
Synergizing AI and OOSE: Enhancing Interest in Computer Science

T.M. Rao and Sandeep Mitra

Department of Computer Science,
SUNY Brockport, Brockport NY 14420

{trao, smitra}@brockport.edu

Abstract
Writing puzzle-solving and game-playing programs can
generate excitement in students. Such programs are usually
assigned as projects in an AI course. These are major
software projects expected to be completed by students who
usually have had no prior instruction in SE concepts. Often,
these are required to be implemented in languages and
paradigms in which the students have minimal expertise
resulting in frustration among students as well as faculty.
We discuss a "problem stereotypes and solution
frameworks" approach to teaching CS1/2 (most likely
prerequisites to AI) which ensures that the students have
exposure to a judicious amount of SE methodology. We
extend this approach to teaching an AI course by identifying
the State-Space-Search and Two-Person-Zero-Sum-Game
stereotypes. We have developed a solution framework
(consisting of Java abstract classes) that can be used to solve
typical problems falling into these stereotypes. Using the
framework, a student will be able to develop a puzzle-solver
or a game-player program mainly by focusing on problem-
specific details. Preliminary experimentation has revealed
that the students found it easy to use the framework and
were successful in developing puzzle-solvers. We believe
that our approach based on reusable software infrastructure
enables students to develop interesting programs early in
their undergraduate careers.

Introduction
Almost all computer science major programs have
experienced a decline in enrollment following the dot-com
bust of 2000-01. At SUNY Brockport, we have
experienced a decline of over 60% since 2001. Besides a
reduction in the number of incoming freshmen, the attrition
rate for those who initially declare a CS major is also high.
Considering the reasons for this decline, we have observed
that there is a perception among students that CS is a
"hard" discipline (Rao et al. 2007). Our conversations with
students have indicated that they find the introductory
courses themselves very difficult. In earlier years, students
lived with this level of difficulty because they felt that a
substantial paycheck awaited them after graduation.

Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Nowadays, they feel that this is no longer the case. The
level of frustration that students endure in the introductory
courses – especially in getting a program to work
according to instructor specifications – does not seem
“worth it” any more. Typically, an introductory CS course
requires students to write programs of some complexity in
a high-level programming language (e.g. Java). Some basic
syntax and semantics are covered in class, examples of
working programs are shown and the students are assigned
a programming problem as homework. The process used to
arrive at the correctly working code is rarely discussed, as
a result of which the student has to essentially invent the
data representations, algorithms and the mapping of these
to language constructs. With no specific plan, students
begin to write the code itself, and encounter obscure
compiler and run-time error messages. They adopt a trial-
and-error process to fix their code, and have no guarantee
of getting to a successful solution by submission time.
Even after all this frustration, there is no assurance of a
good grade, because the "working" program may still not
meet instructor's specifications. Many feel that the same
amount of effort put into writing a term paper in some
other discipline provides a better chance of an ‘A’.
 Secondly, assigned programming exercises in CS1/2,
such as traversing a binary tree in post-order, are not very
"exciting" either. When we asked prospective students at
Open Houses and other forums what they would like to do
after learning software development, one of the most
frequent responses we got is "write game-playing
programs." While it would be challenging and exciting to
write puzzle-solving or game-playing programs, these are
not feasible assignments for CS1/2. On the contrary, they
are large software development projects needing, on the
one hand, expertise in software design and implementation,
and on the other, knowledge of game trees and heuristic
functions. Typically, students learn these concepts only in
upper level Software Engineering (SE) and Artificial
Intelligence (AI) courses. Because of curricular restrictions
on allowable prerequisites, it may not be possible to ensure
that AI students have the required SE background to
handle such complex projects. Thus, an AI instructor
wishing to assign such "exciting" problems is handicapped
by the lack of SE background in the students.

