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Abstract

In this note we propose a novel methodology for design-
ing Ontology Management Systems architecture, which
grounds on an ontology representation based on proba-
bilistic Graphical Models.

By discussing about troubles with ontology as tool for
managing knowledge, formal assumptions about se-
mantics definition and representations rise, turning out
an original architecture that will be presented and dis-
cussed.

In the paper we will further detail and discuss the OMS
proposal, focusing on how methodologies and represen-
tation can fruitfully rely upon probabilistic GM.

Introduction

The Semantic Web (Berners-Lee, Hendler, & Lassila 2001)
and Knowledge Engineering communities are both con-
fronted with the endeavor to design and to build ontologies
by means of different tools and languages, which in turn
raises an “ontology management problem” related to the pe-
culiar tasks of representing, maintaining, merging, mapping,
versioning and translating. As a consequence, the search
for a uniform framework to cope with such issues, in other
terms, for an Ontology Management System (OMS), has be-
come a central tenet of this research realm.

Despite the crucial importance of the problem, actual
proposals hardly satisfy the compelling requirements posed
by OMS (Gomez-Perez, Corcho-Garcia, & Fernandez-
Lopez 2003). For instance, no existing OMS can cope
with different ontology languages through a suitable parser,
and meanwhile offer a uniform ontology graphical rep-
resentation to exploit machine learning algorithms, while
exploiting suitable interfaces for ontology validation and
definition.

These mentioned above are well known concerns an
rather technological, animating the debate in the ontology
field. However in our opinion the utilization of different
tools and languages is caused by a personal view of the prob-
lem of knowledge representation, which in turn raises a not
uniform perspective.
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Most important each ontology scientist may rely, deliber-
ately or implicitly, on a different definition of the role of on-
tology as mean for semantics representation (Santini 2007).

Therefore we argue that a special effort should be
devoted to better explain and clarify the theory of semantics
knowledge and how we can correctly model the latter for
being properly represented and used on a machine.

The main and novel contribution of this note is that we
address a methodology for designing an OMS architecture,
by taking into account such broader picture. Further this
methodology grounds on an ontology representation based
on probabilistic Graphical Models (GM) (Bishop 2006).

In section 1 we derive, a formal theory of semantic repre-
sentation specifying what has to be computed. Once a com-
putational model is available a formal language is needed
for describing such knowledge, in section 2 a representation
based on GM is provided. Further, in section 3, relying such
computational model, architecture issues will be addressed,
and finally in section 4 a probabilistic model for ontology
building is presented and discussed through a case of study.
Conclusions and future works are presented and discussed.

In search of semantics: troubles with ontology

Semantic representation is one of the main (never-ending)
debates in cognitive psychology. In this section we highlight
key issues of such debate pointing out the most important
troubles with ontology as a way for representing semantic
knowledge, we start from explaining what today is com-
monly acknowledged, among researchers and practitioners
of information systems, as “ontology”, and consequently,
introducing a formal and complete theory of semantic
representation.

In the field of computer science, the word ontology is used
with two different connotations. The first one considers such
word as a discipline, namely the discipline that studies con-
ceptions of reality and the nature of being. The second one
considers ontology for indicating artifacts that the discipline
produces, in other terms as a name for such artifacts. Note
that in the first case the word ontology is proper, and consis-
tent with its meaning in philosophy:



[...] the study of Being as such, i.e. of the basic
characteristics of all reality,

according to the Encyclopaedia Britannica.

However, in the second case the word is clearly improper
(see (Fensel et al. 2001) for example), and as suggested by
Santini (Santini 2007), a better name in this case would be
“ontonomy’’:

[...] an ontonomy is, roughly, a set of terms V', a collection
of relations over this set, and a collection of propositions
(axioms) in some decidable logical system.

