
Socially Assistive Robots: The Link between Personality, Empathy, 
Physiological Signals, and Task Performance 

Adriana Tapus and Maja J Mataric’ 
 

Robotics Research Lab/Interaction Lab, 
Department of Computer Science, University of Southern California 

 Los Angeles, USA  
adriana.tapus@ieee.org; mataric@usc.edu 

 
 
 

Abstract 
This paper describes a hands-off socially assistive therapist 
robot designed for monitoring, assisting, encouraging, and 
socially interacting with users engaged in rehabilitation 
exercises. We investigate the role of the robot’s personality, 
empathy, and physiological signals in the hands-off therapy 
process, focusing mainly on the relationship between the 
level of extroversion-introversion of the robot and the user. 
We also demonstrate a behavior adaptation system capable 
of adjusting its social interaction parameters toward 
customized rehabilitation therapy based on the user’s 
personality traits and task performance. The experiments 
validate our hypotheses of mapping the user’s extroversion-
introversion personality dimension to a spectrum of robot 
therapy styles that range from challenging to nurturing and 
of adapting the robot’s therapy styles based on user 
personality and performance.  

Introduction   
 The start of the 21st century, with its confluence of 
scientific and technological sophistication, presents a 
unique opportunity for robotics to positively impact human 
quality of life. Therefore, the trend toward developing a 
new generation of robots capable of operating in human-
centered environments, interacting with people, and 
participating in and assisting our daily lives has introduced 
the need for robotic systems capable of learning to use 
their embodiment to communicate and to react to their 
users in a social and engaging way. Significant and 
growing societal needs include the lack of personalized 
one-on-one care for the growing populations of elderly 
individuals, children with developmental disorders, and 
those with special life-long cognitive and social needs. 
Developing systems capable of contributing to such 
application domains in human everyday life require great 
strides in the domains of assistive robotics and human-
robot interaction (HRI). Thus, social robots that interact 
with humans have thus become an important focus of 
robotics research.   
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 Our main research focus is on assistive human-machine 
interaction methods aimed at facilitating research toward 
robot systems capable of aiding people in daily life. The 
potential benefit of using robotics in providing physical 
assistance is well-recognized, spanning mobility and 
manipulation aides for the elderly and people with physical 
disabilities and physical rehabilitation, training, and 
prosthetics. In contrast, the consideration of robots as 
social tools is a newer area of scientific pursuit. Based on 
the premise that intelligent, personalized robots can 
provide individualized care through monitoring, coaching, 
encouragement, and motivation toward specific 
educational and therapeutic goals in a broad range of 
contexts, including convalescence, rehabilitation, special 
major issues in assistive human-robot interaction (HRI) 
must be addressed. 

Socially Assistive Robotics 
 Socially Assistive Robotics (SAR) focuses on assisting 
through social, not physical, interaction (Feil-Seifer and 
Mataric’ 2005). The fundamental principle of SAR is that 
the robot’s physical presence and shared physical context 
create an engagement between the robot and the user, a 
relationship that is inherently different from other types of 
human-machine interactions that do not involve physical 
embodiment. Eliminating physical contact between the 
user and the robot, results in the reduction of safety 
concerns. The concerns naturally cannot be entirely 
eliminated since even unintended physical interaction is 
possible even in the absence of robot-initiated contact and 
application of force (Mataric’ et al. 2007). While increased 
safety is a benefit of SAR, it is not its goal, and the hands-
off nature of SAR naturally begs the question of why a 
physical robot is needed. 
 Socially assistive robotics presents multi-faceted 
research challenges. Our work focuses on personality, 
empathy, physiological signals, and adaptation. Each is 
addressed in turn: 