Through Game-Playing and Puzzle-Solving

Our Approach
To reduce the stress level of incoming students and also to
enable students to write simple GUI-based game and
puzzle solvers during their undergraduate studies, we have
proposed and used the "Problem Stereotypes and Solution
Frameworks" (Mitra, Rao and Bullinger 2005, Rao et al.
2007) approach to teaching CS1/2. A problem stereotype is
a category of problems that can be solved using similar
techniques. A solution framework is a typical solution to a
problem, parts of which can be reused to solve other
problems of this stereotype. The students are introduced to
a stereotype by discussing many problems that belong to it.
Solution frameworks then show how a typical problem of
this stereotype is coded. Homework problems come from
the same stereotype. In the early stages the students are
given a complete set of artifacts such as Use Cases, CRC
Cards (Wirfs-Brock and McKean 2002), test data, and
solution code for a representative problem. The students
are required to create a model of the problem before
writing code. They are then taught systematic techniques
of translating these models into program code. In the
beginning courses, the student's responsibility would be to
produce documents and code that closely mirror the
example problem artifacts. After some experience, more
responsibilities (design, test data generation, etc.) are left
to students.
 Since AI would have at least a CS2 prerequisite,
introducing SE concepts in CS1/2 would certainly be
useful to the AI course. This paper discusses extending this
approach to teaching AI. We have identified two problem
stereotypes in the AI domain: State Space Search and Two
Person Zero Sum Game. We created solution frameworks
for these stereotypes by developing a library of reusable
code implementing behavior common to all applications of
that stereotype. Following the practice used in CS1/2,
students are given a sample solution to a selected
puzzle/game using the reusable components of framework.
Other similar puzzles/games constitute class projects.
Students need to understand the manner in which the
framework is used, and cast their own solutions in terms of
the framework's facilities. Consequently, they only have to
code the application-specific parts of the project problem.
Through this approach, students have become more
productive, thus experiencing a greater sense of
achievement.
 Considering our approach from the SE standpoint, we
note that classifying a set of problems into a stereotype,
and creating a reusable solution framework including
common behavior (nowadays, usually in an object-oriented
(OO) manner) is a topic for the SE course (Booch 2007,
Fowler 2003, Wirfs-Brock and McKean 2002).
Collaboration between AI and SE can be beneficial to both
courses: SE students develop software for application-
independent aspects (i.e., the reusable parts) such as data
structures common to all puzzles/games, control flow, user
interfaces, etc. AI students program aspects particular to
the problem itself – such as rules deciding legality of a
game move, heuristic functions, etc.

Related Work
Several educators have considered using games as
programming assignments in their courses. Becker (Becker
2001), who used Minesweeper and Asteroid games as
assignments, observes that "computer science is often
described as one of the most demanding disciplines on the
campus" and (game programs) are "well within the realm
of do-able by first year students and they are fun."
Goschnick (Goschnick and Balbo 2005) reports the use of
a 'game board library' in Java that enabled students to
develop software for games such as Snakes and Ladders
and Ludo. Others (Faltin 1999, Sindre, Line, and Valvag
2003) have reported positive classroom experiences but do
not provide the details of exact programming environments
in which the students worked, how much of the
infrastructure (supporting code) was provided to them and
what the students' responsibilities were. Our paper
describes a problem stereotype approach which attempts to
classify problems based on common features and develops
reusable solution frameworks that can support
implementing many puzzles and board games within that
stereotype. Our approach enables the student to quickly
develop a complete new game within the same 'family', or
adapt an existing game to be 'smarter' (e.g., by redefining
the heuristic).

The State Space Search Stereotype and
Solution Framework

Consider the Water Jug problem used often to illustrate
problem solving in AI (Luger 1998, Russel and Norvig
2003). A version of the problem reads as follows: "You
have two jugs A and B (with no markings) of capacities 4
and 3 gallons respectively. Given an unlimited supply of
water, get exactly 2 gallons in A." This problem can be
solved by a systematic search of the solution space, and
therefore, it falls into the State Space Search (Luger 1998,
Rao 2003, Russel and Norvig 2003) stereotype. We will
use this example to illustrate our approach. After
instructing students in the theoretical concepts of state
space search (reinforced by sufficient pencil-and-paper
exercises), the solution to the Water Jug example is used to
show the students how to create a model of this problem
consistent with the stereotype – i.e., a model that can be
mapped to code that uses the provided framework:

1. Identify what constitutes a state in this problem
and the data structures to represent it.

2. Identify what the initial state is and what the final
state(s) is (are).

3. Identify what the operators are and how they
transform one state to another. Design the
applyOperator algorithms to determine the next
state for each current state/operator combination.

