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Abstract

We present a computational framework in which to explore
the generation of creative behavior in artificial systems. In
particular, we adopt an evolutionary perspective of human
creative processes and outline the essential components of
a creative system this view entails. These components are
implemented in a hierarchical reinforcement learning frame-
work and the creative potential of the system is demonstrated
in a simple artificial domain. The results presented here lend
support to our conviction that creative thought and behavior
are generated through the interaction of a sufficiently sophis-
ticated variation mechanism and a comparably sophisticated
selection mechanism.

Introduction

Some have argued that creative thought and behavior are the
products of an ongoing process of blind variation and selec-
tion, analogous to Darwinian natural selection, of both sym-
bolic cognitive structures and overt action sequences (Camp-
bell 1960; Simonton 1999). From this perspective creative
products, whether scientific theories or musical symphonies,
are produced by way of sequential manipulations of interme-
diate constructs in a trial-and-error fashion. The trials com-
prising these trajectories are chosen blindly (i.e., irrespective
of any specific goal) and either executed explicitly in the
world or simulated (e.g., in the creator’s mind). Any result-
ing structures, whether physical or symbolic, are then eval-
uated according to some consistent metric and selectively
retained for manipulation in subsequent trials.

Implicit in this approach to modeling creativity is the ex-
istence of a search space in which creative products and their
intermediate configurations are embedded. We maintain that
creative products then are the result of a sequential decision
process consisting of trajectories through this space. It has
been argued by many that the size of this search space in
most realistic domains is astronomical and precludes any
hope for success of blind trial-and-error processes in pro-
ducing complex creative works. We aim to show, however,
that just as this argument does not hold with respect to nat-
ural selection in biology, so is it untenable in our view of
creativity.

Following the analogy of natural selection, one would
be hard pressed to argue that something as complex as a
compound eye, digestive system, or mammalian brain could

have evolved from the precursors of single cells even by nat-
ural selection if the only variational mechanism available
was point mutation of DNA. In such a scheme, where recom-
bination of existing genetic substructures is conspicuously
absent, the chances of stumbling upon adaptive genetic mod-
ules through blind trial and error is, as noted by the critics
cited above, astronomically small. This is because point mu-
tations produce variation only at the most primitive level, es-
sentially limiting the steps taken in the search process to the
smallest ones possible. Blind trial-and-error search in this
scenario is correctly judged as doomed to failure, or at least
severely crippled.

However, once recombination of previously discovered
components is introduced (through sexual reproduction and
crossing over), suddenly the evolution of complex artifacts
like the vertebrate nervous system becomes possible, indeed
inevitable. The difference results from the accumulation and
combinatorial manipulation of useful substructures that ef-
fectively reduce the search space by affording larger, more
meaningful steps through it. Because these substructures
can be manipulated hierarchically, the variation between tri-
als can occur at many scales, and thus over time appropri-
ately sized steps through the search space can be made with
ease toward structures of increasing fitness, even if the steps
are chosen blindly.

In what follows we argue that just as complex biologi-
cal systems are evolved by this mechanism in nature, so are
complex creative products evolved by a similar process in
human creative thought and action. The two processes are
of course not identical. One of the key differences is that
in human creative processes there exists no explicit popu-
lation of trials undergoing simultaneous evaluation as there
does in natural selection, but rather a set of potential trials,
only some of which are realized and evaluated based on the
current context at each step of the process. Gabora (2005)
calls this “context-driven actualization of potential”, and it
is consistent with our view of creativity as a sequential deci-
sion process.

From a computational point of view, this distinction cor-
responds to the differences between techniques like genetic
algorithms (Holland 1975) and genetic programming (Koza
1992) that maintain explicit populations for simultaneous
evaluation, and others such as reinforcement learning (Sut-
ton & Barto 1998) that maintain these populations only im-



plicitly and evaluate them sequentially. Given the character-
istics of creative processes mentioned above, we consider
reinforcement learning a more appropriate framework for
modeling certain aspects of creativity than the more geneti-
cally inspired methods cited, and so we choose this frame-
work to outline a formal basis for artificial creative systems.

