An Abstract Behavior Representation for Robust, Dynamic Sequencing in a
Hybrid Architecture

Jeffrey P. Duffy and Gilbert L. Peterson
Air Force Institute of Technology*
2950 Hobson Way
WPAFB OH 45433-7765
{jeffrey.duffy , gilbert.peterson} @afit.edu

Abstract

Hybrid robot control architectures try to provide reac-
tive and deliberative functionality by decomposing a
complex system into layers of increasing abstraction
and temporal complexity. In building complex systems
that react quickly to dynamic environments, the division
of components are generally characterized as a Deliber-
ator, a Sequencer, and a Controller. This paper presents
a descriptive representation of reactive robot behaviors
and the environment that the behaviors anticipate and
affect. This paper also presents a control algorithm that
uses this representation to create a robust link between
the Sequencer and Controller in a hybrid reactive con-
trol architecture. The behavior representation promotes
robustness and modularity as being a semantic sugges-
tion rather than a syntactical burden like that of the task-
level control languages currently in use. Thus, it allows
for reduced development overhead and duplication of
work for system modifications.

Introduction

With the advent of hybrid robot control architectures, which
generally try to provide reactive and deliberative function-
ality, many systems have separated plans, coordination, and
actions into separate processing layers. This approach pro-
motes more complex systems that perform well in dynamic
and goal-oriented environments. In various architectures
however, the connections between these layers are typically
hardcoded so changes within one layer require modifications
in other layers. By creating robust connections at each layer,
the software becomes more maintainable and updates within
layers cause minimal updating of others. The majority of hy-
brid architectures link planning and execution through the
use of task-level control languages (Simmons & Apfelbaum
1998). These languages require that each behavior (i.e. task-
tree, task net, .. .) is expressed explicitly by the syntax of the
language. This limits the implementation to the constructs of

*This research was sponsored by an AFRL Lab Task
06SNO2COR from the Air Force Office of Scientific Research, Lt
Col Scott Wells, program manager. The views expressed in this
article are those of the author and do not reflect the official policy
or position of the United States Air Force, Department of Defense
or the U.S. Government.

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the language. Our proposed representation provides a way
to describe a behavior for sequencing, but the actual imple-
mentation is left to the creativity of the behavior architect.

This paper presents a descriptive representation of re-
active robot behaviors and the environment and objectives
the behaviors anticipate and accomplish. This paper also
presents a control algorithm that uses this representation to
create a robust link between the Sequencer and the Con-
troller in a hybrid reactive control architecture. The control
algorithm uses the representations to search and select ap-
propriate behaviors to activate and deactivate for completing
system objectives. The Sequencer implements the control
algorithm and seamlessly links to the Controller. Using the
control algorithm and representations, behavior addition and
functional system changes reduce Sequencer coding to a de-
scription of the behaviors and minimal changes to the state
for associated state variables.

The remainder of this paper presents a background dis-
cussion on mobile robot architectures. This is followed by
related work in behavior representation and plan execution.
Next, is our proposed representations for behaviors. Then,
we present the control logic that utilizes the proposed repre-
sentations to link the Sequencer to the Controller. Finally, a
brief conclusion and details of future work.

Three-Layer Reactive Control Architectures

The idea behind three-layer architectures (TLAS) is to merge
deliberative planning and reasoning with a reactive con-
trol unit to accomplish complex, goal-directed tasks while
quickly responding to dynamic environments. These ar-
chitectures typically have three main components (or lay-
ers): a reactive feedback control mechanism (Controller),
a slow deliberative planner (Deliberator), and a sequenc-
ing mechanism that connects the first two components (Se-
quencer) (Gat 1998). Figure 1 shows the layout of a TLA
and how the layers interact with the state, robot controls,
the environment (sensors), and other layers. As shown, the
architecture is hierarchical and state-based. The state re-
ceives sensor data updates and makes the data available to
the whole system.