Personality 
Personality has strong impact on human social interactions. 
While there is no generic definition of personality, we use 
one consistent with the literature (Woods et al. 2005; 
Morris 1979), referring to personality as the pattern of 
collective character, behavioral, temperamental, emotional 
and mental traits of an individual that have consistency 
over time and situations. Evidence from psychology has 
shown a direct relationship between personality and 
behavior. Morris (Morris 1979) indicated that the 
behaviors of greatest importance are those that are: (1) 
Relatively pervasive in the person's life-style in that they 
show some consistency across situations; (2) Relatively 
stable in the person's life-style across time; (3) Indicative 
of the uniqueness of the person. Consequently, we posit 
that personality is also a fundamental factor in human-
robot interactions. Little research to date has addressed 
personality in human-robot social interactions and no work 
has yet addressed the issue of personality in the assistive 
human-robot interaction context. Our work highlights the 
importance of embodying personality in a robot as an 
inherent component of the assistive context. The 
importance of personality has long been recognized, yet 
this area has not yet been addressed in a consistent fashion 
by the HRI community. We propose to develop a rich 
model of robot personality that will enable the expression 
of appropriate personality traits in robot behavior in order 
to match the user and adapt to the user's needs in the 
hands-off socially assistive robotics. 

Empathy 
Empathy plays a key role in patient-centered therapy, 
because it implies the comprehension of another's inner 
world and a joint understanding of emotions. Empathy is 
an interesting and provoking construct, evoking debate 
over its measurement, and its potential applications in 
robotics. One reason for our interest in empathy in socially 
assistive robotics is the findings of many psychologists 
showing that empathy plays a key role for therapeutic 
improvement (e.g., (Rogers 1975)) and their assumption 
that empathy mediates pro-social behavior (e.g., 
(Eisenberg 1986), (Hoffman 1981)). Rogers (Rogers 1975) 
showed that patients who have received empathy, 
genuineness, and unconditional positive regard from their 
therapist recovered faster. Therefore, we posit that 
empathy can ameliorate patient satisfaction and motivation 
to get better, and enhance adherence to therapy programs 
in the context of patient-therapist interaction. 
 There are very few research projects (e.g., (Bickmore 
2003), (Paiva et al. 2004)) in human-computer interaction 
(HCI) that attempt to emulate empathy in virtual agents. 
We are not aware of any studies that have examined the 
role of empathy in assistive embodied human-robot 
interaction. While machines cannot feel empathy, they can 
express it. One of the most complete definitions on 
empathy was given by (Davis 1983) and defines it as the 
capacity to take the role of the other, to adopt alternative 

perspectives vis a vis oneself and to understand the other's 
emotional reactions in consort with the context to the point 
of executing bodily movements resembling the other's. This 
definition implies that empathy is expressed through 
perspective taking, that it is an internal state similar to 
emotion, and that this emotional state can sometimes be 
recognized through imitative bodily movements. 
 According to Davis (Davis 1983), there are two main 
ways defining the empathy: as process and as outcome. 
The process of empathy refers to something that happens 
when someone is exposed to another person (e.g., taking 
the other's perspective or unconsciously imitating the 
other's facial expression). The outcome of empathy is 
something that results from the processes of empathy, and 
can be affective or cognitive. The affective outcome of 
empathy is considered an important motivator of pro-social 
behavior. The feelings or condition of a person can 
generate strong vicarious emotion in others. The emotion is 
vicarious in that neither the conditions that affect the 
person who is the object of empathy nor his/her emotions 
have any direct effect on the empathizing person. The 
cognitive outcome of empathy relates to awareness, 
understanding, knowing of another's state or condition or 
consciousness, or how another might be affected by 
something that is happening to him/her. This is also 
referred to as role taking or perspective taking. By taking 
inspiration from the existing literature on empathy in social 
psychology, we propose a new methodology for emulating 
and embodying empathy on robotic systems for 
rehabilitation therapy. 