Other subtle distinctions abound, but it is sufficient to note
here that creativity is a multi-faceted and complex cogni-
tive process that resists strict reductionist approaches, and as
such the work presented here reflects only what we believe
to be necessary but likely insufficient criteria for an intelli-
gent creative system. In particular, we believe that creative
behavior can be generated in an artificial system through the
interaction of a sufficiently sophisticated variation mecha-
nism and a comparably sophisticated selection mechanism.
In the following section we elaborate on the details of these
criteria and how they facilitate efficient creative search. We
then present a computational reinforcement learning frame-
work that realizes these criteria and demonstrate its potential
for creativity in a simple artificial domain.

Criteria for Efficient Creative Search

As mentioned above, the search space implicit in the view
of creativity espoused here is the space of potential creative
products within a given domain, and the creative process a
sequential decision process defined over it. In general, the
features of this space and the operators for moving through
it can be defined at many different levels of abstraction,
with some definitions being more conducive to trial-and-
error search than others. Without prior domain knowledge
or environmental experience, however, creative search must
necessarily begin with decision-making at the most primi-
tive level of abstraction afforded by the innate behavioral
and perceptual repertoire of a given creative agent. In this
case each decision corresponds to a single primitive behav-
ior, and as such variation at this level is generally imprac-
tical for efficient creative search in complex domains given
the miniscule steps through the enormous search space each
decision engenders.

It is for this reason that a creative agent must possess
the ability to expand its skill set to include new behaviors
at increasing levels of abstraction. These behaviors can be
thought of as procedures for reliably fixing one or more fea-
tures of a creative product to a certain set of values. During
the decision-making process they can be treated as single
decisions with predictable outcomes, even though they may
entail the execution of long sequences of more primitive be-
haviors. This has the effect of redefining the search space
from the perspective of the agent, though the underlying
intrinsic space remains unchanged. By allowing for larger
steps through the space, the space effectively shrinks from
the agent’s point of view, and blind trial-and-error search be-
comes more efficient and meaningful. Another consequence
is the increased probability of reaching areas of the space
previously unreachable through blind variation, and in turn
potential discovery of new features and thus new skills to
manipulate them.

As an illustrative example, consider a composer in the
process of writing a symphony. If his only source of vari-

ation is to add or delete a single note of specific pitch and
duration to the score at each decision point, then clearly
producing any finished product that even sounds decent, let
alone a unique and well-recieved work, will take an unac-
ceptable amount of time. However, if he adds to his vari-
ational repertoire chords and phrases known to work well
in many contexts based on prior experience, then recombi-
nation of these substructures affords steps towards a com-
plex, coherent work of art not attainable otherwise. Good
composers can easily manipulate and generate high-level
variations of musical substructures like chords, phrases and
themes, skills which novice composers have not yet mas-
tered.

Even with a sufficiently deep hierarchy of skills for ma-
neuvering through the large spaces characteristic of real-
world domains, execution of the numerous trials necessary
for the discovery of a highly-valued creative product is gen-
erally infeasible since, unlike in natural selection, these trials
must be executed sequentially. The temporal and energetic
costs associated with performing trials necessitate a surro-
gate for the true selection metric that can evaluate proposed
decisions along a search trajectory in the absence of their
explicit execution. This surrogate of course must be learned
over time from explicit evaluations by the real metric, but
in general the number of these evaluations will be small and
thus the surrogate must generalize well from sparse feed-
back signals to accurately predict the effect of individual de-
cisions on the value of the final product. During a search
trajectory, each proposed variation must be evaluated by the
surrogate and only the most highly valued chosen for con-
sideration at the next decision point or for explicit execution
in the environment.

To give another example, the production of a full-length
motion picture is a very costly and time-consuming process
with evaluative feedback occurring only at the end of the de-
cision process, coming in the form of critical reviews, box-
office success, etc. Successful movie producers/directors
must be able to predict accurately the success or failure of
individual decisions made during the production process,
since separate trials representing variations at each of these
decision points cannot be executed to completion. These
predictions are of course based on prior experience and eval-
uations of previously completed projects, but on a relatively
tiny number of them when compared to the number of de-
cisions made. Good producers/directors have very accurate
surrogates for the evaluation metrics by which their work is
judged.

