
Influence Propagation in Modular Networks

Aram Galstyan and Paul R. Cohen
USC Information Sciences Institute

Center for Research on Unexpected Events (CRUE)
4676 Admiralty Way, Marina del Rey, CA 90292

{galstyan,cohen}@isi.edu.

Abstract
The objective of viral marketing is to utilize existing social
interactions between customers for world–of–mouth adver-
tising of products. In order to design effective marketing
strategies, one needs to understand how influence is propa-
gated across such social networks. Here we study a simple
influence propagation process in a network composed of two
loosely coupled communities. We find that for a certain range
of network parameters, the dynamics of the influence propa-
gation is characterized by a doubly–critical behavior. Our
results also suggest that the presence of the community struc-
ture, or network modularity, might have important implica-
tions for choosing appropriate marketing strategies.

The idea behind viral marketing is to use existing so-
cial structures for world–of–mouth advertising of prod-
ucts or services (Domingos & Richardson 2001; Leskovec,
Adamic, & Huberman 2006). Instead of targeting customers
indiscriminately, efficient marketing strategies aim at tar-
geting certain customers that will propagate the influence
among many others. An important problem is then to decide
what nodes to target so that the propagation of the influence
will be maximized (Kempe, Kleinberg, & Éva Tardos 2003).
Thus, to understand implications of specific targeting strate-
gies, it is imperative to understand how the influence prop-
agates through a social network. In recent years there has
been an extensive amount of work on studying various dy-
namical processes on complex networks. Most of the studies
have focused on the effect of the scale–free degree distribu-
tion on dynamical processes. In this paper, we focus on net-
works that have a modular structure, i.e., they are composed
of clusters, or communities, that are loosely coupled with
each other.

Here we focus on a network composed of only two com-
munities. Specifically, we consider a random graph consist-
ing of N = Na + Nb nodes of two different type, a and b.
The probabilities of edges between nodes of different types
are γaa, γbb and γab = γba, and the average connectivity be-
tween nodes of the respective types are then zaa = γaaNa,
zbb = γbbNb, zab = γabNb and zba = γabNa. We want
to find out how the modularity of the network, as described
by the coupling between the groups, affects the cascading
process.
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Each node is in one of two states: passive and active.
Initially, all but a small fraction of seed nodes are passive.
During the activation process, a passive node will be acti-
vated with probability that depends on the state of its neigh-
borhs. In Watt’s original model (Watts 2004) this probability
is p = Θ(hi/ki−φ), where Θ is the step function, hi and ki

are the number of active neighbors and the total number of
the neighboring nodes, respectively, and φi is the activation
threshold for the i–th node. Here we use a threshold con-
dition on the number of active neighbors rather than their
fraction: p = τ−1Θ(hi−Hi), where τ determines the time–
scale of the activation process. We will assume that all nodes
have the same activation threshold, Hi = H for all i.

Below we examine a simplified scenario. Let us assume
that seed nodes are chosen among a–nodes only, and let ρ0

a
be the fraction of those seed nodes. Further, let us assume
that the coupling between two populations is not very strong,
so that the cascading process among a–nodes is not affected
by cross-group links. Then the fraction of active a nodes
evolves according to the following equation (Galstyan & Co-
hen 2007):

τ
dρa

dt
= −ρa + ga(zaaρa) (1)

where we have defined

ga(x) = 1− (1− ρ0
a,b)Q(H,x) (2)

and Q(n, x) =
∑

k<n e−xxk/k! is the regularized gamma
function.

Thus, the fraction of the population that will be activated
at the end of the cascading process is determined from the
following steady state equation:

ρs
a = ga(zaaρs

a) (3)

Note that for sufficiently dense networks (i.e., the connec-
tivity of all nodes is greater than the threshold H) ρs

a = 1 is
always a solution. However, it is not always the only solu-
tion. This is shown graphically in Figure 1, where we plot
both sides of Equation 3 as a function of ρs

a for two differ-
ent connectivities. For a given fraction of seed nodes the
steady–state fraction of active nodes is determined by the
connectivity zaa. In particular, for sufficiently large values
of zaa, the only intersection of the curve with the line hap-
pens at ρ ≈ 1, aside from exponentially small correction
of order ∼ zH−1e−zaa , indicating that the activation will
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Figure 1: Graphical representation of the Equation 3. Plot-
ted are the straight line y = ρs

a, and the function y =
ga(zaaρs

a) for two different values of zaa

spread globally. If one decreases zaa, however, other so-
lutions appear as shown by the two intersections of ρa and
ga(zaaρa) in Figure 1. Specifically, there is a critical value
zc
aa so that for zaa < zc

aa the cascading dynamics dies out,
while for zaa > zc

aa it spreads throughout the system. Let us
define x = zaaρs

a, and rewrite Equation 3 as z−1
aa x = g(x).