Physiological Signals 
Understanding user's physiological internal state represents 
a key issue in socially assistive robotics so as to be able to 
create a customized one-on-one therapy style. Some of the 
physiological signals proposed for use in human-machine 
interfaces (human-robot interaction and/or human-
computer interaction) include skin conductance, heart rate, 
pupil dilation, and brain and muscle activity. Even if 
physiological signals have the potential to provide 
objective measures of the human’s internal state, they are 
difficult to interpret. This is due in part to their variability 
from one person to another, and to multiple emotional 
states activation for one physiological signal. Hence, it can 
be difficult to understand the internal user’s emotional 
state. The psychophysiology literature recommends using a 
multi-modal physiological system capable of detecting 
simultaneously an array of physiological signals 
corresponding to a certain state (e.g., heart rate and 
galvanic skin response for measuring the user’s arousal).  
Some of the human-robot interfaces discussed in the 
literature are using only one physiological signal due to the 
difficulty of measuring them (Takahashi et al. 2001; Yamada 
et al. 1999). Our system is designed to be applied in the 
assistive context. The system that we propose, aim 
providing the user with constructive coaching feedback as 
well as encouragement to continue with proscribed 
rehabilitation activities. Based on Yerkes-Dodson law 



(Yerkes and Dodson 1908), through the use of 
physiological signals (galvanic skin response and body 
temperature), the robotic system will be capable of 
improving and optimizing user performance through 
coaching behavior modification strategies. 

Behavior Adaptation 
Behavior adaptation is a recognized challenge in robotics. 
Creating robotic systems capable of adapting their 
behavior to user personality, user preferences, and user 
profile in order to provide an engaging and motivating 
customized protocol is a challenging target, especially 
when working with vulnerable user populations. In the 
socially assistive robotics context, behavior adaptation 
must address both short-term changes that represent 
individual differences and long-term changes that allow the 
interaction to continue to be engaging over a period of 
months and even years. Various learning approaches for 
human-robot interaction have been proposed in the 
literature (Berlin et al. 2006; Breeazeal and Scassellati 
2003), but none include the user's profile, preferences, 
and/or personality. The proposed work aims to create 
socially assistive robots capable of monitoring and 
enhancing physical therapy in such a way as to have a 
lasting impact on the patient's ability and willingness to 
engage in physical therapy even without the robot's 
prompting. Toward that end, we propose a methodology 
for evaluating a reinforcement-learning-based approach to 
robot behavior adaptation. The learning approach will 
incrementally adapt the robot's behavior to better model the 
user's personality and needs, therefore attempting to 
improve user task performance. 

HRI Model 
Our developed HRI model is shown in Figure 1. This is 
created to allow us to study the research issues discussed 
above. Our inspiration comes from Bandura’s model of 
reciprocal influences on behavior (Bandura 1969). 
Consequently, we posit that it is necessary to incorporate 
personality and empathy in order to facilitate human-robot 
interaction (HRI) and robot behavior selection. We use a 
multi-modal behavioral approach that allows the robot to 
be responsive both in terms of temporal and social 
appropriateness. We express the robot’s personality and 
empathy through multi-modal cues that include: 
interpersonal distances/proxemics, verbal and non-verbal 
communication, and activity. Our previous work (Tapus 
and Mataric’ 2006) has already begun the development of 
a behavior control architecture capable of expressing 
personality traits along the extroverted-introverted 
spectrum, which we are currently expanding. 
 

 
Figure 1: HRI Information Processing using the 

Personality Model of the User and the Empathy level 
 
The use of social space in human interactions has been 
widely studied in social psychology, since the seminal 
paper by Hall (Hall 1966) who coined the term proxemics. 
Hall identified four general interaction spaces: (1) 
Intimate: Up to 0.25m from the body; usually involves 
contact (e.g., embracing, comforting), can be 
uncomfortable and intrusive; (2) Personal: Between 0.3-
1m; typically used for family and friend interactions; (3) 
Social: About 1-3m; used in business meetings and public 
spaces; and (4) Public: Beyond 3m; e.g., the distance 
between an audience and speaker (see Figure 2). 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Interaction zones / proxemics: intimate, personal, 