Controller

Layers within hybrid architectures are typically separated by
abstraction and temporal complexity. Therefore, the Con-

High-Level
Objectives q S E
VAR t e n
Deliberator j&{ 2 o v
t N 1
Jy € e O jeH T
T 0
Sequencer A S n
K m
) e
< n
Controller t

|Robot Controls [

Figure 1: Architectural Layout of a TLA

troller is responsible for the low-level, reactive functionality
that is accomplished in real-time without knowledge of high-
level goals. A software package called the Unified Behav-
ior Framework (UBF) satisfies these criteria (Woolley 2007)
and is ideal for the defining line of the Controller.

The UBF is a reactive controller that abstracts the specific
implementation details of specialized behaviors and permits
behavior reconfiguration during execution (Woolley & Pe-
terson 2007). Traditionally, a mobile robot design imple-
ments a single behavior architecture, thus binding its perfor-
mance to the strengths and weaknesses of that architecture.
By using the UBF as the Controller, a common interface is
shared by all behaviors, leaving the higher-order planning
and sequencing elements free to interchange behaviors dur-
ing execution to achieve high-level goals and plans. By es-
tablishing behavior architectures in the context of the UBF,
one can dynamically interchange between architectures cap-
italizing on the strengths of popular reactive-control archi-
tectures, such as the Subsumption (Brooks 1985) and Utility
Fusion (Rosenblatt 1998) architectures. Thus, exploiting the
tight coupling of sensors to actions that reactive-control ar-
chitectures achieve.

Sequencer

The Sequencer transforms the plans from the Deliberator to
the actions of the Controller and maintains an abstract state
accordingly for Deliberator replanning. Its job is to select
the behaviors that the controller uses to accomplish the ob-
jectives set forth by the Deliberator (Gat 1998). This re-
quires that the Sequencer set parameters for the behaviors
and changes the active behaviors at strategic times to meet
objectives. To do this, the Sequencer must monitor and up-
date the state as appropriate. As seen in Figure 1, aside from
sensors updating their data in the state, the Sequencer also
sends information into the state. This allows for the setting
of parameters and state variables that behaviors and other
layers use. Our vision for the Sequencer is of a robust soft-
ware module that, after initial implementation, requires min-
imal maintenance and modifications for system changes. We
believe that this is accomplished by using the behavior rep-
resentation and control logic proposed in this paper. Like
the behavior control logic in the UBF, the Sequencer uses

the behavior representation as an abstract interface for se-
quencing the behaviors without any knowledge of the con-
crete implementation. The transition from the Sequencer to
the Controller is the passing of a composite behavior mod-
ule that represents an arbitrated hierarchy of behaviors that
accomplish high-level objectives.

Related Work

Hybrid architectures differ in where the separation between
the layers occur and how the layers are connected. It is
ideal to integrate components into complete robot control
systems (Ghallab et al. 2003). Thus, integrating the com-
ponents of hybrid systems requires layers and associated
connections within the system to be modular and robust.
Wherever the connection line is drawn however, it is typical
that the connection mechanism is not explicitly documented.
Most notable systems are not modular when it comes to
functional decomposition of the Sequencer and Controller.
This is due to the trend of continuous interleaving of plan-
ning and execution (Ghallab et al. 2003). Interleaving al-
lows for more efficient transitions from planning to control
but also makes this mechanism more complex and coupled.
This places some Sequencer and Controller elements at the
same level with unclear connections. These systems gen-
erally use specialized languages for representing actions to
perform planning and execution simultaneously.

Many autonomous robot systems employ sophisticated
plan execution systems that continuously interleave plan-
ning and execution (Ghallab er al. 2003), also referred
to as task-level control languages (Simmons & Apfelbaum
1998). Some languages have no clear division between
the Sequencer and Controller because they interchangeably
perform the functions of both components. For example,
the 3T architecture’s Sequencer is a RAP interpreter that
decomposes RAPs until they define a ser of skills that,
when activated by the Controller, accomplish their partic-
ular task (Bonasso et al. 1997). Languages like RAP (Firby
1989) and RPL (McDermott 1991), which is a direct descen-
dant of RAPs, are meant to be implemented as the Controller
using a Lisp-based interpreter. However, these languages re-
quire knowledge of the goals that they must accomplish and
require more planning by the implementer. A robust Con-
troller, on the other hand, utilizes low-level behaviors that
perform specialized tasks without regard to any of the high-
level objectives that it is accomplishing, as is the case of
the UBF (Woolley & Peterson 2007). Other plan execution
systems and architectures that use them include: The PRS
language (Ingrand et al. 1996) is used within the Sequencer
of the LAAS architecture (Alami et al. 1998). The Execu-
tion Support Language (ESL) is designed to be the imple-
mention substrate for the Sequencer of hybrid architectures,
such as 3T (Gat 1997). Although the Task Control Archi-
tecture (TCA) (Simmons 1994) did not use a control lan-
guage, it was a major influence for the Task Development
Language (TDL) (Simmons & Apfelbaum 1998), which is
used for most of the CLARALty architecture’s (Volpe et al.
2001) executive functionality, which is analogous to the Se-
quencer (Estlin et al. 2001).

