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Abstract

In order to learn from naive instructors, machines must learn
more like how humans learn. We are organizing a “Boot-
strapped Learning Cup” competition, in which competitors
attempt to create the best learning agent for a curriculum
whose focus is known but whose specifics are not. By focus-
ing each competition on a particular factoring of the larger
problem of human-like learning, we hope to simultaneously
identify productive decompositions of the larger problem and
components that can eventually be integrated to solve it. To
this end, we seek to measure learner autonomy with “spec-
trum curricula” that measure learning against an incremen-
tally varied set of curricula, ranging from extremely tele-
graphic to overly detailed.

If this program of competitions is successful, it will lead to a
revolutionary change in the deployability of machine intelli-
gence, by allowing human curricula to be used in configuring
a system for an application area and by allowing machines to
“culturally” adapt to the specifics of their deployment. The
tools and models developed during this effort may also lead
to significant improvements in our models of human learning
and cognition.

Learning from Naive Instructors

If humans and machines are to work together in challeng-
ing environments, then machines must be able to learn from
humans in a manner similar to how humans learn from one
another. The environments that humans act in are highly
diverse and constantly changing—whether in the office, at
home, or on a battlefield. Even a machine with an exhaus-
tive background knowledge must be customized for the par-
ticular environment in which it acts, just as a secretary must
become accustomed to the peculiarities of a particular of-
fice’s policies and customs or a soldier learn the particular
patterns and cautions of a deployment area.

At present, effectively instructing a machine generally re-
quires that one be a highly trained expert in a field like
programming, knowledge engineering, or machine learning.
Typical practice is to either insert the knowledge directly—a
delicate, expensive and error-prone process—or else to sim-
ply expose the machine to a vast pile of data and hope that it
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(a) Blocks World

(b) RoboCup

Figure 1: Some possible domains for Bootstrapped Learning
competition curricula.

has learned what one desired.!

This is not how humans teach one another. Outside of
formal classroom settings, humans teach one another in-
formally, imprecisely, and highly effectively (and even a
classroom is extremely informal and imprecise compared to
the current requirements for machine instruction). Cultural
knowledge, like how to change a flat tire, what to do when
you’re sick, or fun games to play together, passes easily from
person to person in a population, even when the teacher has
no training as an instructor.

For humans and machines to work together routinely, ma-
chines must have this human-like capacity to learn from
naive instructors. Neither the homemaker nor the soldier

"There are, of course, notable exceptions, such as near-miss
learning(Winston 1970).



have the time and inclination to bother with a machine
partner otherwise. Although machines are far from hu-
man capabilities, much might accomplished even by meet-
ing the humans partway, as with Graffiti character recogni-
tion(MacKenzie and Zhang 1997). Even a partial success
could be revolutionary, allowing machines to adapt “cultur-
ally” to the environments in which they are deployed and
also allowing the vast reservoirs of human curricula to be
used in configuring machines for application domains.

The Bootstrapped Learning Competition

We are beginning an investigation of this area by organiz-
ing a “Bootstrapped Learning” competition, modelled af-
ter the RoboCup competition and building off of infras-
tructure developed by DARPA’s Bootstrapped Learning pro-
gram(DARPA IPTO Retrieved Nov 5 2008a).

The Bootstrapped Learning program is seeking to make
systems naively instructable through a combination of spo-
ken language, gestures, and demonstration. For purposes of
investigation, the interaction of the student with the instruc-
tor and its environment has been constrained to symbolic
messages in a formal interlingua. A curriculum is formed of
a series of training and testing lessons arranged in a “ladder”
leading from simply concepts up to an ultimate “capstone”
concept, and each lesson is designated to use one or more
out of a collection of specified “Natural Instruction Meth-
ods” (NIMs) such as “Example of Procedure” or “Feedback
Using Explanation.”

We are taking the framework developed thus far by this
program and coupling it with additional documentation,
our own curricula, and a semi-competent base learner for
competitors to build off. Competitors can then take their
own work and add learning components with particular
specialties—either in type of learning or type of teaching—
and have the base learner allow them to take a narrow focus
and still remain competitive.

Methods of Evaluation

With a more well-defined problem, such as character recog-
nition, evaluation can be a straightforward measure of er-
ror rate, and ordinary engineering methods applied to make
progress. Human-like learning, however, is so broad an area
and likely so tangled a problem that any near-term work
must address only simplified versions of the problem.

