
KBS Development on the (Semantic) Web

David Corsar and Derek Sleeman
Department of Computing Science, University of Aberdeen

Aberdeen, UK
{dcorsar, d.sleeman}@abdn.ac.uk

Abstract

The benefits of reuse have long been recognized in the
knowledge engineering community where the dream of
creating knowledge based systems (KBSs) on-the-fly
from libraries of reusable components is still to be fully
realised. In this paper we present a two stage methodol-
ogy for creating KBSs: first reusing domain knowledge
by mapping it, where appropriate, to the requirements
of a generic problem solver; and secondly using this
mapped knowledge and the requirements of the prob-
lem solver to “drive” the acquisition of the additional
knowledge it needs. For example, suppose we have
available a KBS which is composed of a propose-and-
revise problem solver linked with an appropriate knowl-
edge base/ontology from the elevator domain. Then to
create a diagnostic KBS in the same domain, we require
to map relevant information from the elevator knowl-
edge base/ontology, such as component information, to
a diagnostic problem solver, and then to extend it with
diagnostic information such as malfunctions, symptoms
and repairs for each component. We have developed
MAKTab, a Prot́eǵe plug-in which supports both these
steps and results in a composite KBS which is exe-
cutable. In the final section of this paper we specu-
late/discuss the issues involved in extending MAKTab
so that it would be able to operate in the context of the
(Semantic) Web. Here we introduce the idea of cen-
tralised mapping repositories.

Introduction
A Knowledge Based System (KBS) applies intelligent rea-
soning to a domain to solve a problem that would otherwise
require considerable human time, effort and expertise. To
achieve this, a KBS typically requires significant domain
knowledge coupled with an intelligent reasoning module.
The 1980’s witnessed a change in the thinking behind KBSs
development, with traditional time consuming techniques
being replaced by more efficient, reuse based approaches.
These new approaches revolved around the rapid config-
uration of reusable, independent components such as do-
main ontologies, problem solving methods (PSMs), problem
solvers (PSs) and task specifications. To maximise reusabil-
ity, every component was expressed generically: i.e. with-

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

out reference to any other particular component; repositories
were developed for each type of component and were re-
sponsible for the storage and provision of different examples
of each of these components. In theory, to develop a new
KBS, the knowledge engineer or an automated agent sim-
ply selects the appropriate components for their task (from
repositories) and configures them to work together. Con-
figuration was often simply viewed as a mapping process:
for example, for a PSM to work with a particular domain
ontology, mappings would be defined between the two: the
mappings would allow the PSM to access and use the do-
main knowledge provided by the domain ontology during
the PSM’s execution. Despite considerable research focused
on making this vision of KBS development a reality, it is, for
various reasons, still yet to be fully realised. In summary, the
various projects working to achieve this goal produced their
own approaches, developing different, often incompatible,
technologies to support their approach; moreover, none of
them have fully executable implementations.

We believe that the primary reasons why previous ap-
proaches failed were a) the lack of a standard formalism
for representing domain ontologies, resulting in b) a lack of
readily available domain ontologies, c) the lack of standards
for representing rules which use the domain ontologies, and
d) the lack of tools which allow standardised rule sets to op-
erate over standardised representational schema.

Standards and technologies have subsequently progressed
however, with formalisms such as OWL1 providing a stan-
dard language for describing ontologies; SWRL2 and RIF3

providing languages for describing rules expressed against
ontologies, and possibly, rule based PSs; and tools such
as Prot́eǵe4 providing a mature, extendable framework for
both creating and using ontologies. In fact, Protéǵe pro-
vides a good environment for building a KBS by combin-
ing reusable components, as it includes extensive import fa-
cilities for different ontology languages along with several
reasoning plug-ins (called tabs) which allow various types
of reasoning to be performed against an (instantiated) on-

1http://www.w3.org/2004/OWL/
2http://www.w3.org/Submission/SWRL/
3http://www.w3.org/2005/rules/wiki/

RIF Working Group
4http://protege.stanford.edu



tology. One of the most mature reasoning tabs is JessTab5

which allows Jess6 production rules to be executed against
a KB (instantiated ontology). Berners-Leeet al (Berners-
Lee, Hendler, & Lassila 2001) have also detailed a vision
of the Semantic Web: a Web friendly to both humans and
machines; where natural language text conveys knowledge
to humans, and corresponding (instantiated) ontologies pro-
vide a form of easily accessible knowledge (a loosely struc-
tured KB) to machines: potentially providing a wealth of
(domain) ontologies that can be exploited in the develop-
ment of KBSs. Further, every ontology will be associated
with rules describing how to map from it to other ontologies.
It is likely that “off the shelf” tools will be used by authors
to describe the page’s content, usually against a standard
domain ontology. This should provide a wealth of domain
“Knowledge Bases (KB)s” (expressed against the same or
similar ontologies), and, importantly, this will be associated
with descriptions of how to map between the different (do-
main) ontologies.

As the Semantic Web vision becomes a reality, it will be
desirable to make use of the wealth of new KBs that be-
come available, for example by incorporating them into new
KBSs. We have developed a KBS development method-
ology based on reuse, which is able to take advantage of
the various advances in standards and technologies which
have been made in recent years. We have previously re-
ported our methodology and our supporting tool, MAKTab
in (Corsar & Sleeman 2007). Briefly, our methodology for
achieving KBS development through reuse consists of two
phases. After selecting a generic PS and a domain ontol-
ogy, the user maps relevant domain knowledge from the do-
main ontology to the target generic PS, typically providing
it with knowledge of the concepts in the domain. This initial
domain knowledge is then extended using a focused knowl-
edge acquisition (KA) phase during which the user defines
rules required by the PS for it to work in the chosen domain.
In this paper we provide an outline of our methodology in
MAKTab, the current support tool, and discuss applying the
methodology on the (Semantic) Web.