Once the right meaning of the word ontology has been

chosen, a question still goes unanswered: is such way of
considering ontology sufficient to save inferential role se-
mantics?
One important assumption in ontology—and in the repre-
sentational theories of mind—is that meaning exists inde-
pendently of the language in which a text is written, and of
the act of interpretation. By recalling a classic model of a
communication channel we derive a general scheme of an
ontology communication scheme (in facts language) (San-
tini 2007):

meaning — encode — language — decode — meaning (1)

In this model, differently from classic scheme of communi-
cation, where the noise corrupts the channel, the placement
of noise bears a quite different role. In order to understand
what is corrupted by noise, we must address the very ac-
tors of such communication process. A communication act
through language could be compared to the act of reading a
book. In this case the previous scheme can be reshaped as:

author — language — reader 2)

In this model, the origin of the communicative act is a
meaning that resides wholly with the author, and that
the author wants to express in a permanent text. This
meaning is a-historical, immutable, and pre-linguistic and is
encoded on the left-hand side of process, it must be wholly
dependent on an act of the author, without the possibility
of participation of the reader in an exchange that creates,
rather than simply register, meaning. The author translates
such creation into the shared code of language, then he
sends, opening a communication, it to the reader. It is well
known that, due to the accidental imperfections of human
languages, contingent imperfections may occurs, and con-
sequently such translation process may be imperfect, which
in turn means that such a process is corrupted by “noise”.
In a perfect translation process (ontology acknowledges
that this might be an unattainable theoretical limit) we
have a perfect reproduction of the essential meaning as
it appears in the mind of the author. Once the translated
meaning is delivered to reader, a process for decoding it
starts. Such process (maybe also corrupted by some more
noise) obtains a reasonable approximation of the original
meaning as intended by the author. Meaning is never fully

present in a sign, but it is scattered through the whole chain
of signifiers, it is deferred, through the process that Derrida
(Derrida 1997) indicates with the neologism differance, it is
a dynamic process that takes plane on the syntagmatic plane
of the text (Eco 1979).

This model of meaning is necessary for the ontological
enterprise because it is the only one that allows meaning
to be assigned to a text, and recorded in a formal language
other than the natural language, from which it can be ex-
tracted through automatic means following a scheme like
this:

mean. — formula — formal system — algorithm — mean.

3)

where “mean.” stands for “meaning”.

In such framework, ontology is a static entity, contains
fixed relations between words, relations that hold indepen-
dently of the specific situations in which the word is used. It
contains, in other words, paradigmatic relations. Ontology
needs meaning to be fully present in a word, be it through
some characteristic of the word itself or through the relation
of the word with other words.

But Santini asserts that this is not the way in which
meaning is constructed, consequently claims that ontology
should abandon any velleity of defining meaning, or of
dealing with semantics, and re-define itself as a purely
syntactic discipline, much like the rest of computing
activities. In this framework, there is a lot that the discipline
can offer to help users discover the semantics of texts. It is
clear, however, that this cant be done with the normativism
of attaching a meaning to a text: ontology should simply
be an instrument to facilitate the interaction of a user with
the data, keeping in mind that the users situated, contextual
presence is indispensible for the creation of meaning. For
instance, it would be a good idea to partially formalize the
syntactic part of the interaction process that goes into the
creation of meaning.

As a consequence Santini reaches a conclusion claiming
that meaning is the limit point of a temporal, situated pro-
cess, in which the text acts as a boundary condition and in
which the user is, ex necessitate, the protagonist. Such a
view is not completely new to computing science, having
been explored, e.g. by emergent semantics (Santini, Gupta,
& Jain 2001); (Grosky, Sreenath, & Fotouhi 2002), a view
of semantics in which the computer is just a syntactic instru-
ment to aid the readers own discovery of meaning. Whatever
technical path ontology will take, it can continue claiming
to be involved with semantics only if it will become an in-
teractive syntactic instrument for the user. In this way the
computer could become an instrument to enrich our own
immersion in meaning, much like a book is, rather than a
factor of impoverishment and banalization of the process of
signification and of our intellectual life, as too often is the
case.



In the light of this discussion in the following subsection
we will propose a view that taking into account the above
remarks.

A viable road to semantics

As pointed out by Griffiths (T. L. Griffiths 2007) the se-
mantic knowledge can be thought of as knowledge about
relations among several types of elements, including words,
concepts, and percepts. According to such definition the fol-
lowing relations must be taken into account:

1. Concept — concept relations: Knowledge that dogs are a
kind of animal, that dogs have tails and can bark, or that
animals have bodies and can move.

2. Concept — action relations: Knowledge about how to pet
a dog or operate a toaster.

3. Concept — percept : Knowledge about what dogs look
like, how a dog can be distinguished from a cat

4. Word — concept relations: Knowledge that the word dog
refers to the concept dog, the word animal refers to the
concept animal, or the word toaster refers to the concept
toaster.

