
Leveraging AI’s readth in CS 1

Zachary Dodds

Harvey Mudd College Computer Science Department
301 Platt Boulevard

Claremont, CA 91711
dodds@cs.hmc.edu

Abstract

Artificial Intelligence offers a compelling backdrop for
student assignments and projects even very early in the
computer science curriculum. We have leveraged so-called
high-level AI, in the form of reasoning about language and
game-playing to motivate students in CS 1. More recently
we have added activities that might be described as
“lower-level” AI: robotics programming via both
simulated and real platforms and audio processing and
classification. This work presents both student and faculty
responses to this experiment and concludes that, with
appropriate scaffolding, topics from AI’s full breadth
succeed equally as hooks into early CS.

Overview
Because students, as intelligent agents of their own,
connect viscerally with the endeavor of Artificial
Intelligence, AI has long been a source of motivating
material for early CS curricula [1,2]. Game-playing
assignments such as Connect Four are as comfortable and
ubiquitous in CS 1 or CS 2 as the Towers of Hanoi or
database-like applications [3,4]. Our introductory
computer science course at Harvey Mudd College has for
years included that assignment, as well as a number of
others that draw inspiration from AI’s “high-level”
reasoning about natural language.

In 2006 our computer science department redesigned CS
1 in order to attract more students, and women in
particular, as well as to better present the breadth of CS as
more than simply programming skills. This redesign
prompted introspection, too, about how we might better
reflect the breadth of CS’s central subfields, such as AI.
As a result, we added two additional CS 1 assignments of
two weeks each, both drawn from what is sometimes
termed “low-level” AI. The first comprised a robotics
project made accessible via a simulator [5] but also
backed up by the opportunity to implement on the iRobot
Roomba and Create [6,7]. The second project asked
students to write a classifier for different groups of
sounds, using raw audio data as input. This use of data-
driven and agent-driving AI topics in early CS borrows

Copyright © 2008, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.
Submission to the 2008 spring symposium on Using AI to Motivate
Greater Participation in Computer Science, Stanford, CA, 3/26-28/07.

wholly from a long tradition of educational robotics
[8,9,10] as well as exciting and emerging media-based CS
curricula [11].

Certainly the distinction between high- and low-level AI
has disappeared among today’s deep and mutually
dependent interactions between artificial cogitation and
the processing of sensory inputs. In fact, it may never
have had much basis in true AI practice. Even so, the top-
down and bottom-up paradigms are important metaphors
for novice computer science students, and AI’s versions
of those metaphors are powerful because they offer an
initial analysis of the capabilities all students have – and
many have taken for granted for decades.

Building from this natural, if naïve, connection, we have
measured students’ attitudes toward our high-level and
low-level AI assignments. Thus, with this work we hope
to make three contributions to educators considering AI in
their early computer science curricula:

• detailed descriptions of two CS 1 assignments from

both high- and low-level AI (sections 2, 3)
• results from students’ reflections on those assignments,

across multiple course sections and years (section 4)
• reflections on their successes and drawbacks (section 5)

High-level AI in CS 1
The URL www.cs.hmc.edu/twiki/bin/view/CS5
has detailed write-ups, supplementary resources, and
lecture slides that accompany the assignments motivated
in this section. All programming materials are in Python.

Connect Four: reasoning via recursion
As noted, Connect Four (C4) has long been a standard in
early CS; our CS 1 is no exception. First, it provides a
backdrop against which to tell the story of computer chess
in the history of computing. We also use it to illustrate the
findings of de Groot [12] demonstrating the extent to
which humans play such games with an internal a look-up
table (Figure 1, left).

These side stories help motivate interest in the game, but
its pedagogical value derives from the CS 1 topics it
reinforces. Students gain practice with two-dimensional

B

arrays of data when implementing the board. They
reinforce recursion via the n-ply search -- we do not look
at pruning at all. Our implementation also practices
object-oriented syntax, design, and concepts, as students
implement a Board class to host the game and a Player
class whose instances decide on the next move to make.
Others use this assignment in order to motivate ideas in
interface-building or graphics-based programming. We
have provided students with a wrapper that removes the
challenge from the graphics. Even so, it provides an
opportunity to introduce the model-view-controller
organizational principle: students create the data
structures for Connect Four independent of output choice.
Then, they may choose a graphical or text-based view into
those structures (Figure 1, right). This assignment
typically takes two weeks, and is accompanied by other
problems as well.