This paper is structured as follows: first we discuss previ-
ous work on KBS development methodologies; we then dis-
cuss our approach to KBS development in the context of our
original implementation, MAKTab; we then discuss concep-
tually how we plan to adapt it to work on the Semantic Web;
and finally provide some conclusions.

Related Work
Various projects have looked at KBS development through
configuration of reusable components: for example PSM Li-
brarian, CommonKADS and IBROW3. IBROW3 is partic-
ularly relevant as it specifically focused on building KBSs
through reuse of components on the Web. A good overview
of the challenges faced with this type of KBS development
is provided by Necheset al in (Necheset al. 1991). The In-
ternet Reasoning Service 3 (IRS3) project, which provides

5http://www.ida.liu.se/ ∼her/JessTab/
6http://www.jessrules.com

a brokering service for building applications using Seman-
tic Web Services is also relevant to building KBSs on the
(Semantic) Web.

CommonKADS

CommonKADS (J. Breuker and W. Van de Velde 1994;
Schreiberet al. 2000) is the result of a major Euro-
pean project, which focused on developing a complete KBS
development methodology, encompassing project manage-
ment, organisation analysis, and knowledge and software
engineering.

The CommonKADS methodology specifies a process by
which a KBS is developed through the construction of a
product model, which describes the state of an organisation
after the planned KBS has been put in place. The prod-
uct model is composed of six separate sub-models, one of
which, theexpertise modeldescribes the reasoning compo-
nent of the KBS. (Schreiberet al. 2000, chap. 6) provides
outlines for 11 different PSMs, including assessment, diag-
nosis, and design. Each outline (template knowledge model)
is composed of: a general description of the method, an ab-
stract specification of the reasoning algorithm, a suggested
domain schema, and sample variations of the method. When
building the reasoning component, the developer selects the
relevant template knowledge model, which provides him
with guidance for implementing the PS, along with the out-
line of an example domain KB. The developer then has to
implement the PS, define and populate the domain KB and
“assemble” the PS and domain model into a working system.

PSM Librarian

PSM Librarian (Crubezy & Musen 2003) provides a KBS
development methodology based on reuse and configura-
tion of domain ontologies and problem solving knowledge.
The methodology is based on four types of ontology: do-
main, method (PSM), PSM description, and mapping; and
involves the user selecting a domain ontology and a method
ontology and providing a set of mappings between the two
by instantiating the mapping ontology.

The domain ontology is a PSM-independent description
of a particular domain, possibly taken from some library.
The method ontology provides a signature for the PSM, de-
scribing the roles and requirements the domain knowledge
must fulfil. Again, ideally the method ontology will be
taken from a PSM library, which is described, accessed and
queried through the PSM ontology. The UPML (Unified
Problem-Solving Method Development Language) meta-
ontology (Omelayenkoet al. 2003) is used to describe the
available PSM libraries. The mapping ontology (Park, Gen-
nari, & Musen 1998), a mediating layer in the architecture,
provides a bridge between the domain and method ontolo-
gies. Once all mappings have been defined (manually) they
can be executed by the mapping executioner sub-system of
the PSM Librarian, with the resulting instantiated method
ontology providing the KB for the PS to reason over. There
is currently no support for executing the configured KBS
however.



IBROW3 Project
The main objective of the IBROW37 project was the de-
velopment of an architecture that facilitated an “intelligent
brokering service” to produce a KBS by reuse of “third-
party knowledge-components through the WWW.” UPML
was developed to support the definition of knowledge-
components such as domain ontologies, PSMs, PSM li-
braries and tasks (problem specifications). The process in-
volved the user providing the intelligent broker with the de-
scription of a task and domain ontology, the broker would
then select a suitable generic PSM, configure it to work with
the user’s ontology, execute the new KBS, and return the so-
lution to the user. Due to the challenges of doing all these
steps automatically, the project did not fully achieve its aim;
however UPML has been used by other approaches (includ-
ing PSM Librarian) and has contributed to the Internet Rea-
soning Service project.

Internet Reasoning Service 3 (IRS3)
The IRS3 project8 is a further development of the IBROW3
work. The IRS3 project provides a semantic broker based
approach to the development of applications from Semantic
Web Services (Cabralet al. 2006), which automates the pro-
cesses of mediating between a service requester (user) and
one or more service providers (Semantic Web Services). Se-
mantic Web Services describe the functionalities that they
provide, in terms of the goals (tasks) that they fulfil. When
provided with a task from a client, the IRS3 server uses its
library of Semantic Web Services to determine appropriate
services which can be used to achieve the task. The IRS3
server then manages the orchestration of these services, in-
cluding any necessary communications between them (and
handling any conceptual mismatches that can occur between
different services), and their invocation, to create an new ap-
plication for the user.

Shortcomings
Although earlier approaches have made significant theoret-
ical contributions, their implementations were inadequate
as they lack suitable tools and in some circumstances re-
quire the users to perform complex mapping and/or sys-
tem configuring tasks manually. The CommonKADS ap-
proach requires the developer to build multiple models of
the organisation (up to six different models are typically re-
quired), each of which can take a considerable time to de-
velop and require considerable documentation, which can
add substantial overheads to the KBS development project
(Kingston 1994). Further, due to a lack of good quality sup-
port tools, the CommonKADS methodology provides the
developer with only minimal support with the difficult task
of developing these models and assembling them into a com-
plete system.

