfiguredObject is the
Selector. A Selector is a switch that can be used to select
different models or evaluators in different game situations.
For example, the early part of a game is typically charac-
terized by customer prices that start high and fall rapidly as
agents acquire parts and begin building up inventories. The
behavior of the market during this early period is fairly pre-
dictable. Later in the game, prices are less predictable and
more sophisticated models may be useful. A DateSelector
can be used to switch between pricing models at a particular
preset dates, or a more sophisticated Selector can be used to
switch models once the initial price decline bottoms out.

Evaluators. To minimize coupling between components
when a component needs to make a decision, it will inspect
its own internal data and data in the Repository and run some
function. Operations on Repository data can be encapsu-
lated in the form of Evaluations, and made available to other
components.

All the major data elements in the Repository are Evalu-
able types. Each Evaluable can be associated with some
number of associated Evaluations and with an Evaluation-
Factory, which maintains a mapping of Evaluation names to
Evaluator instances, and is responsible for producing Evalu-
ations when they are requested. It does this by inspecting the
class of the Evaluable and the name of the requested Eval-
uation, and invoking the appropriateevaluatemethod on an
associated Evaluator. Evaluators implement back-chaining
by requesting other Evaluations in the process of producing
their results. Evaluators are hosted by the Oracle compo-
nent, which is responsible for loading and configuring Eval-
uators. Evaluators are registered with the Repository when
they are configured, thus making them known to the Evalu-
ationFactory. Figure 3 shows an example of some Evaluable
instances and a set of Evaluations that might be associated
with them. Theprice evaluation might combine parts cost
information with an estimate of current market conditions.
Theprofit evaluation would need parts cost information and
price. The sort-by-profitevaluation would need theprofit
evaluations on the individual RFQs.

sort−by−profit

price

profit

order−probability

getEvaluation()

model
quantity
dueDate
reservePrice

Evaluable

CustomerRFQCustomerRFQList

Figure 3: RFQ evaluation example.

Example of using Evaluators for Sales

To illustrate the power of Evaluators, we show in Figure 4
the evaluation chain that is used to produce sales quotas and
set prices in a relatively simple MinneTAC configuration.
Each of the cells in this diagram is an Evaluator. A ver-
sion of the Sales component called PriceDrivenSalesMan-
ager is conceptually very simple – it places bids on each
customer RFQ for which the randomized-price evaluator re-
turns a non-zero value. The core of this chain is the alloca-
tion evaluator, which composes and solves a linear program
each game day that represents a combined product-mix and
resource-allocation problem that maximizes expected profit.
The objective function is

Φ =

h∑

d=0

∑

g∈G

Φd,gAd,g

whereΦ is the total profit over some time horizonh, G is
the set of goods or products that can be produced by the
agent,Φd,g is the (projected) profit for goodg on dayd,
andAd,g is the allocation or “sales quota” for goodg on
day d. The constraints are given by evaluatorsavailable-
factory-capacity, the current day’seffective-demand, pro-
jectedfuture-demand, and by Repository data, such as ex-
isting and projected inventories of parts and finished prod-
ucts, and outstanding customer and supplier orders. Pre-
dicted profit per unit for each product type is the difference
between Evaluations calledmedian-priceandcost-basisfor
those products.

The Evaluation generated by theallocation evaluator
gives desired sales quotas for each product over a time hori-
zon. Given a sales quota for a given product and anorder-
probability function, thesimple-priceevaluator computes a
price that is expected to sell the desired quota, assuming that
price is offered on all the demand for that product. In other
words, if the quota is 25 units and the demand is for 100
units, simple-pricecomputes a price that is expected to be
accepted by only 25% of the customers. Since there is some
uncertainty in the predictions of price and order probabil-
ity, randomized-price adds a slight variability to offer prices.



allocation

median−price order−probability

slope−estimateprice−follower

price−error

effective−demand

demand

future−demand

available−factory−capacity

available−supply

cost−basis

simple−price

randomized−price

Figure 4: Evaluator chain for sales quota and pricing.

This improves the information content and reduces variabil-
ity of the returned orders.

Conclusions and Future Work
The survey outcome shows that there are common themes
emerging from the different research groups on how to de-
sign a successful agent architecture. in addition to problem-
specific approaches. There are also some strong differences
such as how to organize the communication between the dif-
ferent modules and which modules should own the data for
specific tasks.