Some of the many problems inherent in learning from
naive humans include:

e missing and noisy inputs

e ambiguity of instruction (ranging from individual refer-
ences to unstated assumptions about the material)

e literal incorrectness of the teacher

e interpretation of natural input (language, gesture, hands-
on, observed actions)

e characterizing the cultural “protocols” used by human in-
structors in natural instruction

We are thus faced with an age-old question of Al: how can
we make a problem tractable enough for progress, without
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turning it into a toy whose solution has no scientific merit?
This problem is particularly acute since we are organizing a
competition, and the evaluation method may strongly shape
the decisions participants make about what ideas to investi-
gate.

In our judgement, there are three basic methods for eval-
uating the scientific merit of an idea in this domain:

e The tests can be made extremely complicated and diffi-
cult, so that even partially solving them clearly implies
that something important has been learned—either that
the system with the partial solution has an important idea
within it, or that there is some appropriate representation
under which the problem is easier than it appeared.

e Given a strong hypothesis about the means by which a
machine ought to be able to solve the problem, a fairly
simple test may serve to verify the predictions of the hy-
pothesis relative to other, competing hypotheses.

e Given a strong hypothesis about the key differences be-
tween human capabilities and current machine capabili-
ties, a fairly simply test can show progress targeted toward
those capabilities.

The first method is typical of major competitions such as
the DARPA Urban Challenge(DARPA IPTO Retrieved Nov
5 2008b). This approach effectively favors systems integra-
tion to the detriment of innovation in components, because a
significant failure in any single part of the system will gener-
ally cripple it with respect to the holistic performance mea-
sure. We believe that it is premature to look for integration
in this problem, as many of the components needed are still
immature or do not exist.

The second method is appropriate when the same team is
designing the measure and the solution hypothesis, but not
applicable for a competition where the point is to encourage
investigation of many possible solutions.

The third method, on the other hand, lets us focus inves-
tigation on narrow sub-problems, simultaneously investigat-
ing how to factor the larger problem and developing ideas
and tools that will ultimately contribute to its solution.

Each competition, then, will be centered around a hypoth-
esis that some particular axis where human learners and cur-
rent machine learners are different is both important and iso-
latable. The curriculum and scoring for the competition will
be centered around testing for human-like behavior on that
axis. Although the curriculum will not be known to com-
petitors, they will be given information about how it tests
the axis of interest. The results will thus give evidence to-
ward hypotheses at two different levels:

e If the competition entries include elegant solutions that
perform decently, then this axis of investigation is likely
to be a good factoring of the larger human-like learning
problem.

e The performance of particular entries reflects the quality
of their investigators’ hypotheses about the narrow sub-
problem.

When both indication of a good factoring and high-quality
solutions exist, we intend to refine the entries with the best
combination of elegance and performance into components



that are added to the base system as tools to be drawn upon
by future competitors. These tools would also be good can-
didates for cognitive science investigation of whether human
behavior is consistent with the operation of such a tool, and
also for eventual integration into a broad model of human-
like learning.

Tentative Hypothesis and Metrics

For the first contest we are organizing, intended to run in
2009, we have tentatively chosen to focus on autonomy in
the learner. We hypothesize that an important quality of
human-like learning is that the student is always actively hy-
pothesizing about structures in the environment. If this is the
case, then the role of the teacher is generally to help guide
the student’s choice between competing models, rather than
to give a model to the student. Thus, for example, the main
contribution of an electronics teacher would not be telling a
student about Kirchhoff’s Laws, but the set of examples and
graduated problems that help a student sort out ambiguities
and misunderstandings in how to apply them.

If this hypothesis is the case, then we would expect a stu-
dent exhibiting such “autonomy’ to have the following prop-
erties:

e [ earning can be advanced by any signal that clearly favors
one model out of a set of possibilities, even if the contents
of the signal are ambiguous or incorrect.

e A student will “leap ahead” and fill in small gaps in
knowledge without any intervention from the teacher.

e Easily perceptible affordances in the environment will
trigger learning without any intervention from the teacher.

Spectrum Curricula

We are therefore developing “spectrum curricula” that mea-
sure incremental changes in ability associated with particu-
lar aspects of instruction-based learning. A spectrum cur-
riculum is a collection of teaching lessons that all target
the same concept using the same natural instruction method.
The lessons in the collection vary incrementally with regards
to one aspect of interest (such as autonomy), from highly
challenging to entirely absent.