The PSM Librarian approach also has some shortcom-
ings: it requires the user to provide many mappings with
little support; it does not provide the PS with knowledge

7http://hcs.science.uva.nl/projects/
IBROW3/home.html

8http://kmi.open.ac.uk/projects/irs

from sources other than the domain ontology, to provide
any PS knowledge that the domain ontology is missing; and
currently does not provide/create an executable KBS. The
IBROW3 project attempted to perform each step in the de-
velopment process completely automatically by having a
broker select a suitable domain ontology and PS, and then
configure the two to work together; an ambitious task which
we believe is still unachievable.

Our Approach
We have developed a practical methodology for building
KBSs through reuse. Our methodology performs automat-
ically as much as possible, while supporting the user when
he/she needs to make decisions. We have built MAKTab, a
plug-in for the Prot́eǵe environment which implements our
methodology. MAKTab uses ontology mapping techniques
to suggest possible mappings between the domain ontology
and the chosen generic PS; and includes a guided KA com-
ponent which uses the requirements of the generic PS and
the knowledge acquired from the mapping phase to aid the
user extend the generic PS to their chosen domain.

This approach builds on our previous work on reusing
rule sets with multiple ontologies (Corsar & Sleeman 2006).
In that project, we developed PJMappingTab, a plug-in for
Prot́eǵe which helps the user in configuring a JessTab rule
set designed for one ontology for use with another. JessTab
rules must name specific concepts from the ontology they
use: a requirement which ties them to that particular ontol-
ogy. PJMappingTab uses lexical similarity metrics to sug-
gest mappings between the concepts referenced in a rule set
and those in a new ontology. After the user accepts the map-
pings, the original rule set is updated to reference the con-
cepts in the new ontology; the resulting system can then be
executed.

Illustrative Example
Throughout this paper, we use the tasks of developing KBSs
dealing with elevator configuration and elevator diagnosis to
illustrate our approach. Elevator configuration has been used
as a KBS task by various projects. Marcuset al. (Marcus,
Stout, & McDermott 1988) developed the original system,
SALT, and others, such as the Sisyphus-2 KA Challenge
(Schreiber & Birmingham 1996) have used it as a way of
evaluating KA tools and approaches. Both of these projects
used a propose-and-revise PS combined with knowledge
of elevator components to produce design specifications of
complete elevator systems which meets a set of requirements
such as building dimensions, minimum capacity and eleva-
tor speed. The propose-and-revise method uses knowledge
of components, their properties, values these properties can
have, constraints on these values, and fixes for violated con-
straints to produce, if one exists, an acceptable combination
of components. In outline its algorithm is:

1. Propose a design, if no proposal returned then exit with
failure,

2. Verify proposed design with respect to the constraints, if
OK then exit with success,



3. If any constraints are violated, systematically attempt to
repair all the constraint violations with the sets of fixes
provided.

To perform this successfully, the algorithm requires three
types of domain specific knowledge/rules, which are used in
its execution:

1. Configuration rules which specify how a list of subcom-
ponents can be combined to form a complete system.

2. Constraints which specify restrictions between the vari-
ous components of the configuration.

3. Sets of Fixeswhich should be applied to remedy particu-
lar violated constraints.

So from this perspective, a KBS is composed of domain
knowledge and problem solving knowledge. For example,
the elevator configuration KBS described above, henceforth
referred to as KBS(pnr, elevator) (see Table 1 for our nota-
tion), is composed of two components: an elevator domain
ontology designed for propose-and-revise, ONT(elevator,
[pnr]); and a propose-and-revise PS, PS(pnr, [elevator]). The
latter is defined as a rule set which captures the generic
propose-and-revise algorithm (PS-RS(pnr)), an ontology to
capture the essential components of the propose-and-revise
algorithm (i.e. the constraints, the fixes, etc.) namely PS-
ONT(pnr, -), and domain specific rules, PS-RS(pnr, [eleva-
tor]).

Elevator diagnosis can also be a complex task, which in-
volves linking observed symptoms to component malfunc-
tions. Again, in our formalism such a KBS, KBS(diag, ele-
vator), contains two components: a diagnostic elevator on-
tology, ONT(elevator, [diag]) specifying components, com-
ponent malfunctions, symptoms and possible causes; and
the diagnostic PS, PS(diag, [elevator]).

We have acquired a working version of both the KBS(pnr,
elevator) and KBS(diag, elevator). Both systems were ac-
quired as CLIPS9 KBSs, and we have re-engineered them to
work within the Prot́eǵe/JessTab environment. Both KBSs
were acquired from independent sources; and we have been
very careful not to alter their domain and PS ontologies so as
to avoid being accused of designing them to work just within
our framework.

Our methodology is such that the user should be able
to extract the domain ontology from an existing KBS and
rapidly configure a further generic PS to work with it to pro-
duce a new KBS. Figure 1 illustrates one such example in
which a diagnostic elevator ontology, ONT(elevator, [diag])
(extracted from the composite KBS) and generic propose-
and-revise (configuration) PS, PS(pnr, -) are configured to
work together, producing a new configuration KBS in the
elevator domain, KBS(pnr, elevator). Our algorithm for
achieving this is to:

1. Split KBS(diag, elevator) into ONT(elevator, [diag]) and
PS(diag, [elevator]) (this is easy in the Protéǵe/JessTab
implementations).

