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Abstract

This paper presents an overview of a series of projects
exploring multi-robot learning from demonstration. We
present flexMLfD, a robot independent and task inde-
pendent demonstration learning system that supports
a variable number of robot learners. This learning
system has been fully implemented and tested, and
we present three example domains, utilizing different
robotic platforms, to which it has been applied. Ad-
ditionally, we present scalability analysis, using up to
seven real robots, examining how the number of robots
being taught by the teacher at the same time affects the
number of demonstrations required to learn the task, the
time and attention demands on the teacher, and the delay
each robot experiences in obtaining a demonstration.

Introduction

One of the central goals of robotics research is to create
robots that are able to assist humans in work environments
and engage in close interaction with families in homes. As
robots increasingly become a part of people’s everyday lives,
methods for developing new robot behaviors in a natural and
intuitive way that is accessible to non-programmers are re-
quired. Inspired by the way humans and animals teach each
other, Learning from Demonstration (LfD) provides an intu-
itive interface for robot programming based on human-robot
interaction. In this learning approach, a teacher, typically
a human, performs demonstrations of the desired behavior
to the robot. The robot records the demonstrations as se-
quences of state-action pairs, which it then uses to learn a
policy that reproduces the observed behavior.

LfD has been gaining widespread attention in the robotics
community, and recent work has led to the development of
a wide variety of single-robot demonstration learning algo-
rithms. Proposed techniques span a wide range of policy
learning methods, such as reinforcement learning (Smart
and Kaelbling 2002), classification (Saunders, Nehaniv,
and Dautenhahn 2006) and regression (Bentivegna 2004;
Grollman and Jenkins 2007), and utilize a variety of inter-
action methods, including natural language (Lockerd and
Breazeal 2004), gestures (Steil et al. 2004), joysticking
(Grollman and Jenkins 2007) and observations of human
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demonstrators (Nicolescu and Mataric 2003; Calinon and
Billard 2007).

Despite many variations, a unifying feature of these ap-
proaches is that they are designed for a single learner, fre-
quently relying on close one-to-one interaction between the
robot and teacher. However, many robotic tasks require the
collaboration of multiple robots. In such domains, utiliz-
ing an individual teacher for each robot is inefficient and
impractical in many real-world settings. A natural question
therefore arises about the feasibility of a single person teach-
ing independent, and possibly unique, policies to multiple
robots at the same time. We refer to this policy learning
method as multi-robot learning from demonstration (MLfD).

Our research has explored multi-robot demonstration
learning in a series of projects, and in this paper we present a
condensed overview of our work. We present flexMLfD, the
first task-independent and robot-independent control inter-
face for multi-robot demonstration learning. Our approach
is based on the Confidence-Based Autonomy (CBA) single-
robot algorithm (Chernova and Veloso 2009), which enables
a robot to learn a task policy through interaction with a hu-
man teacher. The generalized representation and adjustable
robot autonomy provided by the CBA algorithm enable the
flexible system design and multi-robot learning capabili-
ties of flexMLfD. Our multi-robot system includes a robot-
independent and task-independent modular software archi-
tecture for robot learning, interaction, and control, which
can be applied to a single or multiple, independent or col-
laborative, robot learners.

In the following section, we present an overview of the
CBA algorithm, followed by a description of the flexMLfD
learning system. flexMLfD has been fully implemented and
tested using multiple real-world domains and robotic plat-
forms. In this paper we present examples of three real-world
tasks that have been successfully learned using this system.
Additionally, we present a scalability analysis, using up to
seven robots, examining how the number of robots being
taught by the teacher at the same time affects the number
of demonstrations required to learn the task, the time and
attention demands on the teacher, and the delay each robot
experiences in obtaining a demonstration.
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Figure 1: Overview of the flexMLfD demonstration learning system: (a) single robot learning architecture (b) high-level

overview of multi-robot learning.

Single-Robot Demonstration Learning

In this section, we present a summary of the CBA demon-
stration learning algorithm that lies at the heart of the
flexMLfD learning system. For full details and evaluation
of CBA, please see (Chernova and Veloso 2009).

Confidence-Based Autonomy is a single-robot algorithm
that enables a robot to learn a policy through interaction with
a human teacher. In this learning approach, the robot begins
with no initial knowledge and learns a policy incrementally
through demonstrations acquired as it practices the task.

Each demonstration is represented by a state-action pair,
(s,a), symbolizing the correct action to perform in a par-
ticular state. The robot’s state s is represented using an n-
dimensional feature vector that can be composed of contin-
uous or discrete values. The robot’s actions are bound to a
finite set a € A of action primitives, which are the basic ac-
tions that can be combined to perform the overall task. The
goal is for the robot to learn to imitate the demonstrated be-
havior by learning a policy mapping states s; to actions in
A. The policy is learned using supervised learning and is
represented by classifier C : s — (a, ¢), trained using state
vectors s; as inputs, and actions a; as labels. For each classi-
fication query, the model returns the highest confidence ac-
tion a € A and action-selection confidence c¢. CBA can be
combined with any supervised learning algorithm that pro-
vides a measure of confidence in its classification.