At the critical point, the line z−1
aa x must be tangential to

g(x). It is then straightforward to demonstrate that the criti-
cal connectivity is given by

zc
aa = [g′a(x0)]−1 ≡

[
(1− ρ0

a)e−x0
xH−1

0

(H − 1)!

]−1

(4)

where x0 satisfies the following equation:

x0g
′
a(x0) = ga(x0) (5)

In the limit of small ρ0
a one obtains the following scaling

behavior:
zc
aa ∝ (ρ0

a)−
H−1

H . (6)
We also note that at the critical point the convergence time
diverges as Tconv ∝ (z − zc

aa)−1/2.
In Figure 2 we compare the analytical prediction with

simulation results for H = 2. The simulations were done
for a graph with 5 × 104 nodes, and for 100 random trials.
Each parameter pair (ρ0

a, zaa) was considered to be above
the critical line if a global cascade was observed in the ma-
jority of trials for that parameters. Again, the agreement of
analytical prediction and the simulation results are excellent.

Now consider the cascading dynamics in the second
group. Initially, there are no active nodes in this group.
As more and more a nodes are activated, the activation will
spread to the b nodes for sufficiently large across–group con-
nectivity zba. The activation dynamics is again governed
by an equation similar to the Equation. 1. In particular, the
steady state fraction of active b nodes satisfies the following
equation:

ρ0
b = 1−Q(H, zbbρ

0
b + λ) ≡ gb(zbbρ

0
b + λ). (7)
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Figure 2: (Color online) The critical connectivity plotted
against the fraction of seed nodes for the threshold parameter
H = 3. The solid line shows the phase boundary obtained
analytically.

where λ = zbaρ0
a. Clearly, if λ is sufficiently large, then

the cascade will propagate among b nodes independent of
the within–group connectivity zbb. And vise versa, however
large the connectivity zbb, there is a critical value of λc

a so
that for λ < λc there will be no cascade among the b nodes.
Let us define x = zbbρ

0
b + λ and rewrite the steady state

equation as follows:

x− λ

zbb
= gb(x) (8)

Using the same reasoning as for the a nodes, it is easy to
show that the critical point is given by

λc = x0 − zbbgb(x0) (9)

where x0 is the smaller of the roots of the following equa-
tion:

g′b(x0) =
1

zbb
(10)

Note that for ρ0
a = 1 λc is simply the critical across–group

connectivity zc
ab(zbb) for which the cascade will spread to b

nodes, assuming that all a nodes have already been activated.
Hence, equations 9 and 10 implicitly define a critical line
zc
bb(zba) on the zbb − zba plane. Note that on this critical

line the convergence time of the cascading process among
the b-nodes, and consequently the separation of two activity
peaks, is infinite. For a fixed within–group connectivity zbb

the two–tiered structure will be present provided that zba is
only slightly above the critical line. To be more precise,
let ρmax

a be the fraction of active a nodes that corresponds
to the maximum activation rate among a nodes. This can
be found from Equation 1 by differentiating the right hand
side with respect to ρa and setting it to zero, which yields
zaag′a(zaaρmax

a ) = 1. If the across—group connectivity is
smaller than λc/ρmax

a , then the cascade will not spread to b–
nodes until the rate of activation spreading among a nodes



starts to decline from its peak. Consequently, the two–tiered
pattern will be present for the range λc < zba < λc/ρmax

a .
Thus, we have demonstrated that activity spreading in a

network composed of two loosely coupled Erdosh–Renyi
graphs is characterized by a doubly–critical behavior. We
believe that this phenomenon has potential implications for
viral marketing strategies. Indeed, our results suggest that
simple strategies that are suitable for homogenous networks
(e.g., choosing nodes with high connectivity, or at random),
might lead to a sub–optimal solution for networks with
strongly modular structure. To show this, consider a sce-
nario where the size of the group A is much smaller than
group, but with higher link density among the group mem-
bers. In real settings, group A might represent a small but
devoted group of a product followers (e.g., Mac users), while
group B represents the rest of the consumer market. Then,
according to our results, it might be more optimal to target
the members of group A. This is because it is easier to cause
a global cascade in group A, that will later “spill” into the
second, larger group B. We intend to examine this issue
more thoroughly in out future work.
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