At the challenging extreme, the aspect is emphasized so
strongly that even humans may find the lessons too difficult,
while at the zero-challenge end even simple machine learn-
ing approaches should be sufficient and a human may find
the lesson challenging due to its artificiality. For example,
a spectrum emphasizing teacher incorrectness might range
from the teacher making a total hash of the lesson to the
teacher being perfectly logically precise and correct in every
statement and action.

The curriculum begins with a thorough test measuring the
student’s uninstructed ability, then progresses from most to
least challenging. Between each teaching lesson, the student
is tested again (using different but equivalent questions).
The product of such a curriculum is thus a curve showing
how the student’s cumulative understanding improves as the
aspect varies.

Testing an instruction-based learning system against sev-
eral curricula for the same aspect should produce a good
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measure of the system’s performance with respect to that
aspect. No system should be expected to perform well on
the most challenging lessons, but the performance of well-
designed system should degrade gracefully as the challenge
increases. Moreover, a spectrum that ranges from too chal-
lenging to zero challenge should also be able to provide a
fine-grained measure of performance on which incremental
progress towards success can be easily tracked.

Example Curricula for Learner Autonomy

In order to focus on learner autonomy, we are developing
curricula with varying levels of ambiguity in instruction in
the RoboCup and Blocks World domains—in particular am-
biguity that comes from information omitted from the cur-
riculum by the teacher. Our ambiguity spectra thus begin
with teaching lessons that are extremely telegraphic, pro-
viding almost no information to the student, and end up ex-
tremely detailed, providing masses of information to the stu-
dent.

At the extreme telegraphic end, learning may be difficult
even for humans. As more detail is added, the lesson should
become easy for a human to learn from. Eventually, as the
level of detail continues to increase, learning should become
easy for conventional machine learning algorithms. At the
high detail end, however, it may once again be hard for hu-
mans to learn from due to the excess of data—for example,
a human may become confused or believe that the concept
being taught must be more complicated than it is because the
instruction is so detailed.

We estimate that 10 spectrum curricula should be suffi-
cient to provide a good measure of capability in coping with
ambiguity in instruction. There are many pieces of knowl-
edge in the RoboCup and Blocks World domains that make
good spectrums, such as:

e Learning “out of bounds” in RoboCup by example: from
a single gesture to many randomly scattered examples.

e Learning to cope with the Sussman Anomaly in Blocks
World by telling: from just indicating the critical block to
explaining every step in the process.

e Learning when to pass in RoboCup keep-away by feed-
back: from pointing out the key opponent to giving the
precise formula.

The “out of bounds” curriculum, for example, consists
of a seven step spectrum. In order from most detailed to
least detailed (with the additional assumptions expected to
be necessary in parentheses) the steps are:

1. 50 random locations, half expected to be out of bounds

2. 20 random locations scattered near the boundary, half ex-
pected to be out of bounds (homogeneity away from ex-
amples).

3. 4 pairs of examples, one in and one out on each boundary
line (four pairs means four sides, probably a rectangle).

4. Two examples (inside or outside) at opposite corners (the
shape is a rectangle and the examples are at its corners).

5. Point to the boundary line and give one example in and
one out (the visible line is the decision boundary).



6. Point to the boundary line and give one example (with
a boolean function, outside the line will be opposite to
inside).

7. Just point to the boundary line (play is likely to be legal
inside a line).

Testing asks about ten random locations, half expected to
be out of bounds. The student is evaluated by starting with
the most telegraphic (“Just the line””) example, producing a
curve of seven points.

Contributions

In order to learn from naive instructors, machines must learn
more like how humans learn. We are organizing a “Boot-
strapped Learning Cup” competition, in which competitors
attempt to create the best learning agent for a curriculum
whose focus is known but whose specifics are not. By focus-
ing each competition on a particular factoring of the larger
problem of human-like learning, we hope to simultaneously
identify productive decompositions of the larger problem
and components that can eventually be integrated to solve
1t.

If successful, this effort will lead to a revolutionary
change in the deployability of machine intelligence, by al-
lowing human curricula to be used in configuring a system
for an application area and by allowing machines to “cul-
turally” adapt to the specifics of their deployment. The tools
and models developed during this effort may also lead to sig-
nificant improvements in our models of human learning and
cognition.
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