With the design of MinneTAC we show one way to con-
struct such an agent, using a readily-available component
framework. The framework provides the ability to compose
agent systems from sets of individual components based on
simple configuration files. We also show that two basic
mechanisms, event distribution with the Observer pattern
and our pipe-and-filter style Evaluator-Evaluation scheme,
permit an appropriate level of component interaction with-
out introducing unnecessary coupling among components.
The ability to compose complex evaluator chains out of rel-
atively simple, straightforward elements has greatly simpli-
fied the design of the decision components themselves.

References
Benisch, M.; Greenwald, A.; Grypari, I.; Lederman, R.;
Naroditskiy, V.; and Tschantz, M. 2004. Botticelli: A sup-
ply chain management agent designed to optimize under
uncertainty.ACM Trans. on Comp. Logic4(3):29–37.

Benisch, M.; Sardinha, A.; Andrews, J.; and Sadeh, N.
2006. CMieux: adaptive strategies for competitive sup-
ply chain trading. InProc. of 8th Int’l Conf. on Electronic
Commerce, 47–58. ACM Press.

Burke, D.; Brown, K.; Tarim, S.; and Hnich, B. 2006.
Learning Market Prices for a Real-time Supply Chain Man-
agement Trading Agent. InAAMAS06: Workshop on Trad-
ing Agent Design and Analysis (TADA/AMEC).

Buschmann, F.; Meunier, R.; Rohnert, H.; Sommerlad, P.;
and Stal, M. 1996.Pattern-Oriented Software Architec-
ture: a System of Patterns. Wiley.

Collins, J.; Arunachalam, R.; Sadeh, N.; Ericsson, J.;
Finne, N.; and Janson, S. 2005. The supply chain manage-
ment game for the 2006 trading agent competition. Tech-
nical Report CMU-ISRI-05-132, Carnegie Mellon Univer-
sity, Pittsburgh, PA.
Galindo, D.; Ayala, D.; and Lopez, F. L. Y. 2006. Statistic
analysis for the Tiancalli agents on TAC SCM 2005 and
2006. InProc. 15th Int’l Conf. on Computing, 161–166.
Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J. 1995.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley.
He, M.; Rogers, A.; Luo, X.; and Jennings, N. R. 2006.
Designing a successful trading agent for supply chain man-
agement. InProc. of the 5th Int’l Conf. on Autonomous
Agents and Multi-Agent Systems.
Jordan, P.; Kiekintveld, C.; and Wellman, M. 2007. Empir-
ical game-theoretic analysis of the TAC supply chain game.
In Proc. of the 6th Int’l Conf. on Autonomous Agents and
Multi-Agent Systems.
Ketter, W.; Collins, J.; Gini, M.; Gupta, A.; and Schrater,
P. 2007. A predictive empirical model for pricing and re-
source allocation decisions. InProc. of 9th Int’l Conf. on
Electronic Commerce, 449–458.
Kiekintveld, C.; Miller, J.; Jordan, P.; and Wellman, M. P.
2006. Controlling a supply chain agent using value-based
decomposition. InProc. of 7th ACM Conf. on Electronic
Commerce, 208–217.
Kontogounnis, I.; Chatzidimitriou, K. C.; Symeonidis,
A. L.; and Mitkas, P. A. 2006. A Robust Agent Design
for Dynamic SCM environments. In4th Hellenic Confer-
ence on Artificial Intelligence (SETN’06), 127–136.
Pardoe, D., and Stone, P. 2006. Tactex-05: A cham-
pion supply chain management agent. InProc. of the
Twenty-First Nat’l Conf. on Artificial Intelligence, 1389–
1394. Boston, Mass.: AAAI.
Podobnik, V.; Petric, A.; and Jezic, G. 2006. The
CrocodileAgent: Research for Efficient Agent-Based
Cross-Enterprise Processes.Lecture Notes in Computer
Science4277:752–762.
Sodomka, E.; Collins, J.; and Gini, M. 2007. Efficient sta-
tistical methods for evaluating trading agent performance.
In Proc. of the 22nd Nat’l Conf. on Artificial Intelligence,
770–775. Vancouver, BC: AAAI.
Vytelingum, P.; Dash, R.; He, M.; and Jennings, N. 2005.
A Framework for Designing Strategies for Trading Agents.
Proc. IJCAI Workshop on Trading Agent Design and Anal-
ysis7–13.


