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Abstract
Our architectural theory is automata theory and our 
processes combine knowledge representation and automata-
based reasoning, producing the “best possible” agent 
configurations that may realize specified behavioral goals. 
We establish that if a goal can be realized by a configuration
of Web-dwelling agents then a distinguished Manager 
Agent, with suitable Local Closed World knowledge of 
agents’ properties, may apply automata-based reasoning 
algorithms, selecting and configuring agents into a realizing 
device. The Manager also may reconfigure, adapt and 
optimize devices, relative to available resources. Real world 
and logical constraints may mean that a “best possible” 
result is an approximation; this is confirmed as acceptable 
by other researchers using a variety of reasoning processes
we describe. We generalize our results to local groups of 
agents, not just those Web-dwelling, and describe both 
theoretical (“Personal Travel Assistant”) examples and 
applications to practice. 

Introduction

The world of agents has much in common with the world 
of classical, “good old fashioned,” automata theory. Both 
areas involve synthesis of “devices” to meet behavioral 
specifications, fulfilling particular functions or achieving 
particular goals. We have found that automata-theoretic 
principles and procedures involved in abstract behavioral 
analyses and abstract machine syntheses provide a 
foundation for an agent configuration theory. That is, the 
processes involved in determining abstract devices to 
realize specified behaviors may be adapted to determining 
configurations of Web-dwelling agents that fulfill real 
behavioral goals. If a goal can be achieved on the Web, 
appropriate agents can be collected and configured to 
achieve it. By determining the relationship between a 
realizing device structure and its potential behavior, the 
“best possible” agent configuration may be found. 
   Thus our architectural theory is automata theory. Our 
processes involve knowledge representation and reasoning: 
knowledge about agents and their capabilities is 
represented for a supervisory, distinguished Manager 
Agent. That Manager effects automata-theory-based 
reasoning algorithms to select appropriate agent 
components and configure them into each specified 
behavior-realizing device. We have theoretical results 
relating to the discovery and construction of Web-dwelling 

agent configurations that fulfill specified tasks or realize 
behavioral goals. We describe such results for constructing 
“optimal” agent configurations, and an application of the 
theory to practice (in the traditional example of a Personal 
Travel Assistant). Other researchers have developed 
theoretical and practical results related to configuring 
problem-solving groups of agents; we discuss how our 
work relates to theirs. Research has produced many 
successful applications of agents to problems in practice. 
However, theoretical, logical and real world practical 
considerations can prevent problems from being solved by 
Web-dwelling agents. We discuss such cases as well. 

Good (Automata) Theory Lasts Forever

We entered the field of AI with a background in theoretical 
computer science, where we had focused on formal 
problems of computational learning. Our research 
emphasized behavioral analyses, synthesis and inference 
processes for determining behavioral models from 
behavioral examples or samples. This work was grounded 
by classical switching and automata theory. I.e., by 
defining relationships between the components of a 
device’s specified potential behavior and the device’s 
necessary structural components, early theoretical research 
(Moore 1956, Myhill 1957, Nerode 1958) established 
existence of solutions to abstract machine problems and 
effective techniques to determine them. These included 
techniques for analyzing device and behavioral structure; 
synthesizing devices to produce or realize specified 
behaviors; and minimization processes to eliminate 
extraneous components, resulting in reduced “optimal” 
device forms. Results established that an appropriate finite 
behavioral sample was sufficient to effectively determine a 
finite, minimal behavioral model. Thus a finite device 
producing an entire specified behavior could be found from 
a suitable finite sample. No claim was made that the 
classical techniques of almost fifty years ago would be 
efficient (back then, today’s concept of efficient 
computation was barely being formed). But once they 
established that a problem could be solved effectively, 
subsequent methods could be devised to produce results 
while conserving computational resources. The classical 
theory still provides a foundation for today’s abstract 
device design problems and also is applicable to real 
machines. It has enabled us to devise theoretical inference 