These languages all have their own specific syntax and

control semantics. They require the programmer know how
the system functions as a whole, which limits the program-
mer to the constructs of the language. Although most lan-
guages utilize abstract representations to generate or select
appropriate actions, the linking from action representation
to actual control mechanism is not documented or appears to
be hardcoded. Instead of a language that spans from delib-
erative planning to action execution, we propose a behavior
representation and control algorithm that begins with a goal-
set (or objectives plan) and dynamically sequences a library
of behaviors to accomplish the complex tasks of the goal-set
in a dynamic environment.

Example Domain

Consider a mobile office janitor robot tasked with discover-
ing trash and placing it into its appropriate bin. This sys-
tem is supplied with sonar and laser range data, a pan-tilt
camera with image recognition capabilities, a gripper, and
a navigation system. However, its audio output has been
removed. The robot receives high-level tasks from an out-
side source that describes objects that are considered trash
or changes the known location of the trash bin. The robot is
programmed with the following library of behaviors (Name;
Required Sensors; Function).

e greeting; Camera, Audio; Audibly greet employees

e avoid-obstacle; Laser, Map; Avoid obstacle in an
optimal path to a target location, if given

e wall-follow; Sonar, Map; Follow walls and ensure all
areas are searched

e scan-for-trash; Camera; Scan for trash
e get-object; Grippers, Camera; Pick up target object
e release—-object; Grippers; Release held object

e deliver-object; Odometry; Go-to target location

Proposed Representations

All behaviors are created to accomplish a specific task or
goal. By creating a standardized way of abstractly describ-
ing the characteristics of a behavior, one can create a mech-
anism that continuously searches and selects appropriate be-
havior activations and deactivations for accomplishing de-
sired system objectives. This allows for a robust implemen-
tation of a Sequencer that handles abstract behavior descrip-
tions in a uniform manner.

Behaviors (B)

Keeping with the general rule that reactive behaviors tightly
couple sensing to action, a behavior’s actions are described
by what it senses and how it affects the environment. A be-
havior is informally defined as the set of motor commands
that trigger in response to sensor readings for accomplish-
ing a programmed task. For example, if a set of sensors
indicates that there is an obstacle impeding forward motion,
the avoid-obstacle behavior applies appropriate motor
settings to steer the robot away from the obstacle without
collision. Behaviors are as complex or simple as the archi-
tect determines appropriate.

A simple behavior has just one set of outputs that is trig-
gered by just one set of input conditions. Whereas, a com-
plex behavior has multiple output sets that are in response to
multiple input sets. We refer to these input-to-output paths
as activation-paths. Therefore, each activation-path must
include the initial conditions that it assumes to be true be-
fore execution and the output conditions that it creates.

However, the Sequencer requires more information due to
concurrent behavior execution. Each activation-path repre-
sents a behavior function and is represented as the tuple:

A={D,G,I,0,C v}

where D is list of sensor, or computed, data required for
the behavior to function properly. G is the set of high-level
abstract goals that the activation-path accomplishes. I and
O are the set of input and output state conditions. C is the
set of system controls that the behavior modifies. Finally,
v is the vote that the behavior generates when it delivers
an action recommendation for this activation-path. Each of
these components is presented in more detail.