The criteria discussed above are essential to efficient cre-
ative search in any reasonably complex domain. Without
the necessary hierarchy of skills, variation at non-primitive
levels of abstraction is impossible and blind variation infea-
sible as a generator of potentially useful alternatives during
the creative process. In the overwhelming majority of do-
mains in which trials have high temporal and energetic costs,
the absence of an accurate surrogate for the true evaluation
metric also precludes efficient creative search, since it is im-
possible to explicitly evaluate every trial proposed during
the creative process in a reasonable amount of time. The
following section discusses some potential machine learning



techniques for satisfying these criteria in an artificial system.

A Formal Basis for Efficient Creative Search

When considering computational frameworks that satisfy
the aforementioned criteria, evolutionary methods based di-
rectly on Darwinian evolution such as genetic algorithms
(Holland 1975) or genetic programming (Koza 1992) natu-
rally come to mind. However, as mentioned earlier, creative
processes in humans differ from biological evolution in that
they do not maintain an explicit population of simultane-
ously actualized alternatives to select among. Rather, cre-
ative products evolve through an iterative, context-sensitive
decision process. For this reason, we choose computational
reinforcement learning (Sutton & Barto 1998) as our formal-
ism, which is a context-sensistive behavioral variation-and-
selection paradigm for optimal decision-making with a well-
developed mathematical foundation. We outline the relevant
details of a possible reinforcement learning framework for
efficient creative search in the following section.

Reinforcement Learning

Reinforcement learning (RL) (Sutton & Barto 1998) is a
computational paradigm for learning optimal goal-directed
behavior in sequential decision problems. In this framework,
an agent takes actions in an environment from which it re-
ceives sensory signals as well as a scalar-valued reinforce-
ment signal, the long-term sum of which it tries to maximize
over time. The agent does this through an iterative process of
exploration and modification of its behavior. In this sense,
RL is at its heart a variation-and-selection process, gener-
ating variations in behavior that are selected for or against
based on the accumulation of rewards they effect over time.

To maximize its cumulative reward, an RL agent tries to
learn a policy which maps states—specific representations
of sensory signals—to actions that maximize long-term re-
ward. This policy can be learned in a variety of ways, one
of the most common being indirectly through the approxi-
mation of a value function which maps states to real values
signifying the expected sum of future rewards an agent will
receive given its current state. A policy is then derived from
the value function by selecting actions greedily with respect
to the function’s expected value over successor states.

It should be clear that such a system which selects among
a set of potential actions according to the evaluations given
by its value function is a model instantiation of the type of
system described in the previous section. What is essen-
tial to note is that the behavioral variation mechanism, often
called the “actor”, can be hierarchical in nature, selecting
among not only primitive but also temporally abstract ac-
tions. In addition, the value function, or “critic”, is a prime
example of a sophisticated surrogate for the true selection
metric in that it can provide accurate evaluations of pro-
posed behaviors without the need for their explicit execu-
tion. The following sections outline the relevant mathemat-
ical formalisms commonly used in the RL literature, which
often assume that a given environment can be modeled as a
Markov decision process.

Markov Decision Processes

A finite Markov decision process (MDP) is a tuple
(S, A, P, R) in which S is a set of states, A is a set of actions,
P is a one-step transition model that specifies the distribu-
tion over successor states given a current state and action,
and R is a one-step expected reward model that determines
the real-valued reward an agent receives for taking a given
action in a given state. An MDP is assumed to satisfy the
Markov property, which guarantees that the one-step models
R and P are sufficient for defining the reward and transition
dynamics of the environment.