For the Water Jug problem we have:

State: [A, B], a 2-element array of current jug
contents
Initial State: [0, 0], Final State: [2,_]
Operators:
fill (X): Fill X until X is full
dump (X): Empty the contents of X
pour (X, Y): Pour from X to Y until Y becomes
full or X becomes empty
(where X and Y represent either Jug A or Jug B)

The students are then shown how this model maps to code
using the solution framework. Reusable framework
components include Java abstract classes and interfaces
implementing data structures and algorithms common to
any problem solved using the state space search technique.
Briefly, consider some of the more important classes:

Configuration: This abstract class enables the developer
to define application-specific state data. For example, a
WaterJugConfiguration class encapsulates a 2-element
integer array of contents. Our approach requires the
framework user to override the three abstract methods in
this class as described below:

• applyOperator(Operator op): This method
computes the configuration resulting from
applying ‘op’ to the current configuration.

• isMatch(Configuration otherConfig): This is a
boolean method that decides if the current
configuration matches the 'otherConfig'
parameter. This method is used to prevent
repeating configurations in our lists of search
states, and check if a goal state is reached.

• getDistanceToGoal(): This method computes the
heuristic distance from the current configuration
to the goal configuration. This heuristic is used to
steer the search towards the goal.

State: Our implementation distinguishes between a
generic state and an application-specific configuration.
This abstract class encapsulates a configuration, but has
additional information to facilitate specific search
strategies (e.g., A* search) and compute the final solution
path. Therefore, data such as who this state’s parent is, the
operator applied to the parent to produce this state, distance
from the start state (the A* g-value), the estimated distance
to the goal state (the A* h-value), etc. are present.
Important abstract methods in this class that the user needs
to override are:

• isMatch(State otherState)
• traceToRoot(): This method is applied to the final

goal state reached and computes the solution path
to the start state.

Operator: This abstract class defines a generic operator,
and should be extended to encapsulate data specific to the
application’s operators. All methods needed to manipulate
this data must also be written by the user.

Solver: This abstract class defines the method “solve()”,
which currently implements Breadth-First (BFS) and A*
search algorithms. The application-specific solver must be
customized properly to indicate which search strategy to
use. This customization also requires setting up instance
variables defining the start and goal configurations, and a
Java Vector of all possible operators. Internally, this class
maintains lists of open and closed states needed in the
search. It also includes code for the "expand" method – i.e.,
code that considers each state in the open list, applies all
application-specific operators to it and generates the next
set of states. We have found the OO approach to be greatly
beneficial in enabling the movement of common
structures/behaviors (e.g., expand(state)) to the reusable
components, thus reducing the programming tasks of the
student programmer to the greatest extent possible.

These classes are used as follows for the Water Jug
example:

WaterJugConfiguration (inherits from Configuration):
Instance variables include a 2-element integer array of jug
contents. Therefore, the “isMatch (otherConfig)” method is
relatively easy – it simply compares the current object and
parameter's instance variables for equality. The
“applyOperator(op)” method is more challenging. It
requires recognizing the exact nature of the operator
parameters, seeing if it is applicable to the current
configuration (e.g., you cannot pour out of an empty jug)
and returning the new configuration resulting from
operator application. This method is usually complex, and
we encourage students to take a top-down approach, which
often results in several private helper methods (e.g., a
“fill()” or “pour()” method). We have used a simple
heuristic: the distance to goal [gA, gB] from the current
state [sA, sB] is defined as the sum of |gA- sA| + |gB -sB|.

WaterJugState (inherits from State): This is mainly a
factory class. It shows how a state may be created from its
parent state, and a new configuration. It also indicates the
“cost” of moving from the parent state to the current – in
this example, the cost is assumed to be 1.

WaterJugOperator (inherits from Operator): A Water
Jug operator has a name (e.g. fill, dump), a source jug, and
for the ‘pour’ operator, a destination jug. Instance variables
record this data, and accessor/mutator methods are also
written.