social, and public 
 
A social embodied robot must make appropriate use of 
social space so that a human user can feel safe, 
comfortable, and in concordance with his/her personality 
preferences. Hall in (Hall 1966) found a strong link 
between the human sense of space and behavior and 
personality type. Analogously, people have stronger 
empathic emotions and reactions when the interaction 
episodes are associated with others with whom they have a 
social relationship (e.g., friends, family) or a common 
background (e.g., a person who lived through a similar 
experience). Therefore, proxemics can be encoded, 
adapted, and controlled as a function of the individual 
personality type and empathetic level. Communication is a 
rich multi-modal process. Our approach is accordingly 
multi-modal, involving both verbal (e.g., vocal content and 
paralinguistic cues, such as volume and speech rate) and 



non-verbal (e.g., body movement) interaction to express 
personality and empathy (Apple et al. 1979; Tusing and 
Dillard 2000; Pittman 1994). The similarity-attraction 
principle, which assumes that individuals are more 
attracted to others who manifest the same personality, has 
been studied in HCI (e.g., (Nass and Lee 2001)). Also, 
many psychological studies (Brown et al. 1975) have 
found that prosodic characteristics are linked with features 
of personality, e.g., excitement or arousal (e.g., 
extroversion-introversion) are strongly correlated to 
prosodic features such as pitch level (Trouvain and Berry 
2000), pitch range, and tempo (Apple et al. 1979). By 
having these findings as our source of inspiration, we 
propose to design different interaction scripts that will 
display personality type through the choice of words and 
paralinguistic cues. The robot's non-verbal communication 
is another powerful means of expressing personality and 
manifesting empathy. As with any area of HRI research, a 
careful consideration and management of the user's 
expectations is taken into account. The robot's empathy 
and personality is made sufficiently believable, but not so 
realistic as to provoke expectations that cannot be met 
(Masahiro 2005). Importantly, the robotic system is built to 
always subordinate itself to the patient's desires and 
preferences, thereby promoting patient-centered practice 
and avoiding the complex issues of taking control away 
from patients and dehumanizing health care. Social 
psychologists have observed a strong relationship and 
synchrony between verbalization and movement in 
everyday human social interactions (Condon 1986). 
Therefore, we posit that the robot's empathic state can be 
reinforced by appropriate verbal communication; the robot 
can express its understanding through empathetic tone of 
voice and phrases that are appropriately matched to the 
emotional state of the user. Recent research work in 
linguistics (Cordella 2004) showed that a doctor's 
empathetic voice encourages the patient to adhere to the 
treatment regime and helps to building doctor-patient trust. 
Hence, we use both language and "body language" as HRI 
tools to express empathy. The robot's activity will also 
serve as an interaction parameter, since physical activity 
levels are correlated with personality as well as rates of 
recovery. The robot's speed and the amount and 
complexity of body movement (regardless of the form of 
embodiment) are all controllable parameters. Some studies 
(Sterling and Gaertner 1984) have shown a positive 
correlation between empathy, personality, and 
physiological indices (e.g., heart rate acceleration, palm 
sweating). These physiological responses can also be used 
by the robot as a significant source of sensory information 
for real time interaction and emphatic response.  

By separating the individual control parameters of the 
HRI model as per above, we are able to conduct fine-tuned 
experiments that focus on sub-components of the HRI 
process. We applied statistical learning to the full 
interaction space of the robot in order to adapt to the user 

over time. Our method allows us to dynamically optimize 
the interaction parameters: interaction distance/proxemics, 
speed, and vocal content (what the robot says and how it 
says it), and the other controllable personality and empathy 
parameters described above. These define the behavior, 
and thus personality, of the therapist robot, which are 
adaptable to the user's personality in order to improve the 
user's task performance. Task performance is measured as 
the number of exercises performed and/or time-on-task, 
depending on the nature of the trial.  

