
Web–Based Knowledge Engineering with Knowledge Wikis

Joachim Baumeister and Frank Puppe
Institute of Computer Science, University of Würzburg, Würzburg, Germany

baumeister/puppe@informatik.uni-wuerzburg.de

Abstract

Knowledge engineering research have thoroughly con-
sidered the problem of distributed knowledge acquisi-
tion and management over the last decades. In this pa-
per, we claim that the success of the Web 2.0 platforms
in conjunction with semantic technologies will have an
impact on distributed knowledge engineering. Espe-
cially, (extended) semantic wikis offer a well–accepted
tool allowing for a simplified access to the development
process as well as providing an intuitive interface for
knowledge sharing. We introduce the concept of knowl-
edge wikis that are used as a collaborative knowledge
engineering and sharing environment. Here, knowledge
can be captured and used at different levels of detail
ranging from text in natural language to formal rule
bases.

Motivation
The challenge of building intelligent systems has been tack-
led by knowledge engineering research over the last decades.
With the appearance of the web and the semantic web vi-
sion, respectively, the world wide web has become the main
infrastructure for sharing knowledge in general. Intelligent
systems on the web are accessible to an arbitrary number
of users, and also for knowledge acquisition interfaces on
the web the knowledge engineering process can become dis-
tributed in a simple manner.

Prominent examples like Wikipedia have shown that stan-
dard users are willing to provide and maintain knowledge on
the web. More precisely, the wiki technology has displayed
its impact for creating and sharing knowledge not only in
the open web environment, but also for a limited group of
users, e.g., as knowledge management tools in companies.
The most important aspect of a wiki is the ability to change
and refine its content immediately: Any wiki page can be
simply modified using a web browser by the mandatory edit
feature of the wiki. Changes are then directly presented after
saving the modifications.

However, many existing wikis only allow for an unstruc-
tured and informal representation of knowledge that is con-
sumable by humans but not by machines. Recently, se-
mantic wikis, e.g., (Krötzsch, Vrandecić, & Völkel 2006)

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

emerged to extend normal wikis by semantic annotations
of the wiki content relating the textual content to a for-
mal ontology. Whereas some of these wikis tend to be
rather flat extensions of normal wikis, e.g., (Krötzsch et
al. 2007), some implementations are targeted to be used
as ontology engineering environments, e.g., (Schaffert 2006;
Auer, Dietzold, & Riechert 2006).

An intriguing question is whether it is feasible to transfer
the idea of (semantic) wikis to knowledge engineering, i.e.,
to investigate whether wikis can be used to create, share,
and maintain explicit problem-solving knowledge in a com-
parably simple manner as they are able to create and share
textual information/knowledge.

In a knowledge wiki the knowledge base is entered to-
gether with the standard text in the usual edit pane of the
wiki using appropriate textual knowledge markups, e.g., as
proposed in (Baumeister, Reutelshoefer, & Puppe 2007).
The most important characteristics of these markups are the
intuitive understanding and use even for less experienced
users. Furthermore, the markup has to be compact in or-
der to fit into the usual flavor of a wiki, i.e., compact and
explicit but intuitively understandable. In summary, the
markup should support the formation of ad-hoc knowledge
engineers.

When saving the wiki page the included textual represen-
tation of the knowledge is extracted and compiled into an
executable knowledge base corresponding to the particular
wiki article. Solutions and user inputs in different knowl-
edge bases but with identical names and identical structure
are aligned automatically. More complex alignments can be
defined by specific alignment rules. The compiled knowl-
edge can either be used by starting an interactive interview
with the user or by in–place answers that are provided by
the user with the text of the knowledge wiki. Then, pop-up
menus appear at the place of annotated text phrases that en-
able the user to answer questions during browsing the text.
Any user input entered into the system – either by an interac-
tive interview or by in–place answers – is propagated to the
reasoning engine of the knowledge wiki. In consequence,
possibly derived solutions are shown in the wiki.

In this paper, we introduce the concept of distributed
knowledge engineering with knowledge wikis, and we
demonstrate the methods and techniques using the toy ap-
plication of a sports advisor wiki. The running example

(b)

(a)

(d)

(c)

Figure 1: The knowledge wiki KNOWWE: (a) the edit interface showing textual descriptions and derivation rules for the
solution Swimming, and (b–c) the corresponding view of the wiki page.

considers a wiki providing knowledge about different forms
of sports, both in textual and in explicit manner. Explicit
knowledge can be used to derive an appropriate form of
sport for interactively entered (user) preferences. Besides
such a simple recommendation application the wiki can be
used for a variety of tasks briefly sketched in the case stud-
ies. The rest of the paper is organized as follows: In the fol-
lowing section we introduce the basic concepts of a knowl-
edge wiki, i.e., aspects on knowledge acquisition, integra-
tion, and knowledge sharing. Reuse for building a knowl-
edge wiki is improved when an upper ontology is used.
Therefore, we introduce an upper ontology describing the
relevant concepts needed for problem–solving (excluding
the representation of the actual inference task), and we also
introduce suitable markups for the specification of problem–
solving knowledge. We discuss the experiences using a
knowledge wiki in case studies and we conclude the paper
with a summary and an outlook to future work.

The Knowledge Wiki KNOWWE
Usually, in semantic wikis every wiki page represents a dis-
tinct concept of the considered application domain. Knowl-
edge wikis specialize this approach by representing a pos-
sible solution with every wiki page, i.e., a concept that can
be derived in a problem–solving session. On every page the
solution is described by textual information but also by mul-
timedia content (e.g., figures or pictures). Furthermore, the
solution is formally defined by explicit derivation knowl-
edge, e.g., rules, that specify problem–solving knowledge

inferring the particular solution. In our sports advisor ex-
ample, for Swimming, Running, etc. a single wiki page is
available containing unstructured information and explicit
knowledge describing the form of sport. The implemen-
tation KNOWWE (Knowledge Wiki Environment) offers a
variety of different knowledge representations and their use
depend on the characteristics and complexity of the actual
application domain.