5. Word — word relations: Knowledge that the word dog
tends to be associated with or co-occur with words such
as tail, bone,

Obviously these different aspects of semantic knowledge
are not necessarily independent rather those can influence
behavior in different ways and seem to be best captured by
different kinds of formal representations. As a consequence
result, different approaches to modeling semantic knowl-
edge tend to focus on different aspects of this knowledge,
specifically we can distinguish two main traditions:

I One which has focused more on the structure of associa-
tive relations between words in natural language use and
relations between words and concepts, along with the con-
textual dependence of these relations (Ericsson & Kintsch
1995; Kintsch 1988; Potter 1993). Such tradition is re-
lated to points 4 and 5, which can be defined as light se-
mantics;

IT One which emphasizes abstract conceptual structure, fo-
cusing on relations among concepts and relations be-
tween concepts and percepts or actions (Collins & Quil-
lian 1969). Such tradition is related to points 1, 2 and 3,
which can be defined as deep semantics.

Following this discussion one could decide that semantics
representation could emerge through the interaction of both
light and deep semantics. Thus, an an artificial system con-
tending with semantics should necessary take into account
both facets.

Light and Deep semantics as a computational
problem
In order to provide a systematic account of deep and light

semantics in a computational framework, while keeping in
mind that such problems genuinely originate in the broader

framework of cognitive science, we can resort to Marr’s ap-
proach. Briefly, Marr (Marr 1982) distinguished between
three levels at which any agent carrying out a cognitive task
could be understood, the what/why level (computational the-
ory), the how level (algorithm) and the physical realization
level (implementation). In particular the first two levels are
of interest here, the computational theory defining what is
the goal of the computation, why is it appropriate, and what
is the logic of the strategy by which it can be carried out, and
the representation and algorithm level accounting for how
can the computational theory be implemented, what is the
representation for the input and output, and what is the algo-
rithm for the transformation.

More important for us, it has been recently argued
(Chater, Tenenbaum, & Yuille 2006; Knill, Kersten, &
Yuille 1996) that Marr’s three-fold hierarchy could be re-
organized into two levels: the computational theory level,
which can be precisely formalized in terms of Bayesian the-
ory, and the implementation theory level, embedding both
Marr’s algorithmic and physical realization levels. More
precisely, it has been shown (Boccignone & Cordeschi
2007) that a formal statement of Marr’s computational the-
ory level can be given in terms of a theoretical model M =
(P({Xi}H ), GM), P({X)}< |) denoting a joint proba-
bilistic distribution of random variables { X}/, and GM
a graphical model specifying the conditional dependencies
among random variables, in other words what Marr called
the constraints of the computational problem. Indeed, this
novel view of Marr’s proposal can be fruitfully exploited as
we will see in the remainder of this note.

Light semantics As described above such semantics em-
phasize relatively light representations that can be learned
from large text corpora, and on explaining the structure of
word—word and word—concept associations, rooted in the
contexts of actual language use.

Although the interpretation of sentences requires seman-
tic knowledge that goes beyond these contextual associative
relationships, many theories confirm the fact that, though
the interpretation of sentences requires semantic knowledge
that goes beyond these contextual associative relationship, it
still identify this level of knowledge as playing an important
role in the early stages of language processing (Ericsson &
Kintsch 1995; Kintsch 1988; Potter 1993)

Following Marr’ theory of computation (Marr 1982) we
obtain the light semantics and then the building of an ontol-
ogy that can be called static ontology, can be obtained as:

a Word patching: define relations among words;

b Prediction: predict the next word or concept, facilitating
retrieval;

¢ Disambiguation: identify the senses or meanings of
words;

d Gist extraction: pick out the gist of a set of words.

Here the adjective “static” stands for a property that de-
scribes the fact that the meaning can be extracted only from
the text and without the help of user that could be introduce
a sort of variability.



(a) Logical formalism (b) Representation with indexicals  (¢) Internal world model?

(AHEAD <*1>)
(DISTANCE(BETWEENSELF <2)
(FREEPATHSELF <'3>)
(CAN-EXIT'<’4>)

(LOC(SELF2735)
(OBJ16837)(0BJ27298)
(OBJ392138))
(ISA(SELFROBOT)

(

(

(

OBJ1DESK)(OBJ2CHAIR)
OBJ3DOOR)
DEF(ROBOTxX)(DESKxX)..)