Required Data (D) Since a behavior is a tight coupling
of sensor readings to motor commands, D represents the
set of sensor data d required for the behavior to function
properly. This data includes computed data that is directly
related to the environment, but not directly from a sensor.
For example, a basic avoid-obstacle behavior imple-
mentation may require just sonar data so that it can arbi-
trarily move away from an object. Whereas, an advanced
avoid-obstacle behavior may require laser and map
data to avoid the obstacle and remain on track to a specific
target location. The simple implementation has a set D with
one element (dgopq:-), and the complex implementation has
a set D with two elements (djaser, dmap)-

Abstract Goals (G) When behaviors are programmed,
they are programmed to perform a specific function or ac-
complish a specific task. These high-level views of what
the behavior accomplishes are represented in G. Using the
example above, the basic avoid-obstacle behavior has
one item in G (avoid-obstacle), and the advanced implemen-
tation also has one item in G but it is a different abstrac-
tion (avoid-obstacle-target). These values are used to give a
high-level representation without moving to the decomposi-
tion level of the output conditions.

Initial Conditions (/) The initial conditions of a behav-
ior (/) represent the set of environment variables that, when
true, generates an action recommendation and vote for the
behavior’s activation. I also represents the conditions re-
quired for the activation-path to produce the action outputs
in (O), the affects to the controls of (C) and the vote v
for accomplishing the abstract goals in G. For example,
the avoid-obstacle behavior does not vote to control
movement until it reads that there is an object within its pro-
jected path. Thus, its set I consists of one element (obsta-
cle). The set [is an abstract representation of the initial con-
ditions and does not dictate the implementation of detecting
an obstacle. Therefore, this representation accepts any ab-
straction of information and places the burden of identifying

these abstract conditions on the behavior’s programmer.

The complexity of a behavior is dictated by the number
of activation-paths it contains. Each activation-path is re-
quired to contain a different set /. Therefore, a separate
activation-path is required for each set of initial conditions
that cause the behavior to generate a different output/vote.
This representation allows for arbitrated behavior hierar-
chies to be described as a composite behavior with multiple
functionalities dependent upon different initial conditions.

Priority of activation-path selection is based first on com-
parative conditions and then on set order. Consider the
janitor robot’s avoid-obstacle behavior B with two
activation-paths (B = {A;, As}). These activation-paths
are activated when there is an obstacle or there is an obsta-
cle and a target-location established (I 4,={obstacle} and
I 4,={obstacle, target-location}). If the two condition sets
are met, then they are first compared. Since 4, is a subset
of T4, and 14, is more specific, then I 4, is chosen. Con-
versely, if one was not a subset of the other, then the choice
is made by its order in set B and A; is chosen over A,.

A pictorial representation of the avoid-obstacle be-
havior with multiple activation-paths is shown in Figure 2.
This illustrates that, depending upon the initial conditions,
the behavior has different functionality. The behavior votes
differently when there is an object in the path, as opposed
to, when there is an object in the path and a target travel
location has been established.

o _ adds{avoid-obstacle}
AL = deletes{obstacle}

B ={A;, A}
Iy, = {obstacle}
D4, ={diasert

CAl = {Vuz, turnrate}
Ga, = {avoid-obstacle}

va, = {2}

avoid-—

obstacle adds{avoid-obstacle,

_ go-to-target }
Oa, =
deletes{obstacle}
Ay = {V=, turnrate}
I = {obstacle, target-location
A2 { & ' Ay = {avoid-obstacle-goal};
Da, ={diasersdmap}

va, = {10}

Figure 2: Behavior Activation-Path for avoid-obstacle

Postconditions (O) The postconditions O represent the
set of environment effects that the behavior intends to
achieve. This intent is based on action recommendations for
the behavior at the given initial state /. It can be viewed as
the behavior’s function given adequate to deal with uncer-
tain effects. The effects on the environment can add com-
ponents or remove components. If the behavior is a basic
avoid-obstacle behavior, then the postcondition adds
avoid-obstacle but removes obstacle. However, if it is a
more advanced avoid-obstacle behavior that finds the
optimal avoidance path to reach a desired goal location, then
the postconditions add avoid-obstacle and go-to-target but
removes obstacle. For the latter example, Figure 2 shows
the postconditions that are associated with each initial con-

dition set I 4, in A,. With each of the behavior’s activation-
paths, there must be an associate postconditions set that cor-
responds to an initial conditions set. Therefore, for each A,
in A, there is a corresponding postcondition set O 4, that
corresponds to I 4, .