Figure 1. CS 1 slide showing de Groot's insights into human
game representations (left). (Right) the ASCII representation

students use to prototype and debug their C4 classes. A
graphical representation is added only later.

Because the development of the data structures and search
algorithm are paramount, work on a static board evaluator
is left as an extra-credit exercise. A number of students do
create a static evaluator, however, and we run a
competition among those entries and announce with much
fanfare a champion among each class section.

Toward Natural Language: unnatural language
One of the conceptual hurdles that challenges many new
CS students is the concept of text as computational raw
material. Numbers are natural for computation – after all,
students have practiced those algorithms since elementary
school. Yet many students find it quite difficult to
consider text without the human-bestowed semantics it
ordinarily carries. Because of this, we interlace a series of
text-themed assignments throughout CS 1. Their purpose
is to reinforce the extent to which computer programs
lack the context for the text they manipulate. To the
computer, that text is simply a set of character strings.

In the very first programming assignment of the term,
students exercise their skills with console-based I/O and
with printing by building a computer conversationalist. To
emphasize the program's lack of understanding for its
conversation, we encourage students to ask questions, but

completely ignore the answers provided. Enough human
conversations exhibit precisely this protocol that it is far
from a stretch for students – and they enjoy the creativity
(and attitude) they can bestow on their conversationalists
so early in the term.

Three weeks later, we ask students to consider how string-
manipulation can be an important part of a deeper
"understanding" of text by implementing the Caesar
cipher. Another staple of CS 1, the Caesar cipher simply
rotates the characters of a plain-text message by 0 < n <
26 places in the alphabet, wrapping from z to a as needed.
The AI facet of the problem comes in classification: a
decipher function that students write must generate the
26 possible ciphertexts and choose the one most like
English. We encourage thinking broadly about what "like
English" means, and students respond with one or more
strategies:

• using letter frequencies to provide each possible

decoding a first-order probability
• using dictionary look-up for common words
• seeking bigrams that do not appear in English
• identifying patterns common in English, e.g., ensuring

each word contains a vowel or maximizing the
number of vowels in the result

This open-endedness offers an opportunity to delve into
the tradeoffs; it also makes the assignment a rewarding
one for the students, as many feel for the first time like
their code is making nontrivial decisions over which they
have programmatic control. As a result, students regularly
surprise us with their creativity: for example, it turns out
that for short phrases minimizing the scrabble score of
the possible ciphertexts more successfully distinguishes
English than first-order, letter-by-letter frequency
modeling.

After another four weeks, students further investigate
models for the structure of text – in this case by creating a
first-order Markov text generator based on units of words.
This assignment offers practice in defining and using the
dictionary data structure and loops, as students read in
text files of their own choice and store a statistical
summary of word co-occurrences. Running that summary
in reverse can lead to wonderfully nonsensical and
entertaining results. Together these three text-processing
assignments expose students to the significant shift in
difficulty when moving from straightforward character
processing to the statistical analysis of natural language.

Low-level AI in CS 1

Audio processing: "pass" or "fail" ?
To convey the depth of abstraction that modern-day
computational interfaces provide and to build atop the
remarkable resources now available for media-based CS 1

[11], we introduced a two-week audio-processing
assignment in the fall of 2006 and 2007.

To support students' work with audio data, we built tools
for plotting the raw pulse-code modulated samples of
sounds and for reading in, playing, and writing out
sounds in .wav format. In the first week students practice
their skills in manipulating one-dimensional lists by
reversing sounds, changing their volume, splicing and
reordering segments, and generating pure tones and
chords from scratch.

In the second week students write a function to correlate
two sound waves as illustrated below. This exercise
motivates an introduction to the different ways in which
humans interpret sound frequency: Figure 2 shows a 440
hz sine wave, subsampled only for plotting purposes,
multiplied pointwise with a 3 hz wave. When played, the
440 hz A demonstrates a perceptible warble in volume

rather than an accompanying low-frequency tone.