9http://www.ghg.net/clips/CLIPS.html

Abbreviation Meaning
PS Problem Solver (PS-RS + PS-ONT)
PS-RS Rule Set which implements a PS
PS-ONT Ontology used by a PS
ONT Domain Ontology
KBS Knowledge Base System (PS + ONT)
pnr Propose-and-Revise
diag Diagnosis
elevator Elevator domain
PS(pnr, -) Domain independent pnr PS, which is com-

posed of PS-ONT(pnr, -) and PS-RS(pnr)
PS(pnr, [eleva-
tor])

pnr PS developed in the context of the eleva-
tor domain, composed of components: PS-
ONT(pnr, -), PS-RS(pnr), and PS-RS(pnr,
[elevator])

PS-RS(pnr) Rule Set which implements the generic pnr
algorithm

PS-RS(pnr, [do-
main])

Rule Set which implements the domain spe-
cific pnr rules for the domaindomain, e.g.
PS-RS(pnr, [elevator]) is the set of elevator
specific pnr rules

PS-ONT(pnr, -) PS-ONT which defines the concepts used by
PS-RS(pnr) and PS-RS(pnr, [domain])

PS-ONT(pnr,
[elevator])

PS-ONT which defines the concepts used by
PS-RS(pnr) and PS-RS(pnr, [elevator]) in-
stantiated with relevant elevator knowledge
(components and/or rules)

ONT(elevator) Elevator domain ontology
ONT(elevator,
[pnr])

Elevator domain ontology used by PS(pnr)

ONT(elevator’,
[pnr, diag])

Elevator domain ontology used by PS(pnr)
and extended with knowledge for PS(diag)

KBS(pnr, eleva-
tor)

A KBS using the pnr PSM for the elevator
domain. KBS(pnr, elevator) is composed of
2 linked components: ONT(elevator, [pnr])
and PS(pnr, [elevator])

Table 1: Definition of the notation used to describe KBSs in
our work.

2. Map relevantdomain knowledge in ONT(elevator, [diag])
to PS-ONT(pnr, -) (extracted from PS(pnr, -)), to produce
an initial PS-ONT(pnr, [elevator]).

3. Use PS-ONT(pnr, [elevator]) with the KA tool to acquire
propose-and-revise rules for the elevator domain, to pro-
duce an extended PS-ONT(pnr, [elevator])).

4. Generate PS-RS(pnr, [elevator]) from PS-ONT(pnr, [ele-
vator]).

5. Add any new domain concepts that are introduced in step
3 to ONT(elevator, [diag]) to create ONT(elevator’, [diag,
pnr]).

6. Combine PS(pnr, [elevator]) (which is composed of PS-
RS(pnr, [elevator]) and PS-RS(pnr)) with ONT(elevator’,
[diag, pnr]) to create KBS(pnr, elevator).



Figure 1: Outline architecture and algorithm for reusing
the ONT(elevator, [diag]) from KBS(diag, elevator) with
PS(pnr, -) to produce KBS(pnr, elevator).

Describing Generic PSs

Our methodology involves configuring a generic PSs to pro-
vide reasoning in a particular domain. To provide the user
with maximum support during the configuration process the
PS ontology provides relatively detailed descriptions of the
required knowledge, which can be used by appropriate tools
to support the user during configuration. The main support
offered by the PS ontology is through describing the struc-
ture of domain knowledge, the types of domain specific rules
that are used by the PS to work in a domain (in terms of
the rule components and their structure), and various related
meta-information. The KA stage uses these descriptions to
acquire the rules from the user. We have developed a simple
PS ontology, which developers can extend to provide de-
scriptions for new types of generic PSs.

Our basic generic PS ontology includes classes for
describing domain knowledge components, rules and
meta-information about the PS and rules. Firstly, the
ProblemSolver class, provides various pieces of infor-
mation about the PS. Firstly, it provides the developer with
a place to provide a textual description of the PS and how
users can customise it to their domain (important if the
PS is to be used by non-knowledge engineers); secondly,
it provides a description of the domain knowledge the PS
requires. The basic domain knowledge descriptions con-
sist of a PSConcept class, which has two subclasses:
SystemComponent for representing the different compo-
nents that will be used by the KBS (for example, the differ-

ent elevator components, such as doors, motors, and cables);
andSystemVariable for describing variables or param-
eters that will also be used by the KBS (for example, the
maximum torque the elevator motor will experience, which
varies depending on various component selections and other
parameters). These classes can be extended and configured
by developers to describe the domain knowledge require-
ments of their PSs.

The final purpose of the PS ontology is to provide MAK-
Tab with some information about the PS, such as which rules
it should start the KA process with, and an implementa-
tion of any generic PS rules and functions. For example,
the PS(pnr, -) contains three main types of rules: configu-
ration rules, constraint rules, and fix rules. It also specifies
that configuration rules, which can be used to define how to
calculate a parameter value, are related to constraint rules,
which can specify a constraint on that value. Constraint
rules, in turn are related to fix rules, which specify what to
do if that constraint is violated.