When the environment of an RL agent is formulated as
a finite MDP, the task of the agent is to learn a policy
m : S — A, which maps states to actions that maximize
its expected sum of future rewards, also called expected re-
turn. It is often assumed that the transition and reward mod-
els are unavailable to the agent. When this is the case, a
policy can be learned through estimation of an action-value
function Q™ : S x A — R, which maps state-action pairs
(s,a) € Sx A toreal values representing the expected return
for executing action a in state s and from then on following
policy 7. If Q™ = Q*, where QQ* represents the optimal
value function for the MDP, then the agent can act optimally
by greedily selecting actions in each state that maximize Q™.
The Q-learning algorithm (Watkins 1989) is one method for
estimating this function online from experience.

When the transition dynamics of the environment are
known or estimated from experience, model-based rein-
forcement learning (Sutton 1991) can be employed to expe-
dite value function learning in the sense of requiring less ex-
perience for Q™ to converge to Q*. Model-based RL meth-
ods constitute one way of adding more sophistication to the
agent’s selection mechanism, as they permit the surrogate
for the true selection metric to be more accurate given rela-
tively little data. This is because the transition model is used
to simulate actual experience offline without the agent hav-
ing to explicitly execute every action, thereby increasing the
accuracy of the value function through hypothetical trials.

Given the criteria laid out in the previous section, one
should prefer a selection mechanism to be as sophisticated
as possible, and so model-based approaches seem the most
promising for artificial creative systems. We subsequently
describe model-based methods which assume that the tran-
sition and reward models of the environment are available
to the agent, but other techniques exist which relax this as-
sumption (Sutton 1991; Degris, Sigaud, & Wuillemin 2006).
Indeed, we are currently engaged in work experimenting
with motivational systems for active learning of these mod-
els online from minimal experience.

Even when model-based methods are used to improve
data efficiency for value function learning, tabular repre-
sentations of value functions and policies (i.e., those with
one entry per state or state-action pair) become infeasible to
learn efficiently in large MDPs. For this reason much work
has focused on approximation techniques that allow for both
generalization of value between similar states and compact
representations of value functions (Sutton & Barto 1998).
One class of these methods is appropriate when the MDP is
highly structured and can be represented in factored form,



Figure 1: A simple DBN for a given action with correspond-
ing conditional probability trees.

affording the potential for certain dimensions of the MDP
to be irrelevant to predicting the effects of actions on other
dimensions. In these cases, this structure can be exploited to
learn compact representations of value functions and poli-
cies efficiently (Boutilier, Dearden, & Goldszmidt 1995;
2000). Many domains in which creative behavior is pos-
sible are highly structured, and we focus on methods from
this approach to function approximation.

Factored MDPs

A factored MDP (FMDP) is an MDP in which the state space
is defined as the Cartesian product of the domains of a finite
set of random variables {S1,...,S,} = S. While the vari-
ables in an FMDP can be either discrete or continuous, we
restrict our attention to the discrete case so that each S; € S
can take on one of finitely many values in D(S;), the do-
main of S;. States in factored MDPs are thus represented
as vectors of assignments of specific values to the variables
in S. As the number of variables in an FMDP increases
linearly, the number of states increases exponentially. This
has been referred to as the curse of dimensionality (Bell-
man 1957). However, if the FMDP contains relatively sparse
inter-variable dependencies, we can exploit this structure to
reduce the effect this exponential growth has on computing
optimal policies.

FMDPs are often represented as a set of Dynamic
Bayesian Networks (DBN) (Dean & Kanazawa 1989), one
for each action. A DBN is a two-layer directed acyclic graph
with nodes in layers one and two representing variables of
the FMDP at times ¢ and ¢ + 1, respectively (see Figure 1).
Edges represent dependencies between variables given an
action. We make the common assumption that there are no
synchronic arcs in the DBN, meaning that variables within
the same layer do not influence each other. The transition
model for a given DBN can often be represented compactly
as a set of decision trees, one for each variable S;, each of
which contains internal nodes corresponding to the parents
of S; and leaves containing a probability distribution over
D(S;) at time t+ 1. Figure 1 shows a simple DBN (for some

action a) consisting of three binary variables and their cor-
responding decision trees, with the probability that S; = 1
displayed at the leaves.