Figure 2. The csplot.py module provides functionality for
visualizing in 1d and 2d. Here, a 440 hz sine wave – aliased in

the image – undergoes 3hz amplitude modulation, demonstrating
humans' different interpretations of a sound's frequencies.

Summing the resulting samples from these pointwise
multiplications yields the discrete Fourier transform, i.e.,
the algorithm by which a machine can "hear" frequency or
pitch. Students then use their home-grown DFT in order
to build a chord classifier that can distinguish between
major and minor triads. The change of medium – from
visual and textual to auditory in this assignment – sparks
enthusiasm from some of the students who otherwise
simply mark time from assignment to assignment without
personally engaging in the material. Finally, students use
their own voices as input, extending their chord classifier
into a speech classifier that knows whether a male or
female voice is speaking and whether the phrase spoken is
"pass" or "fail." This progression from straightforward
signal processing to the more nuanced and creative design
of a speech classifier conveys the spirit of the speech
recognition field in a manner accessible – and fun – for
introductory students.

Embodied intelligence: robot navigation
The second sensory-based, AI-inspired assignment is a
two-week project in which students program a simulated
robot. Depicted in figure 3 (top left), the simulator and
visualizer are versions of the Pyrobot system [5] tailored
to our environment. The robot provides odometry, bump
data, and a single range-finder on a panning mount. The
task is navigation: the students implement a state machine
which will navigate the robot to a human-specified goal
(the green circle) in an environment with unknown
obstacles. Typical approaches include opportunistic
random wandering and/or wall-following. Both are
strategies that still play an important role in the business
and practice of robotics today, e.g., in iRobot's Roomba
vacuums.

Because our curriculum postpones event-driven
programming until CS 2, the students write their control
programs within a traditional sense-plan-act loop that
polls inputs to decide the next time step's motor
velocities. This paradigm stretches their conception of
control flow: the merging of discrete action selection with
the continual choice of motor velocities leads naturally to
a finite-state-machine architecture. This dovetails with the
computational-models portion of the course both in time
and spirit.

Although the 200+ students who take our CS 1 each fall
do not all have access to real robot hardware, the interface
and task is designed to transition smoothly to iRobot's
Create platform. Students who wish run their code on the
Create – invariably they are surprised at the large impact
of noise and wheel slippage on their carefully, perhaps
too-carefully, designed algorithms. To encourage this
experience, students' performance on the real-world trials
can not hurt their project grade. It does, however, build
appreciation for the difficulties inherent in computational
interactions with the physical world.

Growing the AI beyond CS 1
One of our goals with the iRobot Create assignment in CS
1 is to hook the interest of students who might not
otherwise have continued their studies of computer
science. Our department is particularly concerned about
the low number of women who major in CS. Our
experiences in fall 2006 sparked the interest of three first-
year women, who opted to stay on campus in the summer
of 2007 in order to extend the computational capabilities
of the Create.

They decided to focus their summer efforts toward an
entry into the 2007 Tapia robotics competition. The
competition's task echoed that of our CS 1 project: finding
distinctively colored markers in a partially known
environment. The student began the summer with an
unadorned Create, which does provide actuation, bump-
sensing, and odometry through an interface identical to

the simulator's. From there they evolved the hardware and
software of the platform until it included two sonar
rangers on panning motors, an iSight firewire camera, and
two USB-based controller boards. A Mac laptop onboard
the robot provides the processing power. The robot
ultimately earned a well-deserved nickname, Insomnia
(top left). Figure 3 (bottom) depicts a frame in one of the
marker-finding test runs, along with the final state
machine for the students' entry.

Because the Create can be run wirelessly, too, it offers
applications inviting to a wide range of students. Other
platforms share this scalability – in fact, the Myro robot
from the Institute for Personal Robots in Education has a
form factor that for many students is more inviting than
the utilitarian Create. The crucial feature in both,
however, is that students can push beyond CS 1-level
tasks to the point of direct engagement with the broader
CS community both inside and outside their home
institution.