When a user is looking for an appropriate solution, then
he/she can either browse the contents of the wiki in a classic
web–style but also is able to activate an interactive problem–
solving interview asking for values of the represented inputs.
Alternatively, the user can enter findings by clicking on in–
place answers embedded in the normal wiki text. For the
given findings suitable solutions are derived, globally, i.e.,
the knowledge of all solutions contained in the wiki is used
in a distributed manner to infer solutions.

In general, a knowledge wiki extends the functionality of
a semantic wiki by the representation, the reasoning, and the
engineering of explicit problem–solving knowledge. In the
following, we explain these aspects of a knowledge wiki in
more detail.

Wiki-based Knowledge Acquisition
Like in semantic and normal wikis new content is entered by
the mandatory edit interface of the system, which is typically
available through a web browser. In addition, knowledge
wikis allow for the definition of explicit knowledge to be
used for problem–solving tasks.

Since all knowledge wiki applications follow a common
understanding of how to represent the knowledge, we pro-
vide a problem–solving ontology serving as the upper on-
tology of all concepts defined in an application project. All
defined concepts and properties are inherited by concepts
and properties of this ontology in order to allow for a rapid
development of new applications. Thus, new solutions are
inherited from the standard concept Solution, whereas user
inputs with their corresponding values are inherited from the
standard concept Finding. The ontology is described in more
detail in the following section.

Adding new Knowledge A new solution is added to the
knowledge wiki by simply creating a new wiki page having
the solution’s name. By default, the new solution is added as
a direct child of the standard concept Solution, but a more re-
fined taxonomy of the entered solutions can be defined using
a distinct wiki page. The wiki page includes describing text
in natural language and the explicit knowledge for deriving
the new solution.

For example, Figure 1(a) shows the edit pane of the
knowledge wiki containing text describing the sports form
Swimming together with rules for deriving the corresponding
solution based on inputs such as Training goals and Medi-
cal restrictions. In consequence, the solution Swimming is
added as a child of the concept Solution, if not specified oth-
erwise, and the inputs Training goals and Medical restric-
tions and their corresponding findings (e.g., Training goals
= endurance) are reused from a given application ontology.

Besides rules the implementation of KNOWWE offers dif-
ferent textual markups to define problem–solving knowl-
edge like decision trees and set–covering models. We de-
scribe the markups for alternative knowledge representa-
tions in a separate section.

Alternatively, we offer the possibility to enter set–
covering knowledge as inline annotations by tagging mean-
ingful phrases of the wiki text. Distinguished text phrases
are then annotated by the tag explains, which is correspond-
ing to an object property of the upper ontology and can be
exploited during problem–solving.

Integrating Knowledge The entered knowledge is com-
mitted to the knowledge wiki by simply saving the edit page
using the mandatory ”Save” button. Besides storing the tex-
tual content of the wiki page in the standard wiki reposi-
tory, i.e., the text in natural language and the textual defi-
nitions of the knowledge, the knowledge wiki also extracts
all knowledge–related parts of the article, i.e., the annotated
text phrases and the knowledge bases in textual markup. The
extracted parts are then compiled to an executable knowl-
edge base corresponding to the considered wiki page, and
are stored in the knowledge base repository along with other
knowledge bases already compiled from other wiki pages.
Figure 2 depicts this ”Save and Integrate” workflow of the
knowledge wiki. With the growth of the wiki the number of
knowledge bases will also increase. The concepts used in
the knowledge bases are naturally aligned with each other,
if all knowledge bases reuse the pre–defined application on-
tology. However, for ad–hoc defined inputs and findings, re-
spectively, we can easily express alignment rules, that match

Knowledge Wiki Repository

Knowledge Wiki Article
 - (annotated) wiki text
 - knowledge

save page

wiki article repository

knowledge base
repositoryextracted and

compiled
knowledge

Figure 2: The ”Save and Integrate” workflow of the knowl-
edge wiki KNOWWE.

the concepts with concepts of the application ontology.
An Evolutionary Process Model In open and distributed
environments, like the web–based knowledge engineering
tool introduced here, an evolutionary process model has
been found to be most suitable. For example, Fischer (Fis-
cher 1998) proposes an evolutionary methodology that is
based on the three phases Seeding, Evolutionary Growth,
and Reseeding. Although, the process model was proposed
for distributed design environments the concepts can be
directly transfered to the collaborative development using
knowledge wikis. As depicted in Figure 3 the project is
started with a seeding phase, where domain specialists fill an
empty system with an initial collection of knowledge bases.
Thus, the knowledge wiki already has a utility for a selected

Seeding
Evolutionary
growth

Reseeding

Domain
specialists

Users
Domain
specialists

Domain
specialists

Figure 3: A collaboratiive process model: seeding, evolu-
tionary growth, reseeding.

subset of intended users. In the next phase (evolutionary
growth), the system is used and extended by the domain spe-
cialists but also by users increasing the utility due to an in-
creased availability of information and knowledge. At some
point the reorganisation of the overall system becomes nec-
essary when the utility starts to decrease due to unorganized
content or redundant/inconsistent parts of the wiki’s knowl-
edge. Then, the reseeding phase is initialized, where domain
specialists are performing refactorings and reorganisations
within the entire knowledge wiki. The methodology is best
applied if the tool provides efficient support for the evalua-
tion and refactoring of the knowledge wiki. We discuss these
issues in more detail in the concluding section.

Wiki–based Knowledge Sharing
Concerning the current web and the task of finding a solution
for a specific problem, we see that typically users are query-
ing and browsing the web in order to retrieve an appropriate
solution for a given problem. We call this procedure manual
problem–solving, and we find many examples of knowledge

clusters supporting this task. For example, bulletin boards
and wikis are prominent sources of collaborative knowledge
clusters, i.e., places where many people capture and share
their knowledge. With semantic wikis capturing knowledge
for particular domains this task is marginally simplified by
improving the search by semantically meaningful concepts.