Rule descriptions are provided by extending vari-
ous relevant SWRL classes, particularlyswrl:Imp,
swrl:Atom , and swrl:AtomList . Briefly, the types
of antecedents and consequents that can be added to a
rule are restricted to be relevant to the intended purpose
of the rule. Specifically, to define the types of rules a PS
uses to work in a domain, the developer creates a sub-
class ofswrl:Imp for each rule type: placing appropri-
ate constraints on theswrl:body (the rule antecedents)
and swrl:head (the rule consequents) properties to re-
strict the lists of atoms (antecedents and consequents) to be
of a particularswrl:AtomList . Similarly, subclasses of
swrl:AtomList define lists which restrict the types of
atoms (defined by subclasses ofswrl:Atom ) that can be
added to that type of list. Again, appropriate subclasses of
swrl:Atom constrain the type of knowledge that can be
expressed to be appropriate to that particular type of atom.
Using this approach, the developer can define a particular
type of rule and ensure that rules of that type only contain
appropriate information. For example, the constraint rule
from PS-ONT(pnr, -), visualised in Figure 2, restricts the
antecedents to be a list of constraints, and the consequents
to be a list of constraint violations, ensuring all constraint
rules follow the structure: IFconstraints not satisfiedTHEN
assert violations. An example rule using this schema is out-
lined in Table 2: this rule states that if the required horse-
power is greater than the currently selected motor can pro-
vide, then assert a suitable violation of that constraint.

Ontology Mapping
Mapping is the first step in acquiring domain knowledge for
the generic PS. It provides the user with the facility to reuse
any existing domain (ontology) knowledge already avail-
able, in the development of their new KBS. This is achieved
by mapping the knowledge contained in the user’s domain
ontology to the PS’s ontology (for example, PS-ONT(pnr, -)
in the case of PS(pnr, -)). We expect the main knowledge
acquired from the mapping stage to relate to domain enti-
ties, which are represented by thePSConcept class (and
its subclasses) in the PS ontology, which are then used in



Figure 2: Visualisation of a Constraint rule from PS(pnr, -).

Instance Type Instance
Name

Property Description

Constraint c1 exp
(required-horsepower
> motor-horsepower)

Constraint-
Atom

ca hasConstraint (c1)

Constraint-
AtomList

cal rdf:first (ca)
rdf:rest (Nil)

Violation v1 hasConstraint (c1)
Violation-
Atom

va hasViolation (v1)

Violation-
AtomList

val rdf:first (va)
rdf:rest (Nil)

Constraint-
Rule

cr1 swrl:body (cal)
swrl:head (val)

Table 2: An instantiation of the ontology shown in Figure 2
which specifies the rule that if constraint c1 is violated then
assert violation v1.

the development of domain rules in the KA stage. The main
challenge for the user in the mapping stage is determining
which concepts in their (domain) ontology map to concepts
in the PS ontology, and how these mappings are defined.
As such, we have designed the mapping tool in MAKTab
to have a simple interface, and to be extendable so that we
can incorporate new mapping requirements in the future as
needed. In the remainder of this section, we discuss the map-
ping tool with respect to the four criteria defined by Parket
al. (Park, Gennari, & Musen 1998) for describing ontology
mapping tools, as well as extensions for automatically sug-
gesting mappings.

Mapping Power/Complexity This refers to the expres-
sive power and complexity of the mappings supported by
the tool. As the number and type of transformations (map-
pings) supported is the limiting factor in this type of knowl-
edge reuse, our tool supports an extendable range of map-
ping types. These include simple transformations (the re-
naming of a property); the concatenation of multiple proper-
ties (from a class in the domain ontology) into a single tar-
get (PS class) property; and more powerful mappings such
as copying a class and class-to-individual mappings. In the

later an individual of a PS class is created to represent a class
(and its associated individuals) of the domain ontology. This
mapping type allows the user to, for example, specify that all
doors (as represented by individuals of theDoors class in
ONT(elevator, [pnr])) have the same symptoms, malfunc-
tions and repairs, and should therefore be represented as
one individual of thePSConcept class in PS(diag, [eleva-
tor]). We believe we currently provide a suitable collection
of mapping types to meet the requirements of users; the tool
has been designed however so that new mapping types can
be easily incorporated as needed.
Mapping Scope The scope of a mapping defines the range
of domain classes it can be applied to. In order to reduce
the number of mappings the user is required to define, the
user can specify if the mapping should be applied only to
the class it is defined for, or if it can be recursively applied
to that class’s subclasses, with the option of specifying how
deep it should be applied.
Mapping Dynamicity Dynamicity refers to when and
how the mappings are invoked. In MAKTab mappings are
invoked when the user is satisfied with the defined map-
pings, and instructs the tool to apply them.
Mapping Cardinality The cardinality of an ontology
mapping tool specifies the nature of the mappings it sup-
ports. MAKTab supports N:1 mappings, allowing multiple
domain classes to be mapped to a single PS class. This
is necessary to allow, for example, many subclasses of the
Component domain class (such asDoor , Motor , etc.) in
ONT(elevator, [pnr]) to be mapped to the single PS(diag, -
) Component class. N:N mappings could be supported if
required in the future.
Automatic Suggestions MAKTab aims to reduce the
number of mappings the user is required to provide. Allow-
ing inheritance of mappings can help; as can automatically
suggesting property renaming mappings to the user. MAK-
Tab suggests mappings by attempting to match class and
property names in the domain ontology with those in the PS.
These suggestions are produced by three types of equiva-
lence tests: firstly finding identical names and those pairings
with a similarity value, as determined by the string similar-
ity metrics library Simmetrics10, over a user set value; sec-
ondly, matching those with a (user set) percentage of com-
mon constituents; and finally WordNet11 suggests appropri-
ate synonyms. This algorithm is based on that of PJMap-
pingTab (Corsar & Sleeman 2006). We recognise that ontol-
ogy mapping/matching is an active research field12 and have
designed the suggestion component to be extendable.