Figure 1: Three different ways in which a robot might rep-
resent its world: (a) Logical formalism, (b) Representation
with indexicals, (c) internal world of model. (Pylyshyn
2000).

Once a computational model is available a formal lan-
guage could describe such knowledge that can be stored in
a information system, as we will see in more details in next
sections.

Deep semantics This knowledge is traditionally repre-
sented in terms of systems of abstract proposition (Collins &
Quillian 1969). Models in this tradition have focused on ex-
plaining phenomena such as the development of conceptual
hierarchies that support propositional knowledge, reaction
time to verify conceptual propositions in normal adults, and
the decay of propositional knowledge with aging or brain
damage.

While Concept — concept relations could be modeled us-
ing the prototype theory that plays a central role in Linguis-
tics, as part of the mapping from phonological structure to
semantics (Géardenfors 2004) and in this note we don’t spend
time in illustrating the way to do that, then the Concept —
action relations can be revealed using the theory of emer-
gent semantics pointed out by Santini and Grosky (Santini,
Gupta, & Jain 2001; Grosky, Sreenath, & Fotouhi 2002).

In details, the semantics of a web page is defined by its
content and context. Understanding of textual documents is
beyond the capability of todays artificial intelligence tech-
niques, and the many multimedia features of a web page
make the extraction and representation of its semantics even
more difficult. Modern search engines rely on keyword
matching and link structure, but the semantic gap is still
not bridged. Previous studies have shown that users surfing
on the web exhibit coherent intentions (or browsing seman-
tics) and that these intentions can be learned and used for the
prefetching of related web pages (Ibrahim & Xu 2000).

In our approach, the semantics of a web page can be de-
rived statistically through analyzing the browsing paths of
users toward this page. For this reason, we also refer to these
emergent semantics of a page as dynamic semantics.

Building semantics by using perception (vision, etc.),

Semantics building

Deep Semantics

Light Semantics

Semantics representation

Graphical Models

Figure 2: Semantics knowledge could conceived as the inter-
action of both light and deep semantics. The result of such
interaction generates what we call computational theory of
semantics (semantics building), which must be constrained
through a GM (semantics representation).

that is the modeling of Concept — percept relations, is yet a
problem that can be understood by considering the Marr’s
computational theory (Marr 1982). Here could be inves-
tigated the mechanism describing how the human make
use of perception (in broad sense) for encoding knowledge
representation. In such perspective studies in the field of
Computer Vision could be useful (Ballard & Brown 1982;
Ballard 1997). One of the approach that seems to be
suitable for our purpose is that proposed by Pylishyn
(Pylyshyn 2000). He asserts a theory for situating vision
in the world by differentiating three different ways in
which an artificial agent (namely a robot) might represent
its world in order to carry out actions in real world, Figure 1.

Ontology representation

Once a semantics computational theory has been delivered,
defining a joint probabilistic distribution of random vari-
ables (in the sense of Boccignone (Boccignone & Corde-
schi 2007)), we have to introduce the GM which specifies
the conditional dependencies among random variables (the
Marr’s constraints).

It is our conviction that one of the major limitations of
languages for representing ontologies - and in this respect
OWL is no exception - stems from the static assignment of
relations between concepts, e.g. “Man is a subclass of Hu-
man”.

On the one hand, ontology languages in the semantic web,
such as OWL and RDF, are based on crisp logic (Guarino
1998) and thus cannot handle incomplete, partial knowl-
edge for any domain of interest (Antoniou & van Harme-
len 2004). On the other hand, it has been shown (see, for
instance (Ding, Peng, & Pan 2004)) how uncertainty exists



Semantics building

User Level

Deep Semantics

Building Level

Light Semantics

Semantics representation

Representation
Level

Graphical Models

Figure 3: Semantics knowledge could conceived as the inter-
action of both light and deep semantics constrained through
a GM. This corresponds, from an architectural standpoint,
to identification of two levels for semantics building, User
and Building level, and a level for semantic representation,
called Representation level.

in almost every aspects of ontology engineering, and proba-
bilistic directed GMs such as Bayesian Nets (BN) can pro-
vide a suitable tool for coping with uncertainty. Yet, in our
view, the main drawback of BNs as a representation tool, is
in the reliance on class/subclass relationships subsumed un-
der the directed links of their structure. We argue that an
ontology is not just the product of deliberate reflection on
what the world is like, but is the realization of semantic in-
terconnections among concepts, where each of them could
belong to different domains.