techniques (for learning from samples or examples) that 
have been adapted to practical processes and applied to 
modeling and learning problems of AI.
   We learned much about the Agents World within a 
theoretical context and began to see the relationships with 
our inference work. While participating in a symposium on 
logic-based program synthesis we attended presentations 
about Web-dwelling agents’ problem-solving potential.  
Sheila McIlraith (McIlraith 2002) spoke of languages and 
processes developed for enabling agents to compose Web 
services automatically. Then, upon receiving a complex 
goal-directed request, the agents could select actions and 
transitions needed to fulfill the goal’s component tasks 
(e.g., completing all phases in the planning and booking of 
a research trip). Richard Waldinger (Waldinger 2002) 
lectured on logic-based techniques to locate agents existing 
on the Web and configure them into temporary problem-
solving systems. He and his colleagues have shown 
(Waldinger et al 2004) that available agents’ capabilities 
could be described as axioms. When the axioms were 
provided to a theorem-prover, a theorem could be 
produced, effectively “gluing” appropriate agents together 
to achieve a specified behavioral goal (e.g., scheduling 
meetings in the face of geographic and temporal 
constraints). Alternately, if such a goal-oriented theorem 
could not be found, the process might reveal information 
inconsistencies and anomalies. We learned more about 
agents’ problem-solving collaborations as realized by agent 
coalitions (Soh and Tsatsoulis 2002, Soh and Anderson 
2004). There, traditionally, agents themselves determine 
the efficacy of working together to fulfill specific tasks. 
They may retain information about each other, including 
histories of joint successful endeavors. Then they may 
negotiate, argue or otherwise convince each other to form 
groups that achieve particular goals. Typically, a sub-
optimal coalition is configured initially. Then it is adapted 
iteratively to become a relatively optimal device.
    Our automata-theoretic grounding enabled us to view 
these examples as within the broader area of behavioral 
modeling. It became clear to us that the agents McIlraith 
described were involved in behavioral analysis to 
decompose a specific goal task into subtasks. They were 
involved in device synthesis as they interacted to fulfill the 
subtasks and achieve their behavioral goal. Device 
synthesis also applied to Waldinger’s problem-solving 
agent constructions. Furthermore, the determination of 
anomalies, instead of behavior-realizing constructions,
reminded us of procedures to test abstract or real devices 
for equivalence with their behavioral specifications. (E.g., 
the model checking processes that use finite-state 
“machines” to represent software behavior were first 
devised to verify behavioral correctness, but for most 
software properties they are effective for detecting 
anomalies and errors.) The agent coalition examples, while 
typically configured by self-directed agent components, 
reminded us of classical automata minimization 
techniques. There, beginning with a given device design, 

unnecessary components are eliminated iteratively in order 
to produce an optimal result.
   The automata and switching results that formed the basis 
for our initial inference research involved abstraction and 
theory. The theory endured and has been applicable in 
numerous instances involving a multitude of interpreta-
tions. For example, the notions of “device” and “behavior,” 
respectively, could be: an elevator control panel and the 
elevator’s up-and-down trips; a finite sequential machine 
and its input vs. output; a grammar and the language it 
derives. Given the insights we have gained from agents 
research just described, we propose that the very same 
theory that relates behaviors and structures is applicable to 
configuring groups of Web-dwelling agents to fulfill 
specified tasks. 

Relating Agents to Automata and Getting 
Results

We propose that automata theoretic concepts and processes 
will adapt to the Agents World and the tasks agents 
individually and collectively may fulfill. Theory makes it 
feasible to synthesize agent “devices” that “behave” as 
specified. The agents existing on the Web may be selected 
and configured into teams, groups or multi-agent systems, 
as appropriate, with resultant agent configurations 
constructed to realize specified behavioral goals. 
   In our earlier work on agent-related theory (Fass 2004-
2006) we pointed out some of the correspondences we 
found between the Automata World and the Agents World. 
In the Automata World, devices are configured from states 
and the transitions among them. A transition to a specific 
state will occur as the result of some preceding behavior. A 
transition to a final state means that a behavioral goal has 
been achieved. In our view of the Agents World individual 
agents correspond to “states” and agent interactions 
correspond to “state-to-state transitions.” A configuration 
of interacting agents corresponds to a device. Their 
fulfillment of a specified task corresponds to “reaching a 
final state.” Configuring a collection of agents to fulfill a 
task corresponds to the automata theory concept of 
realizing a behavior.  But how would this be done?
   Given all of the agents in existence on the Web at any 
instant, each would be able to produce a particular 
behavior or fulfill a particular task (this could include a 
“null task”). Knowing the capabilities of each of the Web-
dwelling agents, it would be possible to determine those 
that might be utilized to fulfill component subtasks of 
complex specified behaviors. For any complex task 
specified it would be possible (in theory) to find 
equivalence or “indistinguishablity” classes of all of these 
agents, relative to that specific behavioral goal. The 
equivalence relation could be “produce the same 
behavioral component of the specified task.” (For example, 
a goal task might involve planning a trip from Carmel 
California to Palo Alto for a meeting at Stanford. A 
behavioral component might be the subtask of planning the 
initial part of the trip, from Carmel to Monterey. There 