We formulate the problem as policy gradient 
reinforcement learning (PGRL) and propose a learning 
algorithm that consists of the following steps: (a) 
parametrization of the robot's overall behavior (including 
all parametric components, listed above); (b) 
approximation of the gradient of the reward function in the 
parameter space; and (c) movement towards a local 
optimum. Our policy gradient algorithm starts from an 
initial policy, composed of 3 parameters in our case. For 
each parameter we also define a perturbation step to be 
used in the adaptation process. The perturbation step 
defines the amount by which the parameter may vary to 
provide a gradual migration towards the local optimum 
policy. The use of PGRL requires the creation of a reward 
function to evaluate the behavior of the robot as parameters 
change to guide it towards the optimum policy. The robot 
is started given an initial policy, and its learning process 
can be summarized as the following steps: (1) The robot 
acts given the current set of parameters; (2) The reward 
function is evaluated to measure the performance of the 
robot; (3) The loop returns to step 1, possibly with an 
updated policy due to the adaptation process, until the time 
limit for the exercise is reached. The reward function is 
monitored to prevent it from falling under a given 
threshold, which would indicate that the robot’s current 
behavior does not provide the patient with an ideal 
recovery scenario. 

We have already performed a pilot study of a smaller 
version of this system, using only three adaptive 
parameters: proxemics, activity, and vocal content. 
Proxemics involved three zones (all beyond the minimal 
safety area), activity was expressed through the amount of 
robot movement, and vocal content varied from nurturing 
("You are doing great, please keep up the good work.") to 
challenging ("Come on, you can do better than that.") and 
extroverted (higher-pitched tone and louder volume) to 
introverted (lower-pitched tone and lower volume), in 
accordance with well-established personality theories 
referred to earlier.  

Experimental Scenarios and Results 
Our experiments try to address mainly two issues. First, we 
investigate the user-robot personality matching. Secondly, 
using the results of the first experiment we refine the 



matching process between the user and the robot using our 
adaptation algorithm to increase the user’s efficiency in 
performing the task at hand. We analyze how varying 
minor characteristics of the robot’s personality impacts the 
efficiency of the user and whether the robot is able to 
converge to a set of characteristics that are in consensus 
with the user’s preferences. 
 

A. User-Robot Personality Matching 
In order to test the user-robot personality matching, and 

based on the principle of similarity attraction (Nass and 
Lee 2001), we formulated the following two hypotheses: 
Hypothesis 1: A robot that challenges the user during 
rehabilitation therapy rather than praising her/him will be 
preferred by users with extroverted personalities and will 
be less appealing to users with introverted personalities. 
Hypothesis 2: A robot that focuses on nurturing praise 
rather than on challenge-based motivation during the 
training program will be preferred by users with 
introverted personalities and will be less appealing to users 
with extroverted personalities. 
 As explained earlier, the personality of the robot is 
expressed through the extroversion-introversion trait. The 
introverted vocal content was nurturing and the script 
contained gentle and supportive language (e.g., ”I know 
it’s hard, but remember it’s for your own good.”, ”Very 
well, continue just like that.”). The typical para-verbal cues 
used for introversion are low pitch and volume. For the 
extroverted personality a challenging language (e.g., ”You 
can do it!”, ”Concentrate on your exercise!”) and high 
pitch and volume are used. 

The robot’s behavior had a range from non-social to 
social and from low activity to high activity so as to 
express the extroversion (challenging) or introversion 
(nurturing) therapy styles.  

Before participating in the experiment, each subject was 
asked to complete two questionnaires. The first one was a 
general questionnaire for determining personal details such 
as gender, age, occupation, and educational background, 
and the second questionnaire was for establishing the 
subject’s personality traits based on the Eysenck 
Personality Inventory (EPI) (Eysenck 1953).  

Our target population is post-stroke patients. The 
experimental tasks were intended as functional exercises 
similar to those used during standard stroke rehabilitation: 
• Drawing up and down, or left and right on an easel; 
• Lifting books from a desktop to a raised shelf; 
• Moving pencils from one bin to another; 
• Turning pages of a newspaper. 