Indeed, since the seminal and outstanding work by Ander-
son on probabilistic foundations of memory and categoriza-
tion, concepts/classes and relations among concepts arise in
terms of their prediction capabilities with respect to a given
context (Anderson 1991). Further, the availability of a cat-
egory grants the individual the ability to recall patterns of
behavior (stereotypes, (Roland G. Fryer & Jackson 2003))
as built on past interactions with objects in a given category.
In these terms, an object is not simply a physical object but
a view of an interaction.

Thus, even without entering the fierce dispute whether
ontologies should or should not be shaped in terms of
categories (Eco 1997), it is clear that to endow ontolo-
gies with predictive capabilities together with properties of
re-configurability, what we name ontology plasticity, one
should relax constraints on the GM structure and allow the
use of cyclic graphs. A further advantage of an effort in
this direction is the availability of a large number of concep-

Communication Level
& >
»

Representation
Level

Figure 4: OMS Core Architecture. The Representation level
could communicate to everyone knows its language, for in-
stance other levels of our architecture or other OMS.

tual and algorithmic tools that have been produced by the
Machine Learning community in most recent years (Bishop
2006). For instance, one could model ontology evolution in
time as a Dynamic Bayesian Network (Bishop 2006).

What we propose here is to use both the tradition/level of
ontology for building semantic knowledge and such repre-
sentation stage for its representation, as illustrated in Figure
2. In order to do that we introduce the notion of architecture
for capturing those different levels discussed above.

Putting things together: architectural issues in
designing OMS

Recalling that the aim of this work is to provide a methodol-
ogy for designing OMS as a sound basis to address architec-
tural issues. Before introducing our proposal we point out
the reason why designing OMS could be useful.

Since ontology developers were engaging in build-
ing ontologies (to be more precise ‘“ontonomies”, in
the vein of Santini) they have been committed to dif-
ferent tools and different languages, inevitably causing
an “ontology management problem”: representing,
maintaining, merging, mapping, versioning, translating,
etc. As a consequence, a uniform framework to jointly
maintain and manage ontology, in a word an OMS, is
required.  Although IT community is deeply involved
in providing a unified account of such systems, no re-
sult currently satisfies jointly all the above requirements
(Gomez-Perez, Corcho-Garcia, & Fernandez-Lopez 2003;
Noy & Musen 2004). For instance, none existing OMS
can jointly manage different ontology language providing
a suitable parser, provide a uniform ontology graphical
representation for machine learning algorithms and allow a
kind of human aid for both ontology building and validation.

An Ontology Management System (OMS) can be con-
ceived as a uniform framework that helps users in managing
multiple ontologies by leveraging data and algorithms
developed for one tool in another. “Uniform” means that
we propose a system based on a specific language for
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Figure 5: Complete OMS Architecture. The Adaptation and
Management levels are “plug in” components.

semantics representation that could be shared by all the
OMSs. Moreover, this framework allows users to validate
the current ontologies, or to load ontologies from files or
via the Internet and to locally create, to modify, to query,
and to store ontologies.

Starting from the previously discussed assumptions about
existing ways for representing semantics (and consequently
for representing ontologies), the first steps are strictly con-
nected to concepts there introduced.

The semantics knowledge can be properly described by
putting in connection deep and light semantics.

While light semantics can be throughly instantiated, from
an architectural point of view, in an artificial agent, deep se-
mantics must necessary involve a human agent in the build-
ing group. This corresponds, from an architectural stand-
point, to identification of two levels: building level (for the
artificial agent) and user level (for the human one), Figure 3.

As previously discussed in order to design consistent se-
mantic relations a unique representation of ontologies can be
shaped in the form of probabilistic Graphical Model. This is
the core business of our proposal, which we name the “Rep-
resentation Level”. An illustration of the three levels is in
Figure 3 and an illustration of their relations is Figure 4.

Note that through the communication level the OMS
could establish connection to others helpful levels (shortly
we discuss them) or directly to others homogeneous OMS.