Figure 3. The simulator (top right) offers an identical interface

to an iRobot Create, an expandable and low-cost platform shown
with several added components (top left). Students can leverage

the active competition community as early as they like: three
first-years developed this Create for the Tapia 2007 robot

competition, in which the Create uses a state machine (lower
right) to seek out distinctive markers (lower left).

The specifics of the Create and the Tapia competition
notwithstanding, this summer experience illustrates a
best-case result from an AI-based "outreach" in CS 1:

• Three first-year women, none of whom had planned on

taking more than the minimum requirements in CS,
discovered a computational interest in robotics.

• CS 1's scaffolded projects fostered a confidence and
familiarity with computation that those students
chose to pursue.

• Although students' choice of major does not occur until
later in the sophomore year, it seems very likely that

one or more of these women will choose CS – largely
because their engagement in the field has grown so
deep through this project.

Of course, this best-case scenario in which an AI-themed
CS 1 assignment becomes a foundation for is not typical.
The following section examines more critically the
student feedback we have received on our use of AI in CS
1. However, such results do not have to be typical to
make a big impact on a computer science program. For
example, our department has languished in recent years,
with only 3-5 women majoring in CS at any given time. If
this kind of CS 1 experience sparks interest in only one
additional woman, it bolsters our small community of
women computer scientists significantly.

Broader Student Feedback
Part of the success of these four AI-themed assignments:
a game-player, text processing, audio classification, and
robot programming stems from the excitement the
instructors feel for artificial intelligence topics. Even so, a
solid majority of CS 1 student projects and assignments
neither exhibit nor build upon AI themes. To assess the
differences between these classes of assignments, we
contrasted student opinions of the AI-themed problems'
worthwhileness and difficulty against their opinions on
other course assignments as measured on a 7-point Likert
scale (1 = least; 7 = most). Figures 4 and 5 depict the
results: all of the AI-based work in CS 1 appears in the
upper 50% of the list of our assignments, with most near
the overall top. Those figures appear on the back page.

Ultimately, it was even more than the motivation to
explore facets of intelligence that engaged students in the
AI-themed assignments. As Figures 4 and 5 suggest, it is
also the challenge of the AI assignments that draws
participation. From there, it is the open-endedness of AI-
based pursuits that prompts further investigations and
invites much deeper thinking than many other CS 1
assignments provide.

Perspective
The student-survey numbers of the previous section
indicate only the most statistically defensible advantages
that we have found using AI in CS 1. Less quantifiable,
but more motivating for us instructors, are the handful of
students who become passionate about one or more of the
assignments in CS 1 and pursue them far beyond their
original scope. The Insomnia team is only one example.

Many students get excited about Connect Four when their
program defeats them for the first time. One student
continued working on his static evaluator throughout the
following semester and summer, returning triumphantly
to demonstrate his resulting (very formidable!) C4 player.

We continue to use his software as an “unbeatable”
example when teaching the class [13]. A quote from his
page underscores the assignment's scalability:

I've worked on this project for about a year and a
half off and on through my freshman year and
summer. The data structure has been rewritten
about 4 times and I most recently reworked the
entire applet structure. It now uses a better layout
and has a more professional code style, which
makes it easy to change. When I stopped working
on it I had finally solved the horizon problem (with
the exception of one case, try to find it) and
surprisingly I used the solution to increase the
algorithm's efficiency in the end game play.

When I first wrote it, the game tree was only
recursed 3ply, badly, in about a minute. Now it
projects the game tree to 10ply and beyond in less
than five seconds for a standard board and in
about a minute for larger boards (This is
dependent on the speed of your machine as well).
This is accomplished with alpha-beta pruning
among other pruning techniques to reduce the
search space, as well as an extremely efficient
non-trivial evaluation method that was
implemented based on some heuristic graph
theory.

The audio programming engages our many musicians in a
more personal way than the other assignments – and the
results have included a Midi-like interface that one
enthusiastic student implemented atop the raw sound
samples. The unnatural-language assignments are often
where students feel their greatest sense of programming
accomplishment: when their decipher function turns
gibberish into English or when their models generate a
surprisingly natural phrase.