The most important element of the CBA algorithm is the
method for obtaining demonstration examples, which con-
sists of the following two components:

Confident Execution This algorithm enables the robot to
select demonstrations in real time as it interacts with the en-
vironment, targeting states that are unfamiliar or in which
the current policy action is uncertain. At each timestep, the
algorithm evaluates the robot’s current state and actively de-
cides between autonomously executing the action selected
by its policy and requesting an additional demonstration
from the human teacher. Demonstrations are selected based
on the action selection confidence of classifier C.

Corrective Demonstration This algorithm enables the
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teacher to correct the robot’s mistakes by performing ad-
ditional demonstrations. If an incorrect action is selected
for autonomous execution by the Confident Execution algo-
rithm above, Corrective Demonstration allows the teacher to
retroactively demonstrate what action should have been se-
lected in its place. In addition to indicating that the wrong
action was selected, this method also provides the algorithm
with an additional training point, leading the robot to learn
quickly from its mistakes.

Together, Confident Execution and Corrective Demon-
stration form an interactive learning algorithm that takes ad-
vantage of the robot’s and teacher’s complementary abili-
ties — the robot’s knowledge of its underlying policy and the
teacher’s knowledge of the task. Note that we assume that
the domain allows the robot to pause and request demonstra-
tions during the learning process.

Software Architecture Design

To utilize the CBA algorithm, we present the single-robot
learning architecture shown in Figure 1. The single robot
architecture consists of three software modules: the policy
learner, the Learning Control Interface (LCI), and the robot’s
onboard software controller. The LCI is a task-independent
and robot-independent software component that provides a
central control point for learning. It contains the CBA algo-
rithm and manages the interaction between all system com-
ponents. Additionally, the LCI provides a standard graphi-
cal user interface (GUI) for interaction between the learning
software and the teacher.

In addition to the LCI, the software architecture consists
of a robot control module and policy learning component.
All communication between software components occurs
over Transmission Control Protocol (TCP) sockets. The
modular structure of the presented learning system has many
benefits. Most importantly, it allows individual components
to be switched in and out freely, which not only enables the
user to apply the base system to a variety of robotic plat-
forms and tasks, but also allows for independent develop-
ment and testing of each system element.
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Figure 2: Screenshot of the LCI graphical user interface.

Our system makes no assumptions about the physical em-
bodiment and onboard software architecture of the robot be-
yond the following requirements: 1) the robot’s onboard
controller is able to establish a TCP connection with the
LCI for data transfer; 2) the robot’s onboard controller is
able to perform a set of predetermined actions the execu-
tion of which can be triggered by the LCI. Any robotic, or
even software, system that meets these general requirements
can be used for demonstration learning. Communication be-
tween the LCI and the robot consists of the exchange of state
and action information.

The policy learning component can be viewed as a black
box containing the classifier of the teacher’s choosing, for
which the LCI provides a generic interface. Communication
between the LCI and policy learner consists of three types of
information: the LCI provides the state information acquired
from the robot, and the policy returns its highest confidence
action and the action selection confidence.

For each learning task, the teacher configures each robot’s
instance of the LCI by specifying the following learning pa-
rameters using an XML configuration file: robot informa-
tion (name, IP, and port), choice of policy learning algorithm
(e.g. SVM), list of features composing the robot state, list of
actions available for demonstration, and the name of the log
file in which a record of demonstrations is maintained.

Graphical Interface

The graphical user interface of the LCI serves as a two-way
communication device between the robot and the teacher.
A screenshot of the GUI is shown in Figure 2 with labels
highlighting different regions of the display. The interface
displays system information, such as the associated robot’s
name and current state, and enables the teacher to perform
demonstrations by selecting among a set of possible actions
for the robot to execute. Additionally, the GUI also pro-
vides the teacher with the capability to select among multi-
ple execution modes, as discussed below, and to undo incor-
rect demonstrations. The undo functionality is useful in the
case that the wrong action was accidentally selected by the
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teacher. The undo operation erases the last demonstration
performed from the policy database. However, it does not
undo the effects of the incorrect action that was executed by
the robot as a result of the mistaken demonstration.

Additionally, feedback is provided by a color bar, which
enables the teacher to identify at a glance the current status
of the robot: not connected, connected and executing an ac-
tion, or waiting for a demonstration. An action information
display is used to show the current action being performed
by the robot. When the robot is idle and a demonstration
request is pending, the display shows the highest confidence
policy action as a recommendation to the teacher.

LCI Execution Modes

The LCI operates in one of five execution modes, each of
which provides the teacher with a different level of control
and interaction with the robot. The list below presents each
execution mode in detail. A summary of the interaction be-
tween system components for each execution mode is pre-
sented in Figure 3.

Off — This is the initial mode of flexMLfD, in which the LCI
is inactive. No communication occurs between components.

Manual — This mode provides the teacher with manual con-
trol of the robot’s actions, similar to a joystick. The LCI
displays the robot’s current state and allows the teacher to
select actions for execution. The robot executes the speci-
fied actions, but no learning takes place. This mode is useful
for basic interaction with the robot, such as for testing action
performance or for teleoperation.