In knowledge wikis we aim to improve this manual
problem–solving process by knowledge–based techniques:
on the one hand, explicit problem–solving knowledge can
be used in order to generate interactive interviews asking
tailored questions that derive appropriate solutions. On the
other hand, tagged text phrases are used to provide in–place
answers, i.e., interactive elements in the standard wiki text
that can be clicked to enter values for meaningful facts. Fig-
ure 1(b) shows the standard link for starting a generated in-
terview, which opens a new dialog window with forms as
shown in Figure 4. The use of in–place answers is shown at

Figure 4: An interactive interview generated by the knowl-
edge wiki in order to collect findings.

Figure 1(c): a click on the text phrase ”endurance” opens a
pop–up menue asking for the value of the concept Training
goals, where ”endurance” is a possible value. Both ways to
enter a finding in the knowledge wiki yield to the creation
of a finding instance corresponding to the clicked finding.
The instance is then propagated to the knowledge wiki bro-
ker, which is responsible for inferring solutions based on the
given findings. The propagation paths of the broker are de-
picted in Figure 5. Here, every wiki page is wrapped in a
knowledge service, that contains the corresponding knowl-
edge base. We can see that the entered finding instances are
propagated to the broker which itself aligns the findings to
the globally known application ontology and then files the
aligned instances to the central blackboard. When using a
global application ontology this task is trivial, i.e., when ev-

Blackboard

Broker

Knowledge Service
[KS1]

Knowledge
Base 1

Knowledge Service
[KS2]

Knowledge
Base 2

Knowledge Service
[KSn]

Knowledge
Base n. . .

Application
Ontology

inputs

solutions

aligned inputs aligned solutions

align

update

propagate
propagatepropagate

Figure 5: Blackboard architecture for the distributed
problem–solving of the knowledge wiki KnowWE.

ery knowledge base of the wiki uses the same findings of
the application ontology. Further, the broker notifies all con-
nected knowledge bases of the existence of the new finding
instance and enables the knowledge services to derive their
solutions if possible. Potentially derived solutions are sub-
sequently propagated to the broker again. By this means,
entered findings are not only processed by the knowledge
base of the current wiki page, but also by all existing knowl-
edge bases of the wiki. Therefore, all solutions represented
in the knowledge wiki can be derived at any page; already
derived solutions are presented at the right pane of the wiki
as for example shown in Figure 1(d). Here, the solutions
”Cycling” and ”Jogging” were derived as the most appropri-
ate solutions, even though the findings were entered on the
page concerning the solution ”Swimming”.

In this section, we briefly introduced the basic concepts
of creating and sharing knowledge using a knowledge wiki.
In the next sections, we describe the upper ontology for
problem–solving in more detail, and we introduce knowl-
edge markups for different knowledge representations and
for annotating natural language text.

An Upper Ontology for Problem–Solving
The underlying knowledge representation of the knowl-
edge wiki is given by a problem–solving ontology, that
declaratively defines the basic concepts and their inter–
relationships. This upper ontology denotes the fundament
of every knowledge wiki application and defines the possible
concepts and properties that can be instantiated for a specific
knowledge wiki application. Like in semantic wikis, addi-

tional ad–hoc concepts and properties can be defined during
the use of the knowledge wiki; however, ad–hoc additions
not necessarily have implications for the problem–solving
process.

Concepts and Properties In the following we briefly de-
scribe the relevant concepts and properties of the upper
ontology, and we explain their meaning for the problem–
solving process. In Figure 6 the most relevant parts of the
upper ontology are shown and we identify the concept Find-
ing [1] as the central object of the knowledge representation.
A finding has three important relations defined by the prop-
erties hasInput, hasValue, and hasComparator: The first two
properties are used to express, that a finding holds a value
assigned to a (user) input, e.g., in the context of the sports
advisor example the finding Training goals = endurance the
value endurance was assigned to the input Training goals.
The actual assignment (and also the comparison for later
tasks) is described by the property hasComparator; in our
example the equals comparator = was applied. We distin-
guish findings by their type of values that can be assigned
to the input, i.e., numeric, predefined choice values or text
strings. The relations of the subclasses of Finding are con-
strained by property restrictions to proper subclasses of In-
put [2] , Value [3], and Comparator [4]. The property re-
strictions are not visualized in the figure.

It is interesting to see that solutions of the system are rep-
resented by the concept Solution [5] as a subclass of one–
choice inputs, i.e., inputs that have a predefined value range.
For solutions the value range is restricted to the exhaustive
set of subclasses of Value Solution representing the states
{derived, suggested, excluded}. In order to enable a suit-
able interview structure, the user is able to group meaning-
ful inputs by defining subclasses of the concept Question-
naire. For the sports advisor example, we would define dis-
tinct questionnaires capturing user requirements (e.g., train-
ing goals) and user restrictions (e.g., medical restrictions).
The relation between a questionnaire and its contained in-
puts is described by the property groupsInputs.

A concrete problem–solving session is then represented
by the concept PSSession [7] holding a number of findings
(represented by the property storesFindings) that were en-
tered by the user as well as derived by the system. In the
following sections we describe the semantic annotation of
findings by the object property explains: the property is de-
fined between a finding (mostly a solution) as the domain
and other findings as the range. Using this property we are
able to define findings that are responsible for deriving a par-
ticular solution.

Building a new Application Every knowledge wiki defines
new concepts for inputs, findings, and solutions, respec-
tively, describing the implemented application domain. The
concrete inputs and solutions are then representing the appli-
cation ontology by subclassing the upper ontology sketched
above. For example, in the sports advisor wiki the user in-
put Training goals is a subclass of Input Multiple Choice
having the possible values endurance, lossing weight etc.
(with multiple–choice inputs, we allow users to specify more
than one training goal). For a structured knowledge ac-

quisition process it is usually reasonable to propose a ter-
minology of findings that is (re)used for all pages of the
knowledge wiki, i.e., the derivation knowledge for the so-
lutions makes use of a pre–defined set of findings. A ter-
minology can be created and managed by providing a dis-
tinct wiki page, i.e., WikiFindings, that captures all rele-
vant questionnaires, their included inputs and values, respec-
tively. The following example shows excerpts of the tex-
tual markup of the sports advisor application ontology. A
simple textual markup is used that allows users to rapidly
create new concept definitions and to structure these in a
taxonomy. Subclasses between concepts of a previous line
and the concept of the current line are denoted by a hy-
phen (”-”) sign. For the definition of questionnaires, we
interpret concepts with no leading hyphen as direct chil-
dren of the upper ontology concept Questionnaire. Find-
ings are directly related to a concrete questionnaire concept.
The markup ¡Questionnaire-section¿ is used to define
a taxonomy of questionnaires; here, we defined (implicitly)
Advisor questions to be a subclass of Questionnaire (line 2),
whereas Expectations and Restrictions are subclasses of Ad-
visor questions (lines 3–4).