Once the user thinks that he has defined all the necessary
mappings for the ontology, MAKTab applies the mappings
to the ontology, converting the instance data into the form re-
quired by the generic PS. The composite KBS is then usually

10http://www.dcs.shef.ac.uk/ ∼sam/
simmetrics.html

11http://wordnet.princeton.edu/
12Seehttp://www.ontologymatching.org for details

on ontology mapping research.



executed with several typical tests. At any stage the user is
free to return and define/apply more mappings if necessary.

Focused Knowledge Acquisition

Having completed the mapping stage, a focused knowledge
acquisition process is then used to extend the knowledge
available to the target PS. This process uses the require-
ments of the PS, specified by its PS ontology, along with
the knowledge gained about the domain from the mapping
stage to guide the acquisition of the additional rules it re-
quires to function in the chosen domain. Currently the KA
process interacts with a human user who isassumedto be
capable of providing the required information.

Acquiring Rules The KA tool of MAKTab uses the in-
formation provided in the PS ontology, described above, to
guide the acquisition of the domain specific rules13. This
acquisition is based on the concepts that have been gained
from the mapping stage (which can easily be added to by
the user at any stage during KA, if required, by creating new
individuals of thePSConcept class or relevant subclass).
The KA tool presents the user with the list ofPSConcept
individuals that have been acquired, allowing the user to se-
lect one of them and then start building the rules relevant to
it. In the case of PS(pnr, -), the first rule to be acquired is an
ConfigurationRule , which describes how to calculate
a value for a component of the elevator or a variable in the
configuration.

For example, as shown in Figure 2, in the elevator do-
main, it is important that the motor has enough horse-
power to produce enough torque to move the elevator.
The horsepower required by the motor is dependent on
the car capacity, car speed and the motor’s system effi-
ciency. If the motor can not provide enough horsepower,
then an alternative motor with more horsepower should
be used. These configuration, constraint and fix rules for
the required motor horsepower parameter are illustrated in
Figure 3 (fixed width text refers to domain con-
cepts in PS ontology):ConfigRule-1 checks if the
required-motor-horsepower has already been cal-
culated, if it has not, then the rule defines how the value
should be calculated. ConstraintRule-1 checks if
therequired-motor-horsepower is greater than the
value of thehorsepower property of the selectedmotor ,
if it is, the motor can not supply enough horsepower and an
appropriate violation is asserted. Finally,FixRule-1 de-
fines that if more horsepower is required, then upgrade the
motor by selecting one that can provide enough horsepower.
Figure 4 provides an example protocol of the tool acquiring
these rules (again,fixed width text refers to domain
concepts in PS-ONT(pnr, [elevator])).

13If the PS developer has not provided information such as which
rules to start KA with or rule interdependencies, MAKTab attempts
to work out interdependencies by examining the restrictions on the
rules’swrl:body andswrl:head properties it assumes conse-
quents derive new facts, and any rules which use the same type of
fact (atom type) in their antecedent are thought to be related.

ConfigRule-1
IF required-motor-horsepower has no value THEN
required-motor-horsepower =
(car-capacity * car-speed * 0.6)/33000 *
motor-system-efficiency
ConstraintRule-1
IF required-motor-horsepower > horsepower of
motor THEN
assert violation “need more horsepower”
FixRule-1
IF violation “need more horsepower” THEN
replacemotor with anothermotor with horserpower >
required-motor-horsepower

Figure 3: Example configuration, constraint, and fix rules
for the PS(pnr,-) in the elevator domain.

Implementation
We have implemented MAKTab as a plug-in for Protéǵe;
it provides the functionality outlined above. By extending
Prot́eǵe we are able to take advantage of its extensive import
facilities. Further, it allows us and other PS developers to
take advantage of the plug-ins which allow reasoning with
various inference engines over an instantiated ontology, by
providing rule converters for their chosen inference engine.

We have also implemented the two generic PSs discussed
throughout the paper PS(pnr,-) and PS(diag,-) as sets of Jess-
Tab rules, based on pre-existing KBSs discussed previously.
Both PSs have converters for translating the acquired rules
into JessTab format. Further details will be provided in (Cor-
sar 2007).

KBS Development on the (Semantic) Web
Our current implementation, MAKTab, has been developed
as a desktop application; for various reasons, it is desirable
to provide a (Semantic) Web based tool for our KBS de-
velopment methodology. Along with potentially providing
access to many more ontologies, the Semantic Web will also
provide details of how to map from one ontology to another,
which can be used to enhance the KBS development process.

This potential application of our technique on the (Seman-
tic) Web is outlined in Figure 5, and is described briefly be-
low.14

1. Browsing the Semantic Web, the user finds a page(s)
which provides the domain knowledge they wish to rea-
son with.

2. The user provides the URL(s) of the selected web page(s),
and our tool retrieves the associated ontology.

3. The user browses our library of generic PSs; selecting the
one which provides the type of reasoning they wish to use.

4. The tool searches its repository of stored mappings for
any previously used with the selected generic PS and the
user’s domain ontology; further, on the Semantic Web,

14Until the Semantic Web vision is realised, steps 1 and 2 can be
substituted with the user providing their domain ontology directly
to our tool.