When the transition model of an FMDP is known,
there are algorithms for efficiently computing compact
value functions and policies that exploit domain structure
(Boutilier, Dearden, & Goldszmidt 2000). While it is pos-
sible to use these methods to design a sophisticated selec-
tion mechanism, the requirement of a sophisticated variation
mechanism is not satisfied by these methods alone. Fulfill-
ing this criterion requires a hierarchical action representation
for these methods to exploit. Fortunately there exist formal
techniques for both learning and planning with temporally
abstract actions in reinforcement learning, which we outline
next.

Hierarchical Reinforcement Learning

The options framework (Sutton, Precup, & Singh 1999) is
a formalism for temporal abstraction in RL that details how
to learn closed-loop control policies for temporally extended
actions in MDPs. An option is defined as a tuple (I, 7, 3),
where I C S is a set of states over which the option is de-
fined (the initiation set), 7 is the policy of the option, defined
over I, and (3 is a termination condition that gives the proba-
bility of the option terminating in a given state. Options can
also be understood as sub-MDPs embedded within a (possi-
bly) larger MDP, and so all of the machinery associated with
learning in MDPs applies to learning options as well, with
some subtle differences. Since options can call other options
in their policies, this framework allows for construction of
the complex hierarchies of behavior essential to our view of
creativity.

Because options are essentially MDPs in themselves,
models for the transition and reward dynamics of an option
can be learned as well. Algorithms for learning the policy,
reward model, and transition model of an option from ex-
perience are given in Sutton, Precup, and Singh (1999). The
advantage of having access to the transition and reward mod-
els of an option is that the option can be treated as an atomic
action in planning or model-based RL methods. In this way,
the outcomes of complex trials proposed by an actor with a
repertoire of options can be easily predicted and the result-
ing state evaluated by a critic in a model-based RL system.
The properties of such a system afford the essential condi-
tions for creative behavior we have outlined. The following
section presents techniques for generating compact option
policies and models in large structured domains modeled as
FMDPs.

Hierarchical Decomposition of Factored MDPs

Jonsson and Barto (2006) present a framework for option
discovery and learning in FMDPs. The VISA algorithm dis-
covers options by analyzing the causal graph of a domain,
which is constructed from the dependencies exhibited in the
DBNSs that define the FMDP. It then decomposes the FMDP
into sub-tasks solved by these options. The algorithm iden-
tifies in the causal graph action-context pairs, called exits,
that cause one or more variables to change value when the
given action is executed in the corresponding context. By



searching through the conditional probability distributions
that define the DBN, exit options are then constructed to
reliably reach this context and execute the appropriate ac-
tion. VISA takes advantage of structure in the domain to
efficiently learn compact policies for options by ignoring ir-
relevant variables. The framework also provides a method
for computing compact option models from a given DBN
model. This allows the use of options in planning as single
atomic units as mentioned above.

Sophisticated Variation and Selection in
Structured Environments

Given the techniques outlined in the previous sections, one
can begin to see how sophisticated variation in an artificial
creative agent might be implemented. Assuming that a given
creative domain is highly structured, as are many real-world
environments, the VISA algorithm coupled with compact
option models endows a reinforcement learning agent with
a hierarchical behavioral repertoire that can easily be used
to propose complex variations of existing creative struc-
tures. By possessing skills to reliably alter any property
of a creative product, the agent can take steps through the
creative search space at varying levels of abstraction, essen-
tially transforming the search space to an appropriate size
for blind variation to be effective.

For sophisticated selection, an accurate surrogate for the
true selection metric as discussed above must be present.
The value functions of the RL framework provide a math-
ematically sound formalization of this type of surrogate.
These critics allow for the evaluation of a large set of po-
tential trials proposed by a variation mechanism without the
need for their explicit execution. Of course, value functions
must be learned from data, but the model-based RL methods
and compact option model computation techniques we have
cited can help make that learning process very data efficient.