1 ¡Questionnaire-section¿
2 Advisor questions
3 - Expectations
4 - Restrictions
5 ¡/Questionnaire-section¿
6

7 ¡Trees-section¿
8 Expectations
9 - Social interaction [oc]

10 -- wanted
11 -- unimportant
12 - Muscles [mc]
13 -- upper body
14 -- legs
15 -- arms
16 -- tummy
17 -- back
18 - Training goals [mc]
19 -- endurance
20 -- loosing weight
21 -- stress alleviation
22 ...
23 ¡/Trees-section¿

Furthermore, inputs and their corresponding values are
directly added to defined questionnaires in the paragraph
¡Trees-section¿ . For example, in lines 9–11 the one–
choice input concept Social interaction is defined with the
two possible value concepts wanted and unimportant; thus
defining the two findings Social interaction = wanted and
Social interaction = unimportant. For the given input con-
cepts a groupsInputs relation between the named question-
naire and the inputs is created.

As we have seen, we need to define (at least a seed of)
findings before filling the wiki with solutions and derivation
knowledge. In contrast, new solutions are usually added it-

[1]

[3]

[2]

[4]

[5]

[6]

[7]

Figure 6: An excerpt of the upper ontology describing the relevant concepts and properties in a knowledge wiki.

eratively to the system by simply creating a new wiki page
for the solution. By default, the new solution is added as a
subclass of the concept Solution, if not defined as a subclass
of another solution in the special wiki page WikiSolutions.
This special page provides the interface to define a solution
hierarchy of the application ontology in a textual manner,
which is tagged by ¡Solutions-section¿.

1 ¡Solutions-section¿
2 Sport
3 - Water sports
4 -- Swimming
5 ...
6 - Endurance sports
7 -- Running
8 -- Swimming
9 ...

10 ¡/Solutions-section¿

Similar to the definition of questionnaires, concepts with no
preceding hyphen are interpreted as direct subclasses of the
upper ontology concept Solution, e.g. the concept Sport in
line 2. Further subclasses are created by an increased indent
of hyphens, e.g., Water sports (line 3) and Endurance sports
(line 6) as a subclasses of Sport, and Swimming in line 4
as a subclass of Water sports. It is interesting to see that a
poly–hierarchy can be defined by multiple inheritance, e.g.,
Swimming is defined as a subclass of Water sports and En-
durance sports.

The dynamic behavior of the wiki and the knowledge
bases is represented by an instance of the concept PSSession.
By holding multiple instances of the property hasFinding we
are able to capture all entered finding instances that are pro-
vided by a particular user. If a user enters a finding, then
a new instance of this finding is created and linked to the
corresponding PSSession instance by the hasFinding prop-
erty. These instances are then used during the distributed

problem–solving process as shown in Figure 5.

Markups for the Definition of
Problem–Solving Knowledge

In the previous section we introduced the upper ontology of
the knowledge wiki and we showed how this ontology can
be extended by an application ontology layer. This section
introduces a variety of markups to define problem–solving
knowledge, i.e., connecting defined findings with appropri-
ate solutions. To come up with the different requirements
of the particular application projects we provide alternative
possibilities to capture the derivation knowledge in the wiki.
In any case, the syntax of the knowledge markups should be
as simple as possible in order to allow for an intuitive cre-
ation and evolution of the knowledge together with the nor-
mal wiki text. In the best case, typical wiki users are capable
to understand and use the knowledge wiki syntax without a
thorough training.

Set–Covering Knowledge
Set–covering models (Reggia, Nau, & Wang 1983) are an
intuitive representation to express abductive knowledge for
given solutions. For a given solution a model then describes
a list of findings, that are usually observed when the solu-
tion is present. During the problem–solving process the user
enters findings into the system and the reasoner is select-
ing a list of best matching solutions, i.e., solutions with a
maximal intersection of expected and entered findings. Be-
sides such a simple list of expected findings a set–covering
model can be incrementally extended by background knowl-
edge to improve its expressiveness (Baumeister, Seipel, &
Puppe 2003).

To be used in the context of the knowledge wiki we dra-
matically simplified the knowledge representation to a set of
findings for each solution. For example, the markup below
shows a part of the set–covering listing for the solution Run-
ning, where the name of the solution is followed by textual

descriptions of findings listed in braces ({...}). The set
is not meant to be a conjunction or disjunction of expected
findings, but as a flat collection of possibly occurring find-
ings for the given solution.

¡SetCoveringList-section¿
Running –
Muscles = legs,
Training goals = loosing weight,
Training goals = endurance,
Social interaction = unimportant,
...

˝
¡/SetCoveringList-section¿

In the simplest version, the problem solver intersects the set
of observed findings with the set of expected findings for
each solution and returns the best matching solutions.

Users can rapidly create (flat and simple) knowledge for
a couple of solutions in order to make experience with the
features of the knowledge wiki. For some of the solutions
the set–covering knowledge may remain during further de-
velopment; for other solutions the users will aks for a more
expressive knowledge representation. For these solutions
we offer alternative representations such as rules or decision
trees, that we describe in the following paragraphs.

In the past, we have made very positive experiences with
the use of set–covering lists as a ”starter knowledge repre-
sentation” and a conditional switch to more complex repre-
sentations. Commonly, users were motivated at the begin-
ning of a project, since the set–covering knowledge repre-
sentation was so simple, that even untrained users were able
to immediately understand and to apply it to their applica-
tion domain. Later in the project, when they saw the re-
quirements for a stronger expressiveness, they were willing
to get training on the semantics and use of rules or decision
trees.