SYS: Starting KA for required-motor-horsepower ,
creating a new configuration rule of the form “ifvalues1
then assign valuesvalue2”; please provide the definition of
values1
USER: required-motor-horsepower has no value
SYS:Please provide the definition ofvalue2
USER: required-motor-horsepower =
(car-capacity * car-speed * 0.6)/33000 *
motor-system-efficiency
SYS: Creating a new constraint rule of the form “ifvalues
thenviolation”; please provide the definition ofvalues
USER: required-motor-horsepower >
horsepower of motor
SYS:Please provide the definition ofviolation
USER: need more horsepower
SYS: Creating a new fix rule of the form “ifviolation
then apply fixes”, with violation defined as “need more
horsepower” alter definition ofviolation?
USER: no
SYS:Please provide the definition offixes
USER: select a new motor with horsepower >
required-motor-horsepower

Figure 4: The example protocol showing how the KA tool
interacts with the user to build the rule defined in Figure 3.
As the user enters values, the KA tool will create the relevant
individuals in the PS ontology (stored in the rule repository).

our tool will be able to use the mapping knowledge as-
sociated with the user’s domain ontology (and others on
the Semantic Web) to, if necessary, create a sequence of
mappings which map the user’s domain ontology to the
generic PS through a series of intermediate ontologies
(see below for details). After the user checks the map-
pings, altering them if necessary, the tool executes them,
providing the generic PS with knowledge of some of the
concepts in the domain. This step corresponds to step 2 in
the MAKTab implementation described in Figure 1.

5. Using interactive Web technologies our tool supports the
user with defining the required rules for each appropriate
domain concept. New ontological concepts can be added
to enhance the representation of the domain if necessary.
This step corresponds to step 3 in the MAKTab imple-
mentation described in Figure 1.

6. Having defined the required rules, our tool generates an
executable KBS by combining the generic PS code, the
result of converting the user’s defined rules into an exe-
cutable format, and the enhanced user’s domain ontology.
This step corresponds to steps 4 and 6 in the MAKTab
implementation described in Figure 1.

7. Our tool could then execute the KBS, returning the results
to the user.

Domain Ontologies
In MAKTab domain ontologies are taken from a variety of
sources including ontology search engines, repositories such
as OntoSearch2 (Pan, Thomas, & Sleeman 2006), online di-
rectories and existing KBSs (if they can be decoupled from

Figure 5: Building KBS on the Semantic Web.

the associated reasoning module). If the Semantic Web vi-
sion is fully realised, then ontologies will become much
more widely available than they are today. Hopefully, this
should mean that in the future, as well as existing sources,
we will be able to import ontologies from appropriate Se-
mantic Web Sites, which can then be used as the domain
knowledge source for a new KBS. The quality of these on-
tologies, in terms of accuracy and completeness will, of
course vary, but hopefully they will at least provide a loosely
structured KB, which using our methodology can be further
developed and extended into a suitable domain knowledge
source for a KBS. We may also incorporate tools such as
CleOn (Sleeman & Reul 2006) and RepairTab (Lam 2007)
to detect and repair lexical and logical errors in the domain
ontologies, to further improve their quality before they are
used in KBS development.

Generic Problem Solvers

In MAKTab a generic PS is provided by the PS ontology,
which is loaded into MAKTab before it is configured for
a particular domain. MAKTab also handles the generation
of the executable KBS. When applying our methodology on
the Semantic Web, it will be desirable to store a repository of
generic PSs, which can be used for browsing and selection.
Ideally, providers of generic PSs will also handle the genera-
tion and execution of the final KBSs. We also anticipate that
the generic PS stored in PS repositories will not just be im-
plemented in JessTab, but in a wide range of programming
languages. It will be important to ensure that these other
programming languages can also successfully integrate with



instantiated ontologies. Obvious candidates for considera-
tion are CLIPS and Prolog, as there already exists Protéǵe
plug-ins for these languages (CLIPSTab (Ameer 2003) and
PrologTab15) which enable them to be used with an ontology
in Prot́eǵe.

Mapping
As discussed previously, there are two main challenges for
the user during the mapping stage: firstly determining which
are the corresponding concepts in the domain ontology and
the generic PS; and secondly determining how the corre-
spondences between these concepts can be defined, these
are likely to remain crucial steps in the Semantic Web ver-
sion of the tool. In general, if one has a source (domain)
concept (sc1), and a target (PS) concept (tc1) and a set of
mapping rules M1 ... Mn (possibly from a repository of
mappings) describing how to map between many different
concepts, then showing whether it is possible to find a set
of mappings which will transform sc1 to tc1 is likely to be
a sizeable search problem, where many potential configura-
tions of mappings would need to be tried, many of which
would lead to dead ends.

There is perhaps a more effective way of achieving map-
pings, which was implicit in (Berners-Lee, Hendler, & Las-
sila 2001). This paper specifies that the ontology represent-
ing a Semantic Web Site’s content will be associated with a
set of mappings between it and other ontologies (either for
other Semantic Web Sites, or standard ontologies). Lets say
a given page is represented by ontology O1, which is as-
sociated with a set of mappings to change the concepts in
O1 to one of several ontologies, lets call them Ox and Oy.
So effectively, O1 is associated with a set of mappings from
O1 to Ox and O1 to Oy; lets call these Mappings(1, x) and
Mappings(1, y) respectively. If we wish to map to an on-
tology, O2, representing another page’s content, we would
first check if Mappings(1, 2) is associated with O1. If not,
we could check if specified repositories of mappings have
Mappings(x, 2) or Mappings(y, 2), in which case we would
know we would be able to map from O1 to O2 in two stages.
Of course, in general this mapping process could explore a
larger number of mappings stages. Having mapping infor-
mation centralised in mapping repositories would, in fact,
allow the existence of a suitable sequence of mappings to
be established relatively easily; the actual mapping process
then simply requires the performance of the mappings as
specified in the derived sequence.