One important question remains, however. What are the
true selection metrics that value functions might be used to
predict? Obviously these metrics will be domain depen-
dent, and it is primarily for this reason that we do not em-
phasize the selection component in our results. Criteria for
judging creative works vary immensely between disciplines,
with some drawing more from cultural norms (e.g., sculp-
ture and music) and others being founded upon more objec-
tive evaluations (e.g., science and engineering). Whatever
their source, extrinsic ratings will in general be difficult or
expensive to come by. It is for this reason that value func-
tions are invaluable to an RL system for creative search as
outlined here.

While there are certainly many ways in which to imple-
ment a sophisticated variation-and-selection framework to
satisfy the criteria set forth earlier, the sound mathemati-
cal foundations and well-tested performance of the RL tech-
niques we have outlined make such a framework a promis-
ing candidate for the development of intelligent creative sys-
tems. There are indeed many ways to further increase the so-
phistication of some of the components we have mentioned
and many avenues of research for relaxing some of the as-
sumptions made in the above formalisms. We are currently
exploring some of these options ourselves and outline a few
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Figure 2: A visual rendering of the Light Box domain.

of these directions in the discussion section. First we present
some preliminary results exhibiting the advantages of hierar-
chical representations of behavior for sophisticated variation
in a simple artificial domain.

Experiments
The Light Box Domain

To illustrate the potential for creative behavior in a system
with the components described above we ran preliminary ex-
periments in a simple artificial environment called the Light
Box (Figure 2). The domain consists of a set of twenty
“lights”, each of which is a binary variable with a corre-
sponding action that toggles the light on or off. Thus there
are twenty actions and 22° ~ 1 million states. The nine cir-
cular lights are simple toggle lights that can be turned on or
off by executing their corresponding action. The triangular
lights are toggled similarly, but only if certain configurations
of circular lights are active, with each triangular light having
a different set of dependencies. Similarly, the rectangular
lights depend on certain configurations of triangular lights
being active, and the diamond-shaped light depends on con-
figurations of the rectangular lights. In this sense, there is a
strict hierarchy of dependencies in the structure of this do-
main. The domain is also stochastic in that any primitive
action fails with probability 0.1.

Uncovering the hierarchical structure of the domain and
learning options to toggle each light are essential to produc-
ing sophisticated variation of behavior in this environment.
It should be noted, however, that the agent does not perceive
any structure directly as may be evident in the visual render-
ing of the domain. Rather the agent perceives only a string
of twenty bits at any given time. The structure must be dis-
covered from the transition model of the domain. Exploita-
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Figure 3: Ratios of changes in state variable values in the
Light Box domain to total number of trials (uniformly ran-
dom action selections) for an agent with primitive actions
only and for one with options.

tion of this structure is essential for efficient computation of
option policies and models in a large domain such as this.

Results

To evaluate the utility of hierarchical representations of be-
havior in generating sophisticated variation we conducted an
experiment in the Light Box domain to compare the varia-
tional capabilities of an agent with only primitive actions to
those of one with a hierarchy of options. We let each agent
generate blind trials by choosing each trial uniformly ran-
domly from its available action set. Each agent was run for
100,000 time steps and the data were averaged over 50 runs.
Results are presented in Figure 3. The graph shows the ra-
tio of changes in the value of each state variable to the total
number of trials generated. Each state variable number cor-
responds to the labels of the lights in Figure 2. Note that
the number of trials corresponds to the number of decisions
made, not the number primitive actions executed. Thus for
the agent using options each trial may take longer than one
time step to execute, but is the result of only one decision.

One can see from Figure 3 that the agent with only prim-
itive actions is able to successfully change the states of the
circular lights easily, as they have no dependencies. How-
ever, using only primitive actions to alter the states of the tri-
angular, rectangular, and diamond-shaped lights meets with
little success since these variables have dependencies that
are satisfied only by chance in previous trials. The agent
with options on the other hand exhibits equal change fre-
quencies for each state variable by using its options to set
the appropriate configuration of dependencies for each vari-
able it decides to change. Note that the distribution of values
for the agent with options still does not sum to one because
of the inherent stochasticity of the domain.