At the end of each experiment, the experimenter 
presented a short debriefing. Vocal data was collected from 
the user using a microphone and it was interpreted using 
automatic voice analysis software. The robot was capable 
of understanding the following utterances: “yes”, “agree”, 
“no”, and “stop”. The participant wore a motion sensor on 
the (weaker, if post-stroke) upper arm to monitor 

movement and a reflective laser fiducial was strapped 
around the lower leg to allow the robot to locate him/her. 
Each participant was exposed to two different assistive 
personalities of the robot: one that matched his/her 
personality according to the Eysenck Personality Inventory 
(EPI) and one that was randomly chosen from the 
remaining options. The system evaluation was performed 
based on user introspection (questionnaires). After each 
experiment, the participant completed two questionnaires 
designed to evaluate impression of the robot’s personality 
(e.g., “Did you find the robot’s character unsociable?”) and 
about the interaction with the robot (e.g., “The robot’s 
personality is a lot like mine.”). All questions were 
presented on a 7-point Likert scale ranging from “strongly 
agree” to “strongly disagree”. 

The subject pool for this experiment consisted of 19 
participants (13 male, 6 female; 7 introverted and 12 
extroverted). To test the match between the user’s and 
robot’s personality, we asked the participants to rate 
whether they felt that the “robot’s personality was a lot like 
yours”, on a Likert scale from 1 (strongly disagree) to 7 
(strongly agree). While the overall mean of the responses 
was very close to the midpoint, “neither agree, nor 
disagree”, for both the interaction with the introverted and 
the extroverted robot, the participants tended to match their 
personality to the robot’s as described below. Extroverted 
users rated the extroverted robot as significantly closer to 
their personality than the introverted robot (extroverted 
robot M = 4.91, introverted robot M = 3.16). Introverted 
users thought that the introverted robot matched their 
personality better (M = 4.57) than the extroverted one (M = 
3.57). To validate our hypotheses and to make sure that the 
variation in the means between extroverted and introverted 
users for interaction with each type of robot personality is 
significant and that it is due to the variation between the 
treatment levels (the user’s personality) and not due to 
random error we did an analysis of variance (ANOVA). 
The first set of data consisted of the answers provided by 
all participants during their interaction with the extroverted 
robot. The results obtained in this case for a significance 
level 0.05 were: Mextro_user = 4.91, Mintro_user = 3.57,  
F0.05 [1, 17] = 10.7680, p = 0.0044. Thus, our hypothesis 
was validated by the results in this case. The probability  
(p = 0.0044) that the null hypothesis, which affirms that the 
variation is only due to random error, is valid is extremely 
low. The results obtained from data collected during the 
interaction with the introverted robot validated our 
hypothesis as well: Mintro_user = 4.57, Mextro_user = 3.16,  
F0.05 [1, 17] = 15.810, p = 0.0010. In this case the validity 
of the null hypothesis is even lower (p = 0.001). By design, 
the extroverted robot had a challenge-based style of user 
encouragement, while the introverted robot used a 
nurturing therapy style. We also analyzed the correlation 
between the extroversion-introversion personality of the 
robot and the user’s perception of challenge-based vs. 
nurturing style of encouragement that it used. The users 