Control Settings (C') Behaviors are written to affect set-
tings for specialized controls. Most commonly, these are
motor controls. A behavior potentially affects the control
settings of single or multiple controls. Dependent upon
which controls are set, the control loop determines the most
appropriate arbiter for use with a set of behaviors. The con-
trols that the behavior affects is denoted by the set C'. This
set, like postconditions O, requires values at each activation-
path dictated by the set I. Figure 2 shows the control settings
sets for the avoid-obstacle behavior.

Votes (v) The value v in an activation-path represents the
vote for that execution branch. Since each A, generates an
action recommendation, there must be a corresponding vote
va, for each A, (Figure 2). These vote values are used
to determine the output of different arbitration techniques,
which are more thoroughly discussed in a later section.

Control Logic

This section discusses using the formalized description of
behaviors to dynamically select appropriate behaviors and
arbiter hierarchies for accomplishing desired objectives in
sequencing. The Sequencer searches through the library of
behaviors and generates an action hierarchy package, which
is behavior activations/deactivations that will accomplish the
objectives set forth by the Deliberator. Some behaviors may
require activation, then deactivation and additional activa-
tions later in time. This complicates the search space since
it allows cyclic branches. To make the automated link be-
tween the Sequencer and the Controller, we create a control
algorithm in the Sequencer that generates a behavior hierar-
chy. The control loop begins by receiving, from the Deliber-
ator, a goal-set (or objective plan) that describes the desired
functionality of the system. Informally, the control logic al-
gorithm performs the following control loop:

1. Receive objective plan (OP) from Deliberator

2. Load behaviors requiring data the robot can provide

3. Create a partial plan from available behaviors that
accomplish the desired objectives

4. Generate a solution to the partial plan

5. Determine arbitration that accomplishes objectives
and satisfies the solution plan

6. Generate behavior hierarchy and send to controller

7. Monitor progress, hardware changes, and new OPs

Receive Objective Plan From Deliberator

The objective plan (OP) that the Sequencer receives from
the Deliberator contains a list of goals with a sequence num-
ber and an activation priority. The sequence number dictates
the order in which the goals should be met (e.g. go-to-target
is met before release-object). If two goals have the same se-
quence number, then they are expected to be accomplished

before the next sequence but in no particular order. How-
ever, if there is a cause for competition, then the activation
priority dictates precedence. For example, an avoid-obstacle
goal and search-area goal can be accomplished in the same
sequence, but when an obstacle is threatening collision, ide-
ally the avoid-obstacle goal has a higher activation priority.
This priority is identified by the activation priority of the
goal in the OP. The OP for the example domain is shown in
Table 1. The sequence of the OP has an ascending prece-
dence and activation priority has a descending precedence.
For example, get-object happens before release-object and
avoid-obstacle has higher priority than search-area.

| Goal | Sequence [Activation Priority |
avoid-obstacle 1 2
search-area
find-trash
get-object

avoid-obstacle-target
go-to-target
release-object

W] W[WI| D =| ==
— DN W =] = =

Table 1: Objectives Plan for janitor robot

Available Behaviors

When an objective plan enters the control loop, the control
algorithm places the behaviors B that required only avail-
able data into a library of viable behaviors L. This process is
completed everytime a new objective plan enters the control
loop. It is easy to envision a system that conserves energy by
deactivating expensive sensors during critical times or deac-
tivating sensors due to failure. Therefore, a check of avail-
able data at every loop is ideal. This step identifies behav-
iors as viable if all activation-paths, from initial condition to
postcondition, can be accomplished with the available data.
From the example domain, the greet ing behavior is not
selected for search since the system does not have an audio
output. All other behaviors are viable.

Preprocess Objectives

This step ensures that the objectives from the OP can be ac-
complished with the available behaviors in L. A behavior
is selected as a candidate if it contains a desired objective g
from the OP in a G 4, . By generating a partial plan from the
OP with these behaviors, the sequence of goal accomplish-
ment is maintained. We then search for additional behaviors
that can link the behavior sequences together and solve the
partial plan. For simplicity, this example selects all the avail-
able behaviors during preprocessing of the OP in table 1.