WaterJugSolver (inherits from Solver): The constructor
creates the start and goal configurations and the list of
operators. It then calls the “solve()” method it inherits from
its superclass, and displays the final solution. Constructing
the list of operators is one of its important responsibilities,
and for this purpose, a ‘protected’ Java Vector named
‘myOperators’ is provided by the superclass. The
programmer defines the setup of this Vector in the
“setUpOperatorVector()” method. For this problem – with

2 jugs – the operators are: fill(0), fill(1), dump(0),
dump(1), pour(0, 1) and pour(1, 0). Six WaterJugOperator
objects are therefore created and added to ‘myOperators’.
The solver also acts as a factory class, defining methods
that the reusable components use to create a new
configuration and a new state. However, the constructor is
the main operative method, and it broadly executes the
following steps:

a. startNoGUISetup("AStar"); // Choose search
strategy, and no GUI input.

b. Create the appropriate start and goal
configurations and assign them to the following
inherited instance variables: 'startConfiguration'
and 'goalConfiguration'.

c. completeNoGUISetup(); // Boiler-plated code
(does the rest of the setup)

d. Solution solution = solve();
e. display(solution);

Programming Assignment: The Eight Puzzle
The Eight Puzzle problem has a 3 x 3 board with 8
numbered tiles and one blank space. A "move" consists of
the blank space moving into an adjacent space occupied by
a numbered tile. Thus, there are four moves: up, down, left
and right. The object of the puzzle is to reach a goal
configuration showing a certain arrangement of the
numbered tiles from a start configuration, using only legal
moves.
 Following our approach, the students build a model with
the following features: the configuration is a 2-D (3 x 3)
array of characters; start and goal states are provided by the
user; and the operators are up, down, left and right. To
adapt the Water Jug solution to the Eight Puzzle, the
students follow a step-by-step procedure outlined in a
manual given to them.
 The first thing this manual indicates is that each of the
classes discussed for Water Jug will have their Eight
Puzzle counterparts – therefore, be sure that for each
“WaterJug*.java” file, there is a corresponding
“EightPuzzle*.java” file. The “EightPuzzleConfiguration.
java” file is then edited to include the 2-D array to
represent a 3x3 board. The “isMatch(otherConfig)” method
is again easy, and must do an element-by-element
comparison of the respective 2-D arrays. Again, the
“applyOperator(op)” method is the challenge. First, the
blank space must be located on the board (a private helper
method called “locateSpace()” is a good idea). Depending
on this location, the application of the operator ‘op’ may be
infeasible (e.g., a blank in the top row cannot move up).
For feasible operators, helper methods such as
“moveUp()”, “moveLeft()”, etc. may be written to assist
“applyOperator(op)” in computing the board associated
with the next configuration. After this, the students need to
complete the “getDistanceToGoal(goalConfig)” method
using a suitable heuristic. Commonly used heuristics
include counting the number of misplaced tiles in the
current state or the sum of the "Manhattan" distances for

each tile from its current location to its location in the goal
state.
 The “EightPuzzleOperator.java” file is very easy to
modify – each operator here only has a name associated
with it (unlike the Water Jug operators, there are no
additional data associated with them). Modifications to the
“EightPuzzleState.java” file are also very minimal – since
the cost associated with the transition from each state to the
next is also one unit here, only names have to be changed.
The constructor of the “EightPuzzleSolver” class only
requires a modification of Step (b) discussed for
“WaterJugSolver” constructor above. Further, the code for
the factory methods (createConfiguration(), etc.) in the
solver can easily be written – usually by just modifying the
names in the corresponding Water Jug example.

Our AI Class Experience
We used this approach in our AI class in Spring 2007. To
gauge the usefulness of our approach, we gave the Eight
Puzzle in two phases. In Phase 1, we gave a linked-list
implementation (used in our CS2 class) and asked students
to solve the Eight Puzzle using the A* algorithm. They
could use the provided linked list classes to represent the
open, closed and other lists required by A*. Note that
students had to write the full code (from scratch) for the
A* algorithm. A few weeks later, in Phase 2, we explained
the State Space Search stereotype, its ability to incorporate
either BFS or A*, and demonstrated the framework
described above. To encourage participation in using the
framework to solve the same problem, students were told
that the better of the two grades would count for their final
grade. A survey of the students done after Phase 2
submission indicated that they reacted positively, and
largely preferred to use the framework. At the end of Phase
1, only one of nine students got a fully working program,
and two others were close. But after phase 2, six students
created fully working programs. Written comments
appreciated the availability of the reusable infrastructure.
To quote: “… reduced worries about how to search,
expand the current state, define the h-value function", "I
haven’t used linked lists in a long time, so I had trouble
implementing them in this problem, even though the rest of
the algorithm was pretty much correct. For this reason, I
liked the abstract infrastructure available." One student
commented that the linked list could have been used to
eventually create the solution. He also said that
understanding the classes in the infrastructure required
some effort, but once understood he would rather use the
infrastructure.