Rules
Rules have been the most popular knowledge representation
over the last decades, and rule–based systems are known to
be used in many application domains.

A rule r = cr → ar derives facts as defined in its con-
sequent (rule action) ar, if the specified rule condition cr is
satisfied. Entered and already derived facts can serve as fi-
nal solutions presented to the user, but can be also used as
further input to conditions of other rules. In a general setting
a rule condition is defined by nested (negated) conjunctions
and disjunctions of constrained user inputs.
Definition and Derivation All explicit rules of a
wiki page are defined in a textual manner within the
¡Rules-section¿ tag. For example, the following markup
specifies a rule base with one rule, that computes the value
of the body-mass index BMI. The result of the computation
is assigned to the numerical input BMI, if the numerical in-
puts Height and Weight have both values greater than 0. It is
worth noticing, that abstraction rules as shown above can be

easily applied to express knowledge for matching between
different findings (ontology matching).

¡Rules-section¿
// A comment for abstraction rule
IF (Height ¿ 0) AND (Weight ¿ 0)
THEN BMI = (Weight / (Height * Height))
¡/Rules-section¿

Besides abstraction rules we also provide a rule repre-
sentation for the graded derivation of solutions using scor-
ing weights. Scores are used to represent a qualitative ap-
proach for deriving solutions having a scoring weight. These
weights can have a positive or negative sign, and state the de-
gree of confirmation or disconfirmation of a particular solu-
tion. The definition and semantics of scoring rules goes back
to the INTERNIST/QMR project (Miller, Pople, & Myers
1982). The use of score weights is simplified by introduc-
ing symbolic categories for positive and negative scoring
weights. We distinguish seven positive weights (P1, . . . , P7)
and seven negative weights (N1, . . . , N7). Here, the weight
P7 stands for the categoric derivation of a solution, and the
counter–weight N7 yields the categoric exclusion of a solu-
tion. The remaining weights are defined in a way, so that the
aggregation of two equal weights results in the weight of the
next higher weight, e.g., N3 + N3 = N4; two equal weights
with opposite sign nullify, e.g., N3 + P3 = 0. The follow-
ing markup defines a rule base with two scoring rules; rule
r1 adds the symbolic weight P5 to the score of the solution
instance of Running, if all three sub–conditions hold. Scor-
ing rule r2 additionally adds the symbolic weight P2 to the
score, if the input Costs was answered with value low.

¡Rules-section¿
// A comment for scoring rule r1
IF (”Training goals” = endurance)

AND NOT(”BMI” ¿ 30)
AND (”Physical Problems” = knees)

THEN Running = P5

// A comment for scoring rule r2
IF Costs = low
THEN Running = P2
¡/Rules-section¿

During a problem–solving session score weights of fired
rules are aggregated, and a solution is derived and presented
to the user, when the aggregated score exceeds a given
threshold; for the presented knowledge representation the
threshold is set to P5. The order of the rules listed in the rule
base has no defined meaning, e.g., with respect to a conflict
resolution strategy of rule engines.
Alternative Markups In the context of knowledge wikis
the simplicity and clearness of the markup is essential for the
success and its application, respectively. Therefore, we de-
cided to not use already existing standard markups for (horn
clause) rules like SWRL/RuleML (Horrocks et al. 2005),
but to promote a more compact and human–readable notion
as sketched above.

Decision Trees
Decision trees are also a popular and intuitive representa-
tion for building knowledge systems manually. They repre-
sent knowledge for the derivation of solutions but also the
order of relevant inputs to be asked to the user in a problem–
solving session. The markup of decision tree knowledge is
similar to the definition of the application ontology of find-
ings, where the user inputs are defined in coherent groups
of questions. For decision trees we interpret these groups as
questionnaires, that follow a given interview structure. Here,
every questionnaire represents a single decision tree, and ev-
ery leaf of a tree can either indicate the activation of another
decision tree or derive a solution.
Definition and Derivation All decision trees of a wiki page
are defined within the ¡Trees-section¿ tag. The inter-
view structure is specified by the use of hyphens (“-”) as
described in the following. The root of a particular tree is
not preceded by a hyphen and specifies the name of the de-
cision tree. The following line of the tree is indented by
one hyphen and represents the first user input to be asked,
i.e., the first question. The following lines are indented by
an increased count of hyphens and usually state the possi-
ble answers of the preceding question. In decision trees,
follow–up questions are presented depending on the previ-
ously given answers. In the textual markup we represent
follow–up questions by defining the questions and there sub-
sequent answers by defining them with an increased indent
in the line next after the depending answer. The following
example shows the two decision trees Naive Sports Advisor
and Muscle Questions (the line numbers are only added for
describing the particular lines).

1 ¡Trees-section¿
2 Naive Sports Advisor
3 - Training goals [oc]
4 -- endurance
5 --- Physical problems [oc]
6 ---- knees
7 ----- Swimming (!)
8 ---- no problems
9 ----- Running (!)

10 -- increase muscles
11 --- Muscle Questions
12

13 Muscle Questions
14 - Favorite regions of muscles [mc]
15 -- arms
16 ...
17 ¡/Trees-section¿

We see that the two decision trees are defined in line 2
and 13 by having no preceding hyphen. The first question
of Naive Sports Advisor is the one–choice question Training
goals already defined in the ontology of user inputs. The
type of the question is additionally specified by [oc] at the
end of the line. Besides one-choice questions we are also
free to define multiple–choice questions [mc] and numeric
questions [num]. The follow–up input Physical problems

is presented to the user, it the value endurance was given.
Further on, the solution Swimming is derived in line 7, if the
value knees is given. The markup (!) succeeding the entry
Swimming specifies the categoric derivation of the solution,
i.e., an instance of Value Solution Derived is assigned to the
solution instance of Swimming. Also, the solution Running
is derived in line 9, if the input Physical problems was an-
swered with the value no problems.
Modularization, Interconnection and Reuse Large deci-
sion trees are inflexible and hardly maintainable especially
using such a textual representation. Therefore, the mod-
ularization and simplification of the knowledge into small
chunks of decision trees is a common and reasonable pro-
cedure, as for example proposed by the knowledge formal-
ization pattern heuristic decision tree (Puppe 2000). A de-
cision tree is then connected by the activation of other de-
cision trees as a possible action in its leafs. In line 11 the
decision tree Muscle Questions is activated for presentation,
if the previous input Training goals was answered with the
value increase muscles.