may be many ways to do this: planning a car trip, planning 
a local bus trip, etc., which could fall within the same 
equivalence class of “getting to Monterey.”) Of course for 
any task T there would be agents, perhaps most of them, 
that could have no role in fulfilling T or any of its subtasks. 
Relative to T these would all become part of a single “non-
use” class when the indistinguishablity equivalence classes 
of agents are found (those familiar with automata theory 
would recognize that such an agent class would be similar 
to an automaton “dead state”). With knowledge of all of 
the agents capabilities and the task-related classes to which 
they each belong, it would be possible to synthesize a 
“device” out of agents fulfilling the constituent subtasks of 
the complex specified behavioral goal. Selecting an agent 
from each of the relevant classes and configuring them 
suitably into an agent system would be the construction 
technique. Only one representative of each agent class 
need be selected. The suitable configuration (e.g., agent 
interaction paths) of the realizing agent “device” would 
correspond to the configuration of subtasks within the 
complex specified behavioral goal.
   With a choice of available agents to be selected from a
known behavioral class, some criteria might be employed 
to determine which to choose. E.g., the agent that behaved 
“best” or most efficiently in the past might be selected. 
However, if that agent were engaged in fulfilling some 
other task and were not available, an alternate might be 
selected as the “best possible” behaviorally-equivalent 
component for agent “device” available at the time. Now, 
with knowledge of everything available on the Web it 
would be possible to upgrade a task-fulfilling configuration 
as new and “better” potential component agents were 
introduced. In any case, it would be possible to determine 
if an agent component of a potential realizing device 
proved unnecessary or useless, so that iterative adaptations 
could be effected until a result were “optimized,” e.g., 
through minimization. Furthermore, if a group of agents 
within a configuration proved to work well together, it 
could be possible to remember which agents those were so 
that they could be reused in future. 
   This seems quite a bit to keep track of: agent capabilities; 
agent availabilities; agents’ comparative skills; 
constructions of interaction channels among agents; 
behavioral goals; decompositions of tasks into subtasks, 
and so on. But we are developing theory. In (Waldinger et 
al 2004) the agent configuration process was effected by 
an overseeing theorem-prover that had been supplied with 
axioms. In the (McIlraith 2002) interpretation  composi-
tions were effected by software with logical decision-
making capabilities, able to process special mark-up 
languages and ontology representations. In (Soh and 
Tsatsoulis 2002, Soh and Anderson 2004) most coalition 
configurations were determined by agents with their own 
informational databases, using case-based reasoning and 
reinforcement based on their interactions past. In our 
theory, we prefer agent selections and configurations  
determined by a distinguished Manager Agent (Fass 2005). 
The Manager may have knowledge of the other agents and 

be able to reason about them, select them and configure 
them into each specific task-fulfilling device. But the 
Manager will never try to reason about itself. Aside from 
the logical paradox that might arise, we agree with (Riley 
and Veloso 2004) that there is an advantage to separating 
an agent “coach” from the agent “team” it may advise. A 
distinguished Manager can work with different agent 
groups, using different configuration strategies; this 
wouldn’t be feasible if the Manager joined a configuration 
itself and couldn’t retain an objective overview.
    On the Web new information is constantly introduced 
and existing entities often disappear. Thus no person or 
agent can ever be sure, when searching for Web-dwelling 
entities, that searching has been done “enough” and the 
best result has been found. To alleviate this problem, we 
may relax our demands on the Manager to keep track of 
“all of the agents in existence on the Web at any instant,” 
even in a theoretical study.  We will employ the (Heflin 
and Munoz-Avila 2002) concept of a Local Closed World 
(LCW) subset of the Web and let the Manager have LCW-
knowledge. Then, within the LCW, the Manager can keep 
track of agent capabilities, availabilities, changing 
resources, etc. Within the LCW the Manager will know if a 
search has been “enough,” and whether an entity sought 
within the LCW can “ever” be found. With these 
assumptions we can establish:

For every behavioral goal realizable on the Web (using 
resources available within a LCW), a distinguished 
Manager Agent with LCW-knowledge may effect the 
following techniques and achieve the following results:

(i) discovery of an optimal agent group (relative to the 
LCW) for fulfilling realizable specified tasks and 
configuring them into a device realizing the behavioral 
goal;
(ii) removal of agents extraneous or useless for a 
problem-solving configuration, retaining its behavior;
(iii) merger of agents behaving indistinguishably 
relative to a behavior specified; 
(iv) “recycling” of successfully performing agent 
groups or subgroups, to be used in future behavior-
realizing configurations when this proves to conserve 
resources (e.g., search time and space);
(v) discovery of minimized communication pathways 
among agents and agent systems that may realize a
behavioral goal within the LCW;
(vi) expansion of a task-fulfilling agent configuration 
as a specified behavioral goal grows (and remains 
realizable within the LCW);
(vii) adaptation of a configuration as a behavioral goal, 
or constraints, may change (if still defining a behavior 
realizable within the LCW) ;
(viii) testing of an agent configuration (relative to its 
LCW) to see if it does produce a specified behavior.

To achieve the above, the Manager Agent would have the 
logical, analytic skills to decompose specified tasks into 
component subtasks; would be able to make comparisons 
and apply effective decision-making abilities; would have 
a dynamic knowledge base reflecting the capabilities and 



availabilities of the other agents within its (local) world. 
Matching task components with capable agents to fulfill 
such subtasks, a goal-directed agent group could be 
configured. Our theoretical approach attributes much 
intelligence and ability to the Manager Agent, but such are 
the qualities already exhibited by the proposed and 
working systems described by (McIlraith 2002) and 
(Waldinger 2002, Waldinger et al 2004) that originally 
inspired us. In our interpretation a distinguished Manager 
Agent may obtain the results above, using techniques of 
good old fashioned automata theory (adapted as described) 
by relating agent device structure to intended specified 
behavior.
   However, there is a significant distinction between
behavioral analysis and synthesis when applied to the Web, 
and when applied in automata theory. Automata theory is 
generally concerned with finding finite models of specified 
behaviors that may be infinite (e.g., a sequential machine 
that recognizes “all strings with at least 2 as and any 
number of bs”). If there is a finite realization of a behavior, 
its components will be found. In automata theory if a finite 
realizing device is found, a minimal realizing device may 
also be found and may be considered optimal. But when 
considering  the behavior produced by agents on the Web, 
there will always be just a finite set of agents to consider. 
Any behavior realized by a “device” configured from Web-
dwelling agents will either be finitely-realized, or won’t be 
realized by these agents at all. A behavior need not even be 
complex to be unrealizable. Perhaps no agent has yet been 
designed to fulfill one of its subtasks; perhaps the 
necessary component agents exist, but just aren’t available.  
Furthermore, while there may be a concept of minimality, 
since the agents are real and produce real (not theoretical) 
behaviors, there may be some other accepted criterion for 
an optimal result. Thus we may also conclude:

If a specified behavioral goal can be realized by a 
configuration of Web-dwelling agents,

then there will be an optimal (maybe minimal, maybe 
most time-wise efficient, or other defined “optimal” 
relative to the LCW) finite configuration of agents to 
realize that goal. A Manager Agent may construct the 
optimal result by configuring known agents, or by 
effectively adapting a sub-optimal configuration that 
is already known.