These results show the advantage of having a behavioral
repertoire at an appropriate level of abstraction when gen-
erating blind variations for creative search in large struc-
tured domains. From the point of view of the agent with

options, the search space of possible configurations is rela-
tively small in that few trials need to be generated to chance
upon any specific configuration of lights. This is not the case
for the agent with only primitives, since it must often gener-
ate many trials before successfully altering the states of the
non-circular lights.

Discussion

We have presented computational techniques for modeling
some critical aspects of creative processes in artificial sys-
tems based on a perspective which views creativity as a blind
variation-and-selection process. This process takes place in
a space defined by the set of potential creative products in
a given domain and can be modeled as a sequential deci-
sion process consisting of trial-and-error search through this
space for highly-valued products according to some evalu-
ation metric. Although this space is in general too large to
search through at primitive levels of abstraction, we have
outlined a set of criteria for creative systems that allow for
transformation of this space into abstract spaces in which
efficient search for complex creative products becomes fea-
sible.

The first of these is a hierarchical set of skills for alter-
ing existing creative products along different dimensions at
various levels of abstraction. A blind variation mechanism
must possess the ability to take steps through the creative
landscape at many different granularities to make efficient
search possible. The second is a method for predicting both
the outcomes and corresponding expected values of complex
manipulations of existing structures proposed by the varia-
tion mechanism. Without the ability to make these predic-
tions, every proposed trial must be executed and evaluated
explicitly according to the selection metric, which makes ef-
ficient search an impossibility in complex environments. We
have presented formal methods from the RL literature which
satisfy these criteria and have shown some preliminary re-
sults illustrating their capacity for creative behavior.

Some critics of the viewpoint of creativity as a search pro-
cess have argued that creative processes in humans seem to
be more than just search in the good-old-fashioned-Al (GO-
FAI) sense. One argument is that often either one does not
have access to the full specification of the search space or
the space itself cannot be represented explicitly, and as such
one cannot apply generic search algorithms. Although we
agree that the search space may indeed be too large either to
represent or to search though efficiently using standard tech-
niques, we believe that creative processes are in fact search-
ing through reduced or mapped spaces that represent various
levels of abstraction of the intrinsic space. The necessity of
these abstract representations and hierarchical skill sets to
manipulate products represented within them motivates our
criteria for efficient creative search.

Another criticism of the blind variation-and-selection
view is that creative variations of existing products often do
not seem to be blind as suggested here, but rather more di-
rected. We maintain a rejection of this criticism similar to
Campbell (1960), who points out that although many varia-
tions may not appear to be chosen blindly, these variations



themselves are the result of previous blindly-driven trial-
and-error processes. The abstractions accumulated through
learning make possible blind variations that seem directed
because of the granularity at which they are generated. The
large jumps in the search space they afford are indeed com-
posed of directed behaviors which were selectively retained
from previous, blindly generated trials, but the choice of
such a jump itself is made blindly. Thus, what appear to
be directed, goal-driven paths through the search space are
in fact blind variations and selective retentions at differing
levels of abstraction. The value functions of an RL frame-
work provide a well-developed formal mechanism for se-
lecting variations at the right level of abstraction to generate
highly-valued creative products given a consistent selection
metric.

Although we have presented formal methods that exhibit
some of the characteristics of creative processes, there are
many dimensions of creativity that our work does not ad-
dress, and several assumptions in these approaches that may
not be realistic in many real world domains. The first and
most obvious is the prior knowledge of the primitive transi-
tion dynamics assumed in our demonstration. In general it
is most desirable for a creative agent to discover this struc-
ture on its own and use the estimated model to construct
useful abstract skills. We are currently working on meth-
ods for autonomous structure discovery in factored domains
that builds upon the work of Degris, Sigaud, and Wuillemin
(2006).

Other directions for future research include the incorpo-
ration of perceptual abstraction over the features of a given
domain. The work presented here constructs hierarchical
representations of behaviors for efficient creative search, but
leaves flat the representation of creative products whose con-
struction these skills afford. We are also looking into in-
corporating perceptual abstraction into such a framework to
further increase its sophistication. The ability to abstract at
both the behavioral and perceptual levels will likely confer
additional advantages to those outlined above for an artificial
creative system.
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