Generate Solution

This step uses the preprocessed partial plan as the starting
point in generating a solution. This solution is a plan with
a list of behaviors and their associated ordering constraints.
Since we started with the partial plan that satisfies the se-
quential requirements of the OP, the solution will satisfy the
OP as well but may impose more sequential restrictions. The

initial state is either the current state or the projected out-
put state of the currently running behavior hierarchy. The
end state is the outputs O of the behaviors that accomplish
the goals of the last sequence in the OP. For our exam-
ple, the output is the O’s for the deliver-object and
release-object behaviors since they satisfy the goals
of the last sequence. Since preconditions I and postcondi-
tions O do not represent the atomic processes that partial-
order-planning expects (Russell & Norvig 2003), a modified
planning algorithm is used to incorporate the complexity of
the concurrent taskings that each behavior can encounter.
The benefits of using this planning approach allows break-
ing sequential tasks into subtasks if necessary. A plan is
made for the first subtask while the others are processed af-
ter subsequent subtasks complete. Each level of sequencing
priority can be separated as a subtask using a Highest Acti-
vation arbiter where the Sequencer monitors for the correct
output-input pairs to advance sequence priority level. Or, the
Sequencer can search for an arbitration combination capable
of combining some, or all, of the sequential and activation
priorities into one arbitrated behavior hierarchy (Figure 3).

Composite
Highest Activation

<>
[[voidovmacre]

Composite
Highest Activation

Composite
Fusion

] wall-follow
Composite
Highest Activation

E dehver object

release- ob] ect

Figure 3: Arbitrated Hierarchy of Behaviors

Arbitration

Arbiter selection is a crucial step. The arbiter ensures proper
fusion, priority activation, and ordering of behavior action
recommendations. The arbitration selection is mostly based
on the controls that the behaviors affect C. The other as-
pect is how the behaviors vote for each branch and what
that branch affects. For example, scan-for-trash only
controls the pan and tilt of the camera and wall-follow
controls the forward velocity and turnrate. Thus, a Util-
ity Fusion arbiter is an ideal arbiter choice. Conversely,
the avoid-obstacle and deliver—-object behav-
iors both control the forward velocity and turnrate, but
avoid-obstacle has a higher activation priority (Ta-
ble 1). So, a Highest Activation arbiter is best for this com-
bination. An example of a final arbitrated hierarchy of be-
haviors for our domain is shown in Figure 3.

A second significant component of arbiter choice is the
vote weighting of behaviors. A programmer cannot know
the behavior’s use throughout the life of the system. There-
fore, the Sequencer requires the ability to weight the votes
of each behavior within an arbiter. Although seemingly sim-
ple, this step is the final validation to ensure the behaviors’
votes are correct for arbitration to perform as expected. This
step traces through the arbitrated hierarchy of behaviors and
ensures the weights cause the arbitration to meet the objec-
tives in the desired priority and sequence. Otherwise, the
plan is rejected and either a new arbitration search is con-
ducted or the Sequencer triggers a plan failure in the state
for the Deliberator to catch.

Conclusion

Currently, 90% of the proposed representation and con-
trol logic is implemented within our robot architecture and
demonstrated in Stage and on a physical Pioneer robot. We
have witnessed dynamic behavior sequencing for high-level
plan changes and hardware changes. We have also demon-
strated sequential objective plans that activate new behavior
hierarchies when previous plans meet their end state. Al-
though not fully implemented, the behavior representation
and control logic has shown to provide a robust, dynamic
sequencing component to our hybrid robot architecture. The
control loop and behavior representation that we propose en-
ables the system to utilize simple and complex behaviors.
We have described a behavior representation that enables a
dynamic, automated behavior activation system and thus is
a robust mechanism for coupling the Sequencer and Con-
troller within a hybrid architecture. The representation is
unlike task-control languages in that it is more of a semantic
suggestion rather than a syntactical burden. Thus, it allows
for a formal method to describe and utilize the behaviors
without limiting creative software design. This systematic
way of describing behaviors enables the Sequencer to select
the appropriate hierarchy for accomplishing desired objec-
tives without requiring a priori knowledge of the behaviors’
implementation. Thus, it allows for reduced development
overhead and duplication of work for system modifications.