Conclusions
We have developed a practical methodology for developing
KBSs. Our methodology, and current implementing tool,
enable a user to reuse domain knowledge from a domain on-
tology, developed for a KBS which uses one type of PS, with
other types of PS to produce a new KBS. We propose devel-
oping a (Semantic) Web based tool that supports the creation
of KBSs from (reusable) components available on the (Se-
mantic) Web; this tool will be derived from the operational

15http://prologtab.sourceforge.net/

non-Web based MAKTab. As the Semantic Web vision be-
comes reality, it should provide access to a wealth of new
components suitable for building KBSs, particularly ontolo-
gies and mappings. These components have the potential
to further automate and improve our tool for KBS develop-
ment. We believe that this tool will be of particular benefit to
the knowledge engineering community, and hopefully sub-
sequently to domain experts.

Acknowledgments
The MAKTab work was supported under the Advanced
Knowledge Technologies (AKT) IRC, which is sponsored
by the UK EPSRC (grant GR/N15764/01). We are also
grateful to the various developers on the Protéǵe team at
Stanford University, Mark Musen who made available their
version of the Sisyphus-VT code, and JessTab developer
Henrik Eriksson, without which the MAKTab work would
have been significantly more challenging.

References
Ameer, R. 2003. Embedding CLIPS Engine in Protéǵe. In
Proceedings of Sixth International Protéǵe Workshop.
Berners-Lee, T.; Hendler, J.; and Lassila, O. 2001. The
Semantic Web.Scientific AmericanMay.
Cabral, L.; Domingue, J.; Galizia, S.; Gugliotta, A.; Nor-
ton, B.; Tanasuscu, V.; and Pedrinaci, C. 2006. IRS-III:
A Broker for Semantic Web Services based Applications.
In The 5th International Semantic Web Conference (ISWC
2006).
Corsar, D., and Sleeman, D. 2006. Reusing JessTab rules
in Prot́eǵe. Knowledge-Based Systems19(5):291–297.
Corsar, D., and Sleeman, D. 2007. KBS Development
through Ontology Mapping and Ontology Driven Acqui-
sition. In Sleeman, D., and Barker, K., eds.,K-CAP ’07:
Proceedings of the 4th International Conference on Knowl-
edge Capture, 23–30. New York, NY, USA: ACM.
Corsar, D. 2007. KBS Development through Ontology
Reuse and Ontology Driven Acquisition. Ph.D. Disserta-
tion, forthcoming, University of Aberdeen.
Crubezy, M., and Musen, M. 2003. Ontologies in Support
of Problem Solving. In S. Staab, and R. Studer., ed.,Hand-
book on Ontologies in Information Systems, International
Handbooks on Information Systems. Springer.
J. Breuker and W. Van de Velde., ed. 1994.CommonKADS
Library for Expertise Modelling Reusable problem solving
components. IOS Press.
Kingston, J. 1994. Pragmatic KADS: A methodologi-
cal approach to a small knowledge based systems project.
Technical report, Artificial Intelligence Applications Insti-
tute, University of Edinburgh, UK, November 1994. AIAI-
TR-110.
Lam, J. S. C. 2007.Methods for Resolving Inconsistencies
in Ontologies. Ph.D. Dissertation, University of Aberdeen.
Marcus, S.; Stout, J.; and McDermott, J. 1988. VT: An Ex-
pert Elevator Designer That Uses Knowledge-Based Back-
tracking.AI Magazine9(1):95–112.



Neches, R.; Fikes, R.; Finin, T.; Gruber, T.; Patil, R.; Sena-
tor, T.; and Swartout, W. R. 1991. Enabling technology for
knowledge sharing.AI Magazine12(3):36–56.
Omelayenko, B.; Crubezy, M.; Fensel, D.; Benjamins, R.;
Wielinga, B.; Motta, E.; Musen, M.; and Ding, Y. 2003.
UPML: The Lanugage and Tool Support for Making the
Semantic Web Alive. Spinning the Semantic Web. The MIT
Press. chapter 5, 141–170.
Pan, J. Z.; Thomas, E. J.; and Sleeman, D. H. 2006.
ONTOSEARCH2: Searching and Querying Web Ontolo-
gies. In IADIS International Conference WWW/Internet
2006 (University of Murcia), 211–219.
Park, J. Y.; Gennari, J.; and Musen, M. 1998. Mappings for
Reuse in Knowledge-Based Systems. In11th Workshop on
Knowledge Acquisition, Modelling and Management KAW
98.
Schreiber, A. T., and Birmingham, W. P., eds. 1996.Inter-
national Journal of Human-Computer Studies, volume 44.
Elsevier Ltd.
Schreiber, G.; de Hoog, R.; Akkermans, H.; Anjewierden,
A.; Shadbolt, N.; and de Velde, W. V., eds. 2000.Knowl-
edge Engineering and Management: the CommonKADS
methodology. MIT Presss.
Sleeman, D. H., and Reul, Q. H. 2006. CleanONTO: Eval-
uating Taxonomic Relationships in Ontologies. In Vrande-
cic, D.; Surez-Figueroa, M. C.; Gangemi, A.; and Sure, Y.,
eds.,Proceedings of 4th International EON Workshop on
Evaluation of Ontologies for the Web.