were asked to rate the robot encouragement style on a 
Likert scale from 1 (Nurturing) to 7 (Challenging). On 
average, the participants classified the introverted robot as 
more nurturing (M = 3.21) and the extroverted robot as 
more challenging (M = 5.10). None of the 38 trials was 
terminated by the experimenter. The end of a trial was 
either a sequence of “stop” utterances said by the user or 
the end of the four exercises. Because of the high 
sensitivity of the speech recognition system, participant 
breathing and ambient noise were on occasion incorrectly 
detected as a “stop” or “no”, ending the interaction 
prematurely. Figure 3 shows the average interaction time 
(in minutes) spent by the extroverted/introverted users with 
extroverted/introverted robots, respectively. To validate 
our hypothesis that the interaction time with each type of 
robot personality was significant we did an analysis of the 
variance (ANOVA). The results strongly supported our 
hypothesis, as follows. For the interaction with the 
introverted robot the means and probability of the null 
hypothesis being true were: Mintro_user = 7.41,  
Mextro_user = 5.21, F0.05 [1, 17] = 10.4337, p = 0.0049. For 
the interaction with the extroverted robot the results were: 
Mintro_user = 6.1, Mextro_user = 8.11, F0.05[1, 17] = 9.8092,  
p = 0.0061.  
Thus, the results show user preference for human-robot 
personality matching in the socially assistive context. 
Further experiments with larger and more representative 
participant pools (i.e., stroke patients) are being addressed 
in our continuing work. 

Figure 3. The average interaction time (minutes) spent by 
introverted/extroverted users with introverted/extroverted 

robots, respectively 
 

B. Robot Behavior Adaptation 
Two experiments were designed to test the adaptability 

of the robot’s behavior to the participant’s personality and 
preferences. In each experiment, the human participant 
stood and faced the robot. The experimental task was a 
common object transfer task used in rehabilitation and 
consisted of moving pencils from one bin on the left side 
of the participant to another bin on his/her right side. The 
bin on the right was on a scale in order to measure the 
user’s task performance. The system monitored the number 
of exercises performed by the user. The participants were 
asked to perform the task for 15 minutes, but they could 

stop the experiments at any time. At the end of each 
experiment, the experimenter presented a short debriefing. 
Before starting the experiments, the participants were 
asked to complete the same two questionnaires as in the 
previous experiment: (1) a general introductory 
questionnaire in which personal details such as gender, 
age, occupation, and educational background were 
determined and (2) a personality questionnaire based on 
the Eysenck Personality Inventory (EPI) for establishing 
the user’s personality traits. The robot adapted its behavior 
to match each participant’s preferences in terms of therapy 
style, interaction distance and movement speed. The 
learning algorithm was initialized with parameter values 
that were in the vicinity of what was thought to be 
acceptable for both extroverted and introverted individuals. 

The PGRL algorithm used in our experiments evaluated 
the performance of each policy over a period of 60 
seconds. The reward function, which counted the number 
of exercises performed by the user in the last 15 seconds 
was computed every second and the results over the 60 
seconds “steady” period were averaged to provide the final 
evaluation for each policy. The threshold for the reward 
function that triggered the adaptation phase of the 
algorithm was set to 7 exercises at each evaluation for the 
first 10 minutes of the exercise and it was lowered to 6 
exercises from 10 minutes to 25 minutes into the exercise. 
The threshold was adjusted to account for the fatigue 
incurred by the participant. The threshold and the time 
ranges are all customizable parameters in our algorithm. 
The values for these parameters were chosen based on 
empirical data collected during trial runs before the actual 
experiment was conducted. 

In the post-experiment survey, the participants were 
asked to provide their preferences related to the therapy 
styles or robot’s vocal cues, interaction distances, and 
robot’s speed from the values used in the experiments, as 
described below. 
 

1) The goal of the first experiment was to test the 
adaptability of the robot behavior to the user personality-
based therapy style preference. Four different scenarios 
were designed for both extroverted and introverted 
personality types: the therapy styles ranged from coach-
like therapy to encouragement-based therapy for 
extroverted personality types and from supportive therapy 
to nurturing therapy for introverted personality types. The 
words and phrases for each of these scenarios were 
selected in concordance with encouragement language 
used by professional rehabilitation therapists. The coach-
like therapy script was composed of strong and aggressive 
language (e.g., ”Move! Move!”, ”You can do more than 
that!”). Higher volume and faster speech rate were used in 
the pre-recorded transcript voice, based on the evidence 
that those cues are associated with high extroversion. The 
aggressiveness of words, the volume, and the speech rate 
diminished along with the robot’s movement towards the 



nurturing therapy style of the interaction spectrum. The 
nurturing therapy script contained only empathetic, gentle, 
and comforting language (e.g., ”I’m glad you are working 
so well.”, ”I’m here for you.”, ”Please continue just like 
that”, ”I hope it’s not too hard”). The voice used had lower 
volume and pitch. 