Ultimately, it is this individual enthusiasm – and the
choices that it can engender – that we strive to create as
educators. As the student feedback suggests, AI-themed
assignments – both at a high-level and low-level of
abstraction from raw sensory input – provide a powerful
combination of features. They are

• fun, in their contrast with our human abilities
• CS 1-accessible, with available support materials
• scalable, so that students see an path for further

investigations extending all the way to open problems

Encouraged both by the numbers from our surveys of
student opinion and by personal observations, we look
forward to developing additional AI-based assignments in
coming semesters. Computer vision is a natural domain

we have yet to explore at the low-level, though others
have reported success with AI-based pixel processing
[14]. At the high-level, we hope to create scaffolding to
wrap an accessible example from automated theorem
proving. Regardless of the details, however, we look
forward to working with other educators to broaden the
audience and effectiveness of AI-themed assignments in
the early CS curriculum.

Acknowledgments
The authors gratefully acknowledge support from
National Science Foundation DUE CCLI #0411176 and
funds provided by Harvey Mudd College.

References
[1] Fox, S. "Introductory AI for Both Computer Science and
Neuroscience Students" – Proceedings, FLAIRS 2007.
[2] Ladd, Brian C. "Artificial intelligence in CS 1" Journal of
Computing Sciences in Colleges , 20(4) pp. 101-103, 2005.
[3] www.cs.rit.edu/~cs1s/project/index.html
[4] cs.nyu.edu/courses/spring00/V22.0102-002/index.html
[5] Blank, D. S., Kumar, D., Meeden, L., and Yanco, H. "Pyro:
A Python-based Versatile Programming Environment for
Teaching Robotics." ACM Journal on Educational Resources in
Computing, 3(4), pp. 1-15, December 2003.
[6] Tribelhorn, B. and Dodds, Z. "Evaluating the Roomba: A
low-cost, ubiquitous platform for robotics research and
education." Proc. ICRA, pp. 1393-1399, March 2007.
[7] Matarić, M, Koenig, N. and Feil-Seifer, D. "Materials for
Enabling Hands-On Robotics and STEM Education", AAAI
Spring Symposium on Robots and Robot Venues: Resources for
AI Education, Palo Alto, CA, Mar 2007.
[8] Kumar, D. and Meeden, L. "A robot laboratory for
teaching artificial intelligence" In Proc, SIGCSE , pp. 341-
344, 1998.
[9] Fagin, B, Merkle, L. D., and Eggers, T. "Teaching computer
science with robotics using Ada/Mindstorms 2.0" ACM SIGAda
Ada Letters XXI(4), pp. 73-78, Dec. 2001.
[10] wiki.roboteducation.org/
[11] Forte, A. and Guzdial, M. Motivation and Nonmajors in
Computer Science: Identifying Discrete Audiences for
Introductory Courses. IEEE Transactions on Education, 48 (2).
248-253.
[12] deGroot, A. Thought and Choice in Chess, 2nd Ed. Mouton
De Gruyter, publishers. 1978.
[13] http://www.stanford.edu/~ccecka/research/C4.html
[14] Wicentowski, R. and Newhall, T. "Using image processing
projects to teach CS 1 courses." In Proc. SIGCSE, pp. 287-291,
St. Louis, MO, 2005.

Figure 4. A comparison between female and male students' reported worthwhileness and difficulty for the AI-themed assignments in
2006's CS 1. Women found the AI assignments significantly more difficult than men, though no more so than for all of the assignments in
the class. The data point to the success of all of the AI-themed assignments, along with a need to better scaffold our C4 player assignment!

Figure 5. A direct comparison among students' reported worthwhileness and difficulty for the assignments in 2006's CS 1. The AI
assignments (with arrows) are clustered near the positive side of the chart, indicating that they are motivating despite (or, perhaps, because

of) their difficulty. The correlation coefficient between difficulty and worthwhileness is 0.83: that is, students appreciate challenges, as long
as they feel they can make progress. AI offers a wealth of such challenging – but accessible – problems for early CS.