Usually, decision trees require an interactive interview
with the user which can be activated by the default ”Inter-
view” link placed on every wiki page. However, the deriva-
tion knowledge defined in decision trees can be also used
by the facts entered by in–place answers, since we encode
the derivation knowledge of decision trees by ordinary rules.
For example, the derivation knowledge of the decision tree
Naive Sports Advisor is encoded by the following rules.

¡Rules-section¿
IF (Training goals = endurance)

AND (Physical Problems = knees)
THEN Swimming = P7

IF (Training goals = endurance)
AND (Physical Problems = no problems)

THEN Running = P7
¡/Rules-section¿

Alternative Markups It is easy to see that such a deci-
sion tree structure could be simply formulated using a spe-
cial XML markup as suggested in the following.

¡tree id=”NaiveSportsAdvisor”¿
¡input name=”Training goals”

type=”oc”¿
¡value name=”endurance”¿
¡input name=”Physical problems”

type=”oc”¿
¡value name=”knees”¿
¡solution name=”Swimming”

weight=”!” /¿
¡/value¿
¡value name=”no problems¿
¡solution name=”Running”

weight=”!” /¿
¡/value¿

¡/input¿

¡/value¿
¡value name=”increase muscles¿
¡ref refid=”MuscleQuestions”/¿

¡/value¿
¡/input¿

¡/tree¿

The use of an XML markup would allow for the appli-
cation of XML tools and would reduce the compilation ef-
fort. More importantly, the reuse of the knowledge would
be increased due to the use of a standardized textual syntax.
However, the application of such a verbose syntax would be
too complex and error-prone to be used by knowledge wiki
engineers.

Markup for Inline Knowledge Annotation
As described before, a wiki page typically describes the in-
formation on and the knowledge deriving a particular so-
lution. Besides normal text in natural language the knowl-
edge should be also represented in a more explicit, machine–
interpretable manner. Like in semantic wikis we provide
methods to semantically annotate text phrases with onto-
logical concepts. In previous work, knowledge wikis were
only able to tag specific text phrases with a reference to
user inputs (Baumeister, Reutelshoefer, & Puppe 2007), and
the annotation was merely applied for enabling the in–place
answers technique. This paper describes an extended ap-
proach, where text phrases in natural language are not only
tagged by user inputs but also entail the definition of deriva-
tion knowledge using the ontologies defined above.
Annotation Syntax The proposed knowledge annotation
uses square brackets to relate text phrases with ontologi-
cal concepts. In general, flat derivation knowledge between
the corresponding solution of the wiki page and a partic-
ular finding is defined by the associative relation explains;
this relation was defined as an object property with a finding
(mostly a derived value assigned to a solution) as the domain
and a standard finding as the range.

The following definition specifies the general markup of
the proposed knowledge annotation (underlined characters
are optional):

[text <=> explains::{finding,}* finding]
If text <=> is used, then the phrase text is displayed in
the view mode of the wiki page and a link for in–place an-
swers is available on phrase. Otherwise, the word imme-
diately preceding the particular annotation is assumed to be
used for the in–place answers link. The mandatory token
explains:: creates new property instances of the object
property explains between an solution instance representing
the wiki page and the findings specified after explains::;
here, at least one finding needs to be defined but more than
one findings are allowed for creating multiple property in-
stances at once. The specified property instances can be used
as flat derivation knowledge.

For example, the following phrase in the edit pane of the
wiki page Swimming defines associative relations between
the solution Swimming and values of the user input Training
goals.

Swimming is good for training the endurance
[explains::Training Goals = endurance]
or for successfully [reducing weight ¡=¿
explains::Training Goals = reducing weight].

The first annotation results in an in–place answer link
on endurance and creates a new relation for Swimming and
Training Goals = endurance; here, the directly preceding
word is used for the link. The second annotation displays re-
ducing weight as in–place answers link and creates a relation
for Swimming and Training Goals = reducing weight. In the
presented implementation we interpret the explains relation
as a set–covering relation between the derived value of the
specified solution and the specified finding instance. There-
fore, the example annotations from above are equivalent to
the following set–covering list:

Swimming –
Training Goals = endurance,
Training Goals = reducing weight

˝

Thus, we are able to use inline knowledge annotations as
an alternative of the explicit specification of set–covering
knowledge.
Discussion Using knowledge annotations, explicit
problem–solving knowledge can be seamlessly combined
with the standard wiki text given natural language. The
proposed syntax follows the markup of Semantic Me-
diaWiki (Krötzsch, Vrandecić, & Völkel 2006) for the
definition of property instances. We mainly introduce by
the optional marker text <=> to allow for in–place
answers. Due to the existence of the upper ontology the
property explains has a specific, predefined semantics that
is interpreted as a set–covering relation.

Case Studies
Although, the presented knowledge wiki KNOWWE is lively
under development and the parts concerning the functional-
ity of a semantic wiki are currently improved, we report on
experiences we have made up to now in different projects.

General Recommender Wikis
This case study was intended as a proof–of–concept project
considering the development of a larger knowledge wiki in-
volving people initially unfamiliar with the system. Here, 45
students formed 11 groups, where each group was responsi-
ble for the development and the evolution of one knowledge
wiki. The groups were free to choose an application do-
main they were already familiar with. For example, knowl-
edge wikis for meal selection, recommenders for holidays
and recreation, a movie advisor, and a wine selection were
started. At the project start the previously untrained students
were introduced into the concepts of the knowledge wiki and
its markup (took about 1h). After that the students built the
initial versions of their systems. Figure 7 shows a screen
shot of the (german) system ”PlanMyMeal”: the recommen-
dation system proposes appropriate meals (solutions) based

on the user preferences and the ingredients currently avail-
able in the household (findings).