Furthermore, our core architecture proposal, for satisfying
the previously accounted requirements, needs to be provided
of other helpful levels. Specifically we introduce an adapta-
tion level which acts as a language parser and a manage-
ment level, which, interacting directly with the Representa-
tion level allows the user to handling ontologies (versioning,
merging, etc.). In Figure 5 we illustrate the complete pro-
posal where the last levels has been introduced as “plug in”
components.

In Figure 6 we represent how the endeavor to design
a uniform framework for managing ontology could be
realized for a network of OMS which may also be seen as a
sort of social semantics.
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Figure 6: OMSs Networks: a distributed representation of
social semantics.

Summing up:

1. Human Ontology Interaction (HOI): human-in-the-loop
aid and validation. Human aid is useful in order to build
knowledge representation based tools (Deep semantics).
We propose the “User Level ” for both accomplishing on-
tology definition and validation.

2. Ontology Adaptation: unifying languages for the ontol-
ogy. Here, the main idea is to set up an “Adaptation
Level” as a parser for converting different ontologies into
one, by using a suitable (W3C) language, e.g. the Ontol-
ogy Web Language (OWL).

3. Ontology representation: designing consistent semantic
relations between words. 1t is the core business of our
proposal, which we name the Representation Level. Here
a unique representation of ontologies based on probabilis-
tic Graphical Model is provided.

4. Ontology building: identifying, defining and entering
concept definition. At this level the GM representation
can be fully exploited for providing a “Building Level”
relying on machine learning techniques.

5. Ontology management: versioning, merging and map-
ping. This “Management Level” deals with general
management of the ontology. Some basic ontology
inference techniques have to be embedded here in order
to perform consistency checking, versioning, merging
and mapping management.

In the following section we will address the problem of
ontology building, then a case study of building a wine on-
tology in the light of this framework is considered.

Ontology building in a probabilistic
framework

The description of both Word — Word and Word — Concept
relations is based on an extension of the computational
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Figure 7: Graphical Models of light semantics. 7(a): Griffiths’ model (T. L. Griffiths 2007) relying on Latent Dirichlet allocation
(Blei, Ng, & Jordan 2003). Such GM don’t allow relations among words by assuming statistical independence among variables.
7(b): Our GM proposal. The statistical dependence among words is modeled by suitable connections. 7(c): Our GM proposal.
As a consequence of statistical dependence assumption, our model is the union of Topics model (Blei, Ng, & Jordan 2003) and

Words model.

model depicted above and discussed in (T. L. Griffiths
2007), where statistic dependence among words is as-
sumed. As previously discussed, 4 problems have to be
solved: word patching, prediction, disambiguation and
gist extraction. The original theory of Griffiths mainly
asserts a semantic representation in which word meanings
are represented in terms of a set of probabilistic topics
resulting in the GM reported in 7(a), where the assumption
of statistically independence among words was made. On
the contrary, our extension provide word—word relations,
which are represented as a set of probabilistic connections,
as a result we can draw the GM of Figure 7(b). Summing
up, we propose a probabilistic model that, together with the
topics model (which models Word—Concept, (T. L. Griffiths
2007)), considers what we call the words model, in order
to performs well in predicting word association and the
effects of semantic association and ambiguity on a variety
of language-processing and memory tasks, Figure 7(c).

Assume we have seen a sequence of words w =
(w1, ..., wy). These n words manifest some latent semantic
structure [. We will assume that [ consists of the gist of that
sequence of words ¢ and the sense or meaning of each word,
z = (21,...,2n), 50 | = (z,8). We can now formalize the
four problems identified in the previous section:

e Word patching: Compute (w;, w;) from w.
e Prediction: Predict w,,;from w.

e Disambiguation: Infer z from w.

e Gist extraction: Infer g from w.

Each of these problems can be formulated as a statistical
problem. In this model, latent structure generates an ob-
served sequence of words w = (wy,...,wy). This rela-
tionship is illustrated using graphical model notation (Pearl