The subject pool consisted of 12 participants (7 male 
and 5 female). The results support our hypothesis that the 
robot could adapt its behavior to both introverted and 
extroverted participants. The pilot experimental results 
provided first evidence for the effectiveness of robot 
behavior adaptation to user personality and performance: 
users (who were not stroke patients) both tended to prefer 
personality matched robot therapists, and performed more 
or longer trials under the personality matched and therapy 
style matched conditions. The latter refers to nurturing 
styles being correlated with the introversion side of the 
personality spectrum, and challenging styles correlated 
with the extroversion side of the spectrum. It is important 
to note that in all cases parameters are on a continuous 
spectrum, not arbitrarily binary-valued. 
 

2) In this second experiment we wanted to ensure the robot 
was able to adapt to the human preferences, in order to 
build an engaging and motivating customized protocol. 
People are more influenced by certain voices and accents 
than others. Two main scenarios were designed, one for 
extroverted and one for introverted individuals, 
respectively. The scenario for the extroverted group was 
challenge-based while the scenario for the introverted 
individuals was more nurturing, in accordance with the 
results of our first study. We pre-recorded the same 
scenario with 2 males (one with a French accent and one 
with an American native accent) and 2 females (one with a 
Romanian accent and one with an American native accent).  
The experimental group for this experiment consisted of 12 
participants (7 male and 5 female). The results of the third 
experiment, which tested the ability of the robot to adapt to 
the user’s preference of a certain robot’s personality as 
expressed through accent and voice gender were again 
consistent with our assumption that the algorithm we 
employed would allow the robot to adapt and match the 
participant’s preferences in most cases.  
 

To improve the adaptation process we plan on varying 
only one of the parameters at a time. This will allow for 
more accurately measuring the impact of each variation on 
user performance and for adapting more efficiently to each 
dimension of the parameters space.  

Also, due to the large number of combinations of 
parameter values that have to be investigated during the 
adaptation phase the optimal policy might be obtained only 
after a period of time that exceeds our session of exercise 
(i.e., 15 minutes). However, we feel that this does not 
reduce the efficiency of our approach or the relevance of 
our results, as our research targets interaction with patients 
for an extended period of time and where many therapy 

sessions are required for complete rehabilitation. Thus, if 
the optimal policy is not reached during one therapy 
session the adaptation process can be extended over several 
sessions, with most of the interaction occurring with the 
optimal policy in place. In fact, this is very similar to real-
life situations where therapists get to know patients over 
several therapy sessions and respond to their clues to 
provide a more efficient recovery environment. 

Conclusions  
In this paper, the role of the robot’s personality in the 
hands-off therapy process was investigated, with a focus 
on the relationship between the level of extroversion-
introversion of the robot and the user and the ability of the 
robot to adapt its behavior to user personality and 
preferences expressed through task performance. The 
experimental results provide first evidence for the 
preference of personality matching in the assistive domain 
and the effectiveness of robot behavior adaptation to user 
personality and performance. 

Our research is aimed at facilitating socially assistive 
robot systems capable of aiding people with special needs 
in daily life. Therefore, the work conducted in this paper 
involves novel multidisciplinary collaboration including 
robotics, medicine, social and cognitive psychology. The 
consideration of robots as social tools is a new area of 
scientific pursuit, based on the premise that intelligent, 
personalized robots can provide individualized care 
through monitoring, coaching, encouragement, and 
motivation toward specific therapeutic goals.  
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