For example, if the Manager recognized that a component 
group of agents needed to fulfill a specific subtask had 
been used in the past (e.g., finding conversions of USD to 
GBP, or charging purchases on credit cards) the 
configuration could be recalled from its knowledge base 
[similar to the coalition agent reuse described in (Soh and 
Tsatsoulis 2002, Soh and Anderson 2004)]. If, say, our 
version of a Manager determined that a “better” agent to 
fulfill a subtask became available, e.g., one that worked 
faster, a substitution could be made.
   We can illustrate some of the concepts described above 
with additional (traditional) travel planning examples. We 
may have a theoretical Personal Travel Assistant (PTA) 

that composes Web-dwelling entities into the needed 
components for planning our trips. The condition of 
“optimality” might include minimal travel time and/or 
minimal travel expenses. Individual agents will have 
representations of travel modes, timetables, pricelists, 
distance measures, calendars, schedules of meetings we 
need to attend, record of our personal preferences, etc. The 
agents may be “optimally” configured to produce the plan 
of: taking a low-cost local bus from Carmel to Monterey; 
taking another, nonstop, from Monterey to San Jose (SJ); 
then taking a Santa Clara Valley bus to Palo Alto. At 
certain departure times the optimal plan might involve 
relatively inexpensive “interlocking” airport shuttles 
(Carmel to SJ Airport; SJ Airport to Palo Alto). At other 
times the optimal plan would be the only possible plan: 
using an expensive taxi for the trip (at times/dates when 
public transportation isn’t available). If, additionally, 
Carmel’s only 2 taxis were being repaired, the behavioral 
goal might not be realized at all. If a behavioral goal 
changed, e.g., to go from Carmel to the SJ Convention 
Center for meetings, the PTA could “recycle” the 
successful Carmel-Monterey-SJ components from the 
previous trip plan. If the goal changed to travel for a 
meeting in NY the PTA might “recycle” its Carmel-SJ 
Airport plans and expand the configuration to include 
airplane trips from SJ Airport into JFK, etc. If an existing
plan could be improved, an intelligent Manager could 
always make improvements within its resource scope.

Constraints and Successes

If a goal can be achieved on the Web, appropriate agents 
can be collected and configured to achieve it. By 
determining the relationship between a realizing device 
structure and its potential behavior, the “best possible” 
agent configuration may be found. However, there are 
many logical and real world constraints that may provide 
obstacles to perfect agent configuration and goal 
realization. There will always be problems of information 
completeness, quality and security that can’t be controlled 
by “theory.” Constraining a configuring Manager to LCW 
information may be realistic with respect to termination of 
searches. But due to the dynamic nature of the Web and all 
electronic media, a necessary or “best” potential 
configuration component may actually exist (perhaps
outside of the LCW) but may never be found. Thus we 
must accept that behavioral-realizing agent configurations, 
even if LCW optimal, may really just be approximations to 
an ideal. Completeness issues imply that the configuration 
result may not be a “universal” optimal, just the best that 
could be found. Information accuracy also constrains the 
utility of results. E.g., our theoretical PTA may access 
schedules for buses from Carmel to Monterey but that 
doesn’t mean that such information actually is accurately 
represented on the Web, in any electronic medium or 
otherwise. False information, whether unintentionally or 
maliciously provided, exists on the Web and in all other 
media too. Even if accurate information exists, adequately 



reflecting real world conditions at one instant, in the 
dynamic world, just as on the dynamic Web, things 
change. (Like everyone else who participates in Stanford 
meetings, we have many “traveling researcher” examples 
illustrating real world deficiencies of an otherwise 
optimally designed PTA.) Thus human experience has 
taught us to get local “eyewitness” evidence; question facts 
or double-check; and make contingency plans using 
common sense. Agents, individually or in goal-oriented 
configurations, don’t (yet) have such human-level 
capability. Furthermore, while we expect “all knowledge” 
to exist on the Web and be available to agents, even if 
possible this could rarely reflect real world situations in 
real time. Thus not everything that’s “needed to know” will 
be available to a Manager determining problem-solving 
configurations or to the task-fulfilling agent components. 
Not every real behavioral goal can be realized by 
configurations of agents. Still, if a goal can be achieved, 
we’ve provided a good old fashioned automata theory 
foundation for its achievement. 