The Two-Person-Zero-Sum-Game Stereotype
Encouraged by the success of this approach, we have
developed a Two-Person-Zero-Sum-Game (TPZS), a
stereotype for board games. The idea is to enable students
to write game-playing programs such as Tic-Tac-Toe,

Connect Four, etc. Once again, our goal was to create the
right reusable infrastructure that is common to all such
games. We took the same use-case based approach we had
taken when considering the State Space Search stereotype.
Our goal was to build the infrastructure to enable game
development of software that can handle two versions of
the game: human vs. human (computer acts as a referee)
and human vs. computer. At the moment, the human vs.
human version requires both players to be on the same
computer. Our analysis indicated that one of the common
features of all such games is the workflow associated with
the game itself. The following sequence is common:

• A player takes a turn, and makes a move.
• This move is sent to the game board, which

decides if the move is legal, and if so, updates its
own state on the basis of the move contents.

• The board then checks if the game is over. If so, it
then determines if there is a winner and the
identity of the winning player (it is also possible
for the game to end in a draw).

• The board informs the referee of "game
termination" decision. The referee then informs
both players of this decision. If the game is not
over, the referee asks the other player to take a
turn, thus continuing the game.

Besides the above protocol, our approach enabled us to
identify common features within the players themselves. A
player could either be a human player or a computer
player. For any human player, it should be possible to
create a suitable GUI that displays the current board
configuration, accepts a move, and informs the player
about the progress of the game (i.e., legality of the move
made, a win/lose/draw decision, etc.). For a computer
player, one of the common standard approaches is to create
a limited-depth game tree whose nodes encapsulate a
configuration of the game board. Repeated application of
all possible legal moves to the nodes creates the tree to the
desired level. Thereafter, the player applies the Mini-Max
algorithm to the game tree, thus determining the best move
to make. Note that applying this algorithm requires the
board to have a heuristic function determining a goodness
value from the point of view of winning the game.
 We now discuss some important abstract classes
provided in the solution framework. As in the State Space
Search stereotype, each of these abstract classes has to be
inherited from to implement a specific game.

Board: This abstract class represents a game board and
provides the following abstract methods:

• isLegalMove(Move m)
• updateState(Move m)
• gameOver()
• getGoodnessValue(Symbol own, Symbol enemy)

The game developer of a specific game is required to
create a specific board class that inherits from the above
Board class. This class contains the most application-

specific behavior. The sub-class needs to provide the code
for each of the above methods.

Move: This abstract class encapsulates a symbol instance
variable, since every move made by any player must
necessarily include the player’s symbol. Other application-
specific move data need to be included in the sub-class.

HumanPlayer: Setting up a GUI is one of the tasks that
students find most onerous. We have attempted to
standardize elements of the GUI that displays features
common to all games (e.g., the final decision) and thus
reduce the student’s burden. The abstract class "Human
Player" provides facilities for the common GUI elements.
The application-specific sub-class is required to set up a
GUI that shows the view of this game’s board, and also
enable the entry of a move. But GUI elements showing the
board’s view and enabling user input specific to the game
have to be written individually for each game.

Computer Player: As discussed above, the abstract
class contains the entire infrastructure to build the game
tree. The application-specific sub-class only needs to
complete a method that generates a set of moves possible
given a current board.

Referee: The abstract class contains logic to initiate,
continue and terminate the game. It also informs players of
a termination decision. The application-specific sub-class
essentially sets up the whole game (i.e., the board, the two
players), and determines who goes first.

In addition to the above classes, the framework contains
other classes that facilitate the operation of the game
workflow. For example, a class called “Player” is present,
and it is the super-class of the “Human Player” and
“Computer Player” classes discussed above. It contains the
code to effect the player-selected move. It does this by
sending the move to the “Board”, which checks its legality,
updates the board state, etc. Space considerations do not
permit us to describe full details of the solution
frameworks for our two stereotypes. Interested readers may
contact the authors for further details.
 We have used this solution framework and implemented
several games: Tic-Tac-Toe, Connect Four, a variation of it
which we called "Make a Buck", Othello (Reversi), etc.
Once the solution framework was written, we found that it
was easy to implement specific games (including GUI's).
Some times it took us just a couple of hours to adapt the
software to play a new game. One of our graduates,
currently a free-lance software developer, used our
instruction manual on this stereotype and solution
framework and developed a two-human-player version of
the Checkers game in a couple of days. Further, with some
assistance from one of the authors, he was able to develop
the version with a computer player with two days of work.
The heuristic used to compute the goodness value in this