For future research, we plan to implement an arbiter rep-
resentation and automated selection process that satisfies the
goals of the objectives plan. Currently, this functionality
is hardcoded to select between a Utility Fusion or Highest
Activation arbiter. Like the behavior representation, arbiter
representation will allow programmers to use an abstract in-
terface to create custom arbiters that are seamlessly inter-
changed within the control loop. Additionally, our imple-
mented behaviors have just one activation-path and we plan
to extend our implementation and planning to incorporate
behaviors with multiple activation-paths.

References

Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and In-
grand, F. F. 1998. An architecture for autonomy. Interna-
tional Journal of Robotics Research 17(4):315-337. PT:J.
Bonasso, R. P,; Firby, J.; Gat, E.; David, K.; Miller, D. P;
and Slack, M. G. 1997. Experiences with an architecture

for intelligent, reactive agents. Journal of Experimental
and Theoretical Artificial Intelligence 9(2/3):pp. 237-256.

Brooks, R. A. 1985. A robust layered control system for a
mobile robot. Technical report, Cambridge, MA, USA.
Estlin, T.; Volpe, R.; Nesnas, I.; Mutz, D.; Fisher, F.; En-
gelhardt, B.; and Chien, S. 2001. Decision-making in
a robotic architecture for autonomy. In 6th International
Symposium on Artificial Intelligence, Robotics, and Au-
tomation in Space (i-SAIRAS).

Firby, R. J. 1989. Adaptive execution in complex dy-
namic worlds. Technical Report YALEU/CSD/RR #672,
Yale University.

Gat, E. 1997. Esl: A language for supporting robust plan
execution in embedded autonomous agents. In Aerospace
Conference, 1997. Proceedings., IEEE, volume 1, pp. 319—
324 vol.1.

Gat, E. 1998. On three-layer architectures. Artificial In-
telligence and Mobile Robots: Case Studies of Successful
Robot Systems pp. 195-210.

Ghallab, M.; Alami, R.; Hertzberg, J.; Gini, M.; Fox, M.;
Williams, B.; Schattenberg, B.; Borrajo, D.; Doherty, P.;
Morina, J. M.; Sanchis, A.; Fabiani, P.; and Pollack, M.
2003. A roadmap for research in robot planning.

Ingrand, F. E.; Chatila, R.; Alami, R.; and Robert, F. 1996.
PRS: A high level supervision and control language for au-
tonomous mobile robots. In Proc. of the IEEE Int. Conf. on
Robotics and Automation, pp. 43—49.

McDermott, D. 1991. A reactive plan language. Technical
Report YALE/DCS/TR-864.

Rosenblatt, J. K. 1998. Field and Service Robotics.
Springer-Verlag. chapter Utility Fusion: Map-Based Plan-
ning in a Behavior-Based System, pp. 411-418.

Russell, S., and Norvig, P. 2003. Artificial Intelligence:
A Modern Approach. Prentice-Hall, Englewood Cliffs, NJ,
2nd edition edition.

Simmons, R., and Apfelbaum, D. 1998. A task descrip-
tion language for robot control. In Intelligent Robots and
Systems, 1998. Proceedings., 1998 IEEE/RSJ International
Conference on, volume 3, 1931-1937 vol.3.

Simmons, R. 1994. Structured control for autonomous
robots. IEEE Transactions on Robotics and Automation
10(1).

Volpe, R.; Nesnas, L.; Estlin, T.; Mutz, D.; Petras, R.; and
Das, H. 2001. The claraty architecture for robotic auton-
omy. In Aerospace Conference, 2001, IEEE Proceedings.,
volume 1, 1/121-1/132 vol.1.

Woolley, B., and Peterson, G. 2007. Genetic evolution
of hierarchical behavior structure. Proceedings of the 9th
Annual Conference on Genetic and Evolutionary Compu-
tation pp. 1731-1738.

Woolley, B. 2007. Unified behavior framework for re-
active robot control in real-time systems. Master’s the-
sis, Graduate School of Engineering, Air Force Insti-
tute of Technology (AETC), Wright-Patterson AFB OH.
AFIT/GCS/ENG/07-11.