Related Work and Conclusions 

Groundwork for practical development of a diversity of 
agents and agent systems, along with a range of potential 
and realized applications, was presented in the insightful 
(Jennings, Sycara and Wooldridge 1998). We consider the 
work on agents and the Web described by (Hendler 2001) 
to be foundational in its own way, so we have framed our 
agent theory within the context of the Web. But any result 
we have can be restricted to a more localized universe of 
agents for which a Manager Agent would have LCW 
knowledge. Then specified local behavioral goals could be 
realized. Many theoretical and practical researchers have 
found such localized approximating agent configurations, 
i.e., teams, coalitions or multi-agent systems, to produce 
acceptable results fulfilling specific tasks. Iterative 
adaptations often follow, to improve initial results. E.g., 
(Soh and Tsatsoulis 2002) apply adaptation of sub-optimal 
coalition results to obtain improved results that have been 
utilized successfully in military missile-tracking problems.
   Supervisory “coaching” or other oversight entities, 
similar to our Manager Agent, have been employed by 
various researchers to effect configurations. Many 
instances are reported in (Tumer and Stone 2002, Soh and 
Anderson 2004) and we have described some such research 
above. Particularly relevant to our view, we found (Sen 
and Kar 2002) use “teacher” agents to manage and share 
information with “student” agents assisting them in 
varying decision-making methods. The “coaching” agent 
of (Riley and Veloso 2004) uses Markov Decision 
Processes to observe its team’s past performance and 
determine an optimal policy for its future. While developed 
for the “soccer venue” many other general, real 
applications are possible. In (Guestrin, Venkataraman and 
Koller 2002) a value function is computed for a multi-
agent system, based on an agent’s state and the actions of 
some of the system’s other agents. The resultant value 

helps the agents decide on what future joint actions to take. 
Luc Steels’ agents (Steels 2004) develop communication
skills adaptively and “human-like,” to interact with each 
other in systems. Agent “competitors” are modeled using 
Bayesian techniques in (Garrido, Brena and Sycara 2002), 
where it is acknowledged the modeling method is only
optimal relative to the information that is available. This is 
what we noted, when describing application of our 
automata-based agent configuration theory to solving 
problems on the dynamic real Web or in the dynamic real 
world: one does the best one can with the resources 
available.
   Groundbreaking work by Stan Rosenschein (Rosenschein 
1985) related theory to robots (situated agents, of course).
Influential work of (Rosenschein and Kaelbling 1996) used 
“situated automata theory” enabling agents they considered 
to react to the agents’ environments. The agents we 
consider react to what their Manager decides; the Manager 
has access to a local environment and all it entails. Still,
having devoted much of our research effort to theoretical 
problems of computational learning, we were gratified to 
find that some of our own earlier agents theory has been 
utilized in real goal-oriented problems; (Fass 2004) has 
been applied to robot agent configuration problems for the 
real world (Vig and Adams 2007). Although we have 
always stressed that good theory provides foundation for 
practice, we were pleasantly surprised to receive such 
validation that our own automata-theory based agent 
configuration work has had practical applications. Other 
relevant research examples applying theory to configuring 
agent systems, both abstract or real, are reviewed in (Fass 
2005, 2006).
   Our good old fashioned automata theory approach to 
behavioral realization and problem-solving works perfectly 
when determining abstract devices in constrained 
theoretical problem domains. When applied to more 
realistic processes, such as configuring behavior-realizing 
“devices” composed of interacting agents, the results aren’t 
likely to be perfect. There are many real-world and logical 
constraints that delimit the determination of agent 
configurations that otherwise might solve specified 
problems, realize possible specified behaviors or fulfill 
possible specified tasks. But if a goal can be achieved by 
an interacting group, or system, of agents within some 
(LCW) environment, then our theory establishes that the 
appropriate configuration will, indeed, be found. It may 
also be deemed an optimal configuration, relative to 
available resources. For many problems our theory 
provides a basis for finding “best possible” results, and we 
consider that a realistic outcome. Many other researchers 
we have cited, using varying mathematical techniques to 
configure collections of agents, acknowledge that sub-
optimal results and adaptations are acceptable. 
Approximation is not the exception; in real world 
applications it is the norm.
   Our architectural theory is automata theory, and our 
processes have combined knowledge representation and 
automata-based reasoning algorithms to configure agent 



components for each behavior-realizing device. Often 
these results are approximations. But good theory provides 
the foundation for determining the best approximations, 
and in practical problems those may be the best possible 
results of all. By establishing that problem solutions exist
and may be found, theory lays the groundwork for 
techniques applied in practice.
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