1988; Jordan 1998; Bishop 2006). Graphical models pro-
vide an efficient and intuitive method of illustrating struc-
tured probability distributions. In a graphical model, a distri-
bution is associated with a graph in which nodes are random
variables and edges indicate dependence. Unlike artificial
neural networks, in which a node typically indicates a single
unidimensional variable, the variables associated with nodes
can be arbitrarily complex. The graphical model shown in
Figure 7(a) is a directed graphical model, with arrows indi-
cating the direction of the relationship among the variables.
The graphical model shown in the figure indicates that words
are generated by first sampling a latent structure, [, from a
distribution over latent structures, P(l), and then sampling a
sequence of words, w, conditioned on that structure from a
distribution P(w|l). The process of choosing each variable
from a distribution conditioned on its parents defines a joint
distribution over observed data and latent structures. In the
generative model shown in Figure 7(a), this joint distribu-
tion is P(w,l) = P(wll)P(l). With an appropriate choice
of [, this joint distribution can be used to solve the prob-
lems of word patching, prediction, disambiguation, and gist
extraction identified above. In particular, the probability of
the latent structure [ given the sequence of words w can be
computed by applying Bayes’s rule:

P(w|l)P(l)

PUIW) = =

“4)

where

P(w) = P(w,1)P(l) %)

l

This Bayesian inference involves computing a probability
that goes against the direction of the arrows in the graphical
model, inverting the generative process.



Equation 5 provides the foundation for solving the
problems of word patching, prediction, disambiguation, and
gist extraction.

Summing up:

e Word patching
P(wi, ’(Uj) =

Y Y Pw.PQ) (6

w—(wi,wj;)

e Prediction
Pwpt1,w ZP Wy |l w)P(l|w) ™

e Disambiguation

P(zlw) =Y P(llw) ®)

g

e Gist extraction

P(glw) = ZP l|w) ©)

A multidocument corpus can be expressed as a vector of
words w = (wy,...,w,), where each w; belongs to some
document d;, as in a word—document co—occurrence matrix,
cfr. Figure 8. We will use a generative model introduced by
Blei et al. (Blei, Ng, & Jordan 2003) called latent Dirich-
let allocation. In this model, the multinomial distribution
representing the gist is drawn from a Dirichlet distribution,
a standard probability distribution over multinomials (e.g.,
(Gelman et al. 1995)). In through the words model we can
build consistent relations between words measuring their de-
gree of dependence, formally by computing mutual informa-
tion:

1) = 337 Pl ) o ]z(?;i)n)

(10)
Such measure establishes how much two variables (words)
are statistically dependent, in facts the hardness of such sta-
tistical dependence increases as mutual information measure
increases. By selecting hard connections among existing all,
for instance choosing a threshold for the mutual information
measure, a GM for the words can be delivered, (cfr. Figure
9).

Building Wine Ontology: a case of study of light
semantic

Here we present a case of study of light semantics represen-
tation. Once topic is chosen, the words connections, namely
words model, are learned from large text corpora, and con-
sequently a Graphical model representing wine ontology is
builded.

The multidocument corpus, extracted from a web reposi-
tory, is represented in Figure 8 through the word—document

co—occurrence matrix, where the black color indicates the
highest word’s frequency, and white indicates zero. The
number of documents are 50 and the chosen topic is “wine”,
which in italian language is “vino”.

As aresult, we show the GM representing light semantics
relations for the “vino” (“wine”) topic. Here the threshold
for connections selection is set to 0, 06.

Conclusions and future works

The main and novel contribution of this note is that we ad-
dress a methodology for designing an OMS architecture, by
taking into account a broader picture of the animated de-
bate about ontology as a way for semantic representation.
The discussed ontology facets have allowed to propose a
formal computational theory of semantics, which in turn has
inspired the designing of an original architectural of systems
for managing knowledge, namely OMS.

As a result, the semantic representation could emerge
through the interaction of two aspects which we discussed
above and which we called: light and deep semantics.

Once a semantics computational theory has been deliv-
ered, which has defined a joint probabilistic distribution of
random variables, we introduced the GM which specifies
the conditional dependencies among random variables. Fi-
nally we focused on how building ontology in a probabilistic
framework, by providing a probabilistic model relying on an
extension of Griffiths’ theory of topics in semantic represen-
tation, in which the words are assumed to be statistically
dependent. The proposed model of semantics representation
is experienced on case of study: “wine” ontology building.
The produced GM represents, recalling previously defini-
tion, a static ontology, therefore it contains fixed relations
between words, relations that hold independently of the spe-
cific situations in which the word is used, in other terms the
meaning is extracted only from the text and without the help
of user that could be introduce a sort of variability.

As future work we propose of providing the described
system of a model for computing what we called deep se-
mantics, which would introduce a sort of dynamism in build-
ing ontology.
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