Figure 7: A recommender system for proposing suitable
meals based on user preferences and ingredients currently
available at home.

In general, the set–covering list appeared to be the pre-
dominant knowledge representation, since it was experi-
enced to be intuitive and sufficient in most of the cases. A
significant disadvantage of set–covering models are their in-
ability to represent negative (exclusion) knowledge, i.e., the
presence of user inputs for which a solution should be dis-
carded from the recommendations. This problem was tack-
led by the usage of a hybrid rule–extension: here, the users
are able to define rule conditions under which a solution is
excluded even when the result of the set–covering inference
was positive.

In total, the case study was finished successfully with
about 700 knowledge bases distributed over 11 knowledge
wikis. During the last two thirds of the project we were able
to count about 2500 edits of the particular knowledge bases
and their wiki pages, respectively. Due to a failure the logs
were not available for the first third of the case study.

LaDy – Landscape Biodiversity
The second case study reported here considers a real–world
problem integrating domain specialists from the biologi-
cal domain. In the last years, landscape ecologists have
collected a large amount of (unstructured) knowledge on
landscape diversity of life with respect to the given land-
scape structures, management decisions and their progres-
sion (Otte, Simmering, & Wolters 2007). Inter– and Trans–
disciplinary research projects with economists yielded so-
cioeconomic knowledge on how the biodiversity can be sup-
ported in managed agro–ecosystems. However, the col-
lected knowledge is commonly not directly accessible to de-
cision makers in private and governmental agencies. For
this reason, one purpose of the BIOLOG Europe project

(http://www.biolog-europe.org) is the integration of socioe-
conomic and landscape ecological research results in order
to produce an common understanding of the effects of envi-
ronmental change on managed ecosystems.

In this context, the knowledge wiki LaDy (for ”Land-
scape Diversity”) supports domain specialists as well as re-
lated people to collect and share knowledge at different lev-
els ranging from textual descriptions and multimedia to ex-
plicit knowledge bases covering the effects on landscape di-
versity. Solutions are defined concerning the biodiversity of
various taxa, different ecosystem services and management
decisions. At the moment, the knowledge wiki is under de-
velopment incorporating ecological domain specialists dis-
tributed all over germany. For example, Figure 8 shows a
wiki page collecting relevant information on predator diver-
sity and their effects on pest suppression. Besides summa-
rizing the effects and citing the relevant literature on this
topic, some knowledge on the effects of pest suppression
with respect to predator diversity is modelled. Providing a

Figure 8: A wiki page of the LaDy wiki concerning predator
diversity and pest suppression.

platform for both, exchanging textual knowledge and imple-
menting explicit rules on ecosystem behaviour, LaDy pro-
vides a service to condense and to communicate knowledge
needed for an efficient management of ecosystem services
provided by biodiversity.

Up to now, almost every user of the wiki started with set–
covering lists as the initial knowledge representation. As
it worked out for many simple relations between the mod-
eled solutions and the findings, knowledge bases of more
complex solutions are currently refactored to a rule–based
representation.

Conclusions

We have introduced a novel platform for web–based knowl-
edge engineering using semantic wikis extended by different
types of problem–solving knowledge.

Summary
Like in many semantic wiki implementations the normal text
is semantically annotated relating natural language text with
ontological concepts. In addition, we provide specific prop-
erties like explains, that are defined by the upper ontology
for problem–solving, and that have a distinct semantics for
the problem–solving task. Whenever a user annotates text
using the knowledge wiki markup, this new knowledge is
added to a knowledge base. In general, every wiki page
holds a separate knowledge base containing all the annotated
relations and knowledge markups. A distributed problem–
solving process is applied to facilitate knowledge sharing
across the contents of the knowledge wiki.

The sketched approach offers some advantages, that are
often not handled satisfactory in traditional knowledge en-
gineering approaches: Using a standard wiki interface many
users are able to immediately work together in a problem
domain, since wikis denote an established technology that is
already known. Furthermore, it becomes very easy to mix
different granularities of knowledge, e.g., by using standard
wiki text as the simplest and least explicit form of knowl-
edge and textually markup-ed rules as the most explicit rep-
resentation.

Research Directions
However, the application of a new technology usually brings
some challenges that cannot be handled with existing meth-
ods. Most of the challenges are grounded in the distributed
knowledge formalization at different levels of detail using
a web–based system. In the following, we sketch the most
relevant research directions that are motivated by the expe-
riences we made in the projects.
Distributed Refactoring As described before, we propose
to start a project with the simplest knowledge representa-
tion possible and then switch to more expressive representa-
tions when needed. Although, the system supports reason-
ing with knowledge bases using varying representations, the
actual ”switch” of a representation concerning an existing
knowledge base denotes a complex transformation task. In
Software Engineering such a transformation is called refac-
toring, i.e., changing the design of a piece of software with-
out modifying the intended semantics (Fowler 1999). Refac-
toring methods in the context of knowledge engineering re-
search has been investigated in the past, e.g., (Gil & Tallis
1997; Baumeister, Seipel, & Puppe 2004), but only consid-
ered the refactoring of a separate knowledge base without
considering implications for other knowledge bases. Small
refactorings like Rename Concept are already implemented
in the system, and are successfully applied to unify concepts
with different names but identical meaning. Larger refac-
torings like the transformation of one knowledge represen-
tation such as set–covering lists to a rule base are an open
issue for future work. Preliminary investigation has been
done by analyzing refactorings to knowledge formalization
patterns (Halstead 2005). A technical problem will arise
when the interface of complex refactoring methods are im-
plemented in the context of a web–based environment such
as wikis, since this kind of refactoring usually requires fre-

quent user interaction.
Evaluation We distinguish three subtasks that are relevant
for the evaluation of knowledge wiks: the design analy-
sis, verification, and validation of knowledge wikis. In the
context of collaborative knowledge engineering projects the
actual design of the evolving knowledge base is of prime
interest. For knowledge wikis we investigate the design
of either a single knowledge base of a distinct wiki page
or we can analyse the overall design of the (distributed)
knowledge base generated by all knowledge bases contained
in the wiki. For individual knowledge bases some de-
sign anomalies were already proposed, e.g., (Baumeister &
Seipel 2005). When considering multiple knowledge bases
we also need to take the heterogenous level of detail of the
formalized knowledge into account.