version is rather overly simplistic. As a result, the game, at
the time of this writing, is easily beaten!
 We plan to use this stereotype in our AI class in Spring
2008. The representative problem would perhaps be Tic-
Tac-Toe, and projects for the Connect Four, or the
Othello/Reversi game could be assigned. Another possible
assignment here could be to evaluate alternative heuristics
used to determine the “goodness value” of the board. With
our framework, one simply needs to replace the
"goodnessValue()" method to implement another heuristic.

Conclusion and Future Work
In recent years, CS major/minor programs are facing
serious challenges from low enrollment. The perception
that CS is just "programming" and therefore is not
intellectually exciting is a major issue to be addressed.
Writing game-playing and puzzle-solving programs
provides a good opportunity for students to experience the
excitement in programming. In this paper, we have
discussed the “Problem Stereotypes and Solution
Frameworks” approach that enables the teaching of
simplified SE techniques in CS1/2. A full discussion of
these techniques is traditionally done in a final year SE
course. We have described how this same approach can be
extended to the AI course, enabling the students to
program reasonably complex puzzles and games. The first
AI stereotype we present, State Space Search for puzzle
solving, was used during the Spring 2007 semester and met
with reasonable success. We have developed a Two-
Person-Zero-Sum-Game stereotype recently, and used it to
create many simple board game-playing programs. We
believe that our approach can be helpful to both AI and SE
courses – with the latter focusing on design and
development of an object-oriented solution framework for
the stereotype, and the former focusing on programming
details of a particular application.

References
Becker, K. 2001. Teaching with Games: The Minesweeper and
Asteroids Experience. The Journal of Computing Science in
Colleges 17(2): 23-33.

Booch, G. 2007. Object-Oriented Analysis and Design with
Applications, 3rd Edition. Reading, Mass: Addison-Wesley.

Faltin, N. 1999. Designing Courseware on Algorithms for Active
Learning with Virtual Board Games. In ACM SIGCSE Bulletin,
Proceedings of the 4th Annual SIGCSE/SIGCUE ITiCSE on
Innovation and Technology in Computer Science Education
(ITiCSE ’99), 135-138. New York, NY: ACM.

Fowler, M. 2003. UML Distilled: A Brief Guide to the Standard
Object Modeling Language, 3rd Edition. Reading, MA: Addison-
Wesley Professional.

Goschnick, S., and Balbo, S. 2005. Game-first
Programming for Information Systems Students. In
Proceedings of the Second Australasian Conference on
Interactive Entertainment (IE 2005), 71-74. Sydney,
Australia: Creativity and Cognition Studios Press.

Luger, G. F. 1998. Artificial Intelligence, III ed. Reading,
Mass: Addison Wesley.

Mitra, S., Rao, T.M., and Bullinger, T.A. 2005. Teaching
Software Engineering Using a Traceability-Based
Development Methodology. The Journal of Computing
Sciences in Colleges 20(5): 249-259.

Rao, T.M. 2003. Using Java to teach AI. The Journal of
Computing Sciences in Colleges 18(3): 114-125.

Rao, T.M., Mitra, S., Canosa, R., Marshall, S., and
Bullinger, T. 2007. Problem Stereotypes and Solution
Frameworks – A Design First Approach for the
Introductory Computer Science Sequence. The Journal of
Computing Science in Colleges 22(6): 56-64.

Russel, P. and Norvig, P. 2003. Artificial Intelligence, A
Modern Approach. Upper Saddle River, NJ: Prentice Hall.

Sindre, G., Line, S., and Valvag, O.V. 2003. Positive
Experiences with an Open Project Assignment in an
Introductory Programming Course. In Proceedings of the
25th International Conference on Software Engineering
(ICSE ’03), 608 - 613. Washington, DC: IEEE Computer
Society.

Wirfs-Brock, R., and McKean, A. 2002. Object Design:
Roles, Responsibilities and Collaborations. Reading, Mass:
Addison-Wesley Professional.