The verification of knowledge bases also considers formal
methods for anomaly detection for individual knowledge
bases as well as for distributed knowledge bases. For indi-
vidual knowledge bases a large amount of research is already
available, e.g., (Preece & Shinghal 1994) for classic rule sys-
tems and, e.g., (Baumeister & Seipel 2006) for verification
of rule bases mixed with ontologies. However, less attention
was paid on the verification of distributed knowledge bases.
Furthermore, the application of knowledge wikis addition-
ally adds another interesting issue for verification: often,
the formalized knowledge is also redundantly represented
in natural language text next to the knowledge base specifi-
cation. Matching natural language text with the formalized
knowledge and identifying contradicting or missing infor-
mation may be an challenging task for future research, and
will certainly build on ontology learning methods (Buitelaar,
Cimiano, & Magnini 2005).

Similarly, the validation of knowledge wiki systems
should consider the validation of single knowledge bases
as well as the validation of the entire system, i.e., the dis-
tributed knowledge base. Here, for example empirical test-
ing methods need to be refined in the context of the dis-
tributed setting. Another point considers the content (text
and knowledge) validation by collaborative user validation.
Then, the utility and appropriateness of the content can be
evaluated by user assessments, e.g., user rating of websites,
as already done by many open web systems.

All the issues described above will open interesting direc-
tions for future research.

References
Auer, S.; Dietzold, S.; and Riechert, T. 2006. OntoWiki
– A Tool for Social, Semantic Collaboration. In ISWC’06:
Proceedings of the 5th International Semantic Web Confer-
ence, 736–749. Berlin: Springer.
Baumeister, J., and Seipel, D. 2005. Smelly Owls – De-
sign Anomalies in Ontologies. In FLAIRS’05: Proceedings
of the 18th International Florida Artificial Intelligence Re-
search Society Conference, 215–220. AAAI Press.
Baumeister, J., and Seipel, D. 2006. Verification and
Refactoring of Ontologies With Rules. In EKAW’06: Pro-
ceedings of the 15th International Conference on Knowl-

edge Engineering and Knowledge Management, 82–95.
Berlin, Germany: Springer.
Baumeister, J.; Reutelshoefer, J.; and Puppe, F. 2007.
Markups for Knowledge Wikis. In SAAKM’07: Proceed-
ings of the Semantic Authoring, Annotation and Knowledge
Markup Workshop, 7–14.
Baumeister, J.; Seipel, D.; and Puppe, F. 2003. Incre-
mental Development of Diagnostic Set-Covering Models
with Therapy Effects. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems 11(Suppl.
Issue 2):25–49.
Baumeister, J.; Seipel, D.; and Puppe, F. 2004. Refactoring
Methods for Knowledge Bases. In EKAW’04: Engineering
Knowledge in the Age of the Semantic Web: 14th Interna-
tional Conference, LNAI 3257, 157–171. Berlin, Germany:
Springer.
Buitelaar, P.; Cimiano, P.; and Magnini, B. 2005. Ontol-
ogy Learning from Text: Methods, Evaluation and Appli-
cations, volume 123 of Frontiers in Artificial Intelligence
and Applications. IOS Press.
Fischer, G. 1998. Seeding, Evolutionary Growth and Re-
seeding: Constructing, Capturing and Evolving Knowl-
edge in Domain–Oriented Design Environments. Auto-
mated Software Engineering 5(4):447–464.
Fowler, M. 1999. Refactoring. Improving the Design of
Existing Code. Addison-Wesley.
Gil, Y., and Tallis, M. 1997. A Script-Based Approach to
Modifying Knowledge Bases. In AAAI/IAAI’97: Proceed-
ings of the 14th National Conference on Artificial Intelli-
gence and 9th Innovative Applications of Artificial Intelli-
gence Conference, 377–383. AAAI Press.
Halstead, S. 2005. Refactoring to Knowledge Formal-
ization Patterns. Master’s thesis, University of Würzburg,
Germany.
Horrocks, I.; Patel-Schneider, P. F.; Bechhofer, S.; and
Tsarkov, D. 2005. OWL Rules: A Proposal and Prototype
Implementation. Journal of Web Semantics 3(1):23–40.
Krötzsch, M.; Vrandecić, D.; Völkel, M.; Haller, H.; and
Studer, R. 2007. Semantic Wikipedia. Journal of Web
Semantics 5(4):251–261.
Krötzsch, M.; Vrandecić, D.; and Völkel, M. 2006. Se-
mantic MediaWiki. In ISWC’06: Proceedings of the 5th
International Semantic Web Conference, LNAI 4273, 935–
942. Berlin: Springer.
Miller, R. A.; Pople, H. E.; and Myers, J. 1982.
INTERNIST-1, an Experimental Computer-Based Diag-
nostic Consultant for General Internal Medicine. New Eng-
land Journal of Medicine 307:468–476.
Otte, A.; Simmering, D.; and Wolters, V. 2007. Biodiver-
sity at the Landscape Level: Recent Concepts and Perspec-
tives for Multifunctional Use. Landscape Ecology 22:639–
642.
Preece, A., and Shinghal, R. 1994. Foundation and Ap-
plication of Knowledge Base Verification. International
Journal of Intelligent Systems 9:683–702.

Puppe, F. 2000. Knowledge Formalization Patterns. In
Proceedings of PKAW 2000.
Reggia, J. A.; Nau, D. S.; and Wang, P. Y. 1983. Diagnostic
Expert Systems Based on a Set Covering Model. Journal
of Man-Machine Studies 19(5):437–460.
Schaffert, S. 2006. IkeWiki: A Semantic Wiki for Collab-
orative Knowledge Management. In STICA’06: 1st Inter-
national Workshop on Semantic Technologies in Collabo-
rative Applications.