Non-Interactive — This mode enables the teacher to per-
form demonstrations without receiving feedback from the
LClI regarding when and what demonstrations should be per-
formed. Instead, the LCI requests a demonstration at every
learning timestep, regardless of action selection confidence.
This mode enables the teacher to perform long batch demon-
stration sequences, which can be useful for bootstrapping
the learning process, as discussed in (Chernova and Veloso
2009). This learning mode is not used in the experiments
presented in this paper.

CBA — In this mode, the LCI uses the CBA algorithm to con-
trol robot autonomy and select demonstration. Additionally,
it enables the teacher to initiate corrective demonstrations by
selecting the correct action in the GUI when an incorrect ac-
tion is observed. When this occurs, the LCI records the new
demonstration, communicating it to the policy learner. Note
that once initiated, the incorrect action is allowed to com-
plete without interruption; interrupting an action may cause
the robot to enter an unstable or unsafe state.

Autonomous — In this mode, robot’s actions are fully con-
trolled by the current learned policy. The robot is au-
tonomous, not relying on the teacher for any demonstrations.

flexMLfD Learning Framework

At the core of the flexMLfD system lies the CBA algorithm
and the presented learning architecture, which establishes a
general state and action representation and provides a means
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Figure 3: Interaction between the LCI and system compo-
nents in each execution mode.

for single-robot policy learning through adjustable auton-
omy. We believe flexMLfD to be the first approach that en-
ables a single teacher to teach multiple robots at the same
time.

One of the greatest challenges that prevents most single-
robot algorithms from generalizing to multi-robot domains
is the problem of limited human attention — the fact that the
teacher is not able to pay attention to, and interact with, all
robots at the same time. The flexMLfD system addresses this
problem by replicating instances of the single-robot archi-
tecture, as shown in Figure 1(b). This approach enables the
system to take advantage of the underlying CBA algorithm,
specifically of the fact that the Confident Execution compo-
nent of CBA prevents the autonomous execution of actions
in low-confidence states. This effect makes each learner ro-
bust to periods of teacher neglect, enabling multiple robots,
each utilizing its individual instance of CBA, to be taught at
the same time.

Using this approach, each robot acquires its own set of
demonstrations and learns an individual task policy. Specif-
ically, given a group of robots R, our goal is for each robot
r; € R to learn policy II; : S; — A; mapping from the
robot’s states to its actions. Note that each robot may have
a unique state and action set, allowing distinct policies to
be learned by possibly heterogeneous robots. The flexibility
of the underlying single-robot architecture enables this ap-
proach to be applied to a wide variety of tasks with minimal
configuration. During learning, the teacher is able to moni-
tor the activities of all robots either visually or through the
LCI graphical interface. Demonstrations are provided to one
robot at a time.

Example MLfD Domains

In this section, we present three example multi-robot tasks
that showcase the flexible design of the flexMLfD system.
For each robotic platform, we assume the existence of a set
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of sensing and acting abilities that are known to the user.
At the beginning of the learning process, the teacher selects
among these basic abilities and specifies the state features
and actions relevant to the current task using the XML con-
figuration file. This selection process speeds up learning by
reducing the state representation only to relevant features,
and simplifies the user interface for demonstration.

Below, we present a brief summary of each task, which
were performed using the legged Sony AIBO and the hu-
manoid Sony QRIO robots. Note that within each of the
presented domains, all robots of the same type utilize the
same state and action representation. However, this is not a
requirement of the algorithm or learning system.

Ball Sorting Domain The ball sorting domain (Chernova
and Veloso 2008), shown in Figure 4(a), consists of two
sorting stations connected by ramps. Each station has an
individual queue of colored balls (red, yellow or blue) that
arrive via a sloped ramp for sorting. The task of the two
Sony QRIO humanoid robots is to sort the balls by color
into four bins. This is achieved by picking up and sorting
each ball into the left or right bin, or by passing the ball
to the robot’s teammate by placing it into the teammate’s
ramp. Additionally, each robot communicates to its team-
mate the status of its queue, empty or full. When its team-
mate’s queue is empty, a robot in possession of a ball should
share the ball with the teammate by passing it. However,
only balls that can be sorted by the other robot should be
passed. If both queues are empty, the robots should wait.

Beacon Homing Domain The beacon homing domain,
shown in Figure 4(b), consists of an open area with three
uniquely-colored beacons (B = {B1, B2, B3}) located
around the perimeter. Seven Sony AIBO robots operate in
the domain, able to identify the relative position of each bea-
con and to navigate in the environment by selecting the di-
rection of motion. All robots begin at the center of the open
region and must navigate to and occupy one of the beacons.
Specifically, each robot must search for a beacon until one is
found that is occupied by fewer than 3 robots. Upon locating
such a beacon, the AIBO should navigate to its location and
occupy it by stopping within a set radius 7. If at any point
the number of robots at the selected beacon exceeds 3, the
AIBO must search for another beacon.

Playground Domain The playground domain, shown in
Figure 4(c), consists of an open space simulating a school
playground. Two humanoid QRIO robots represent “teach-
ers”, and four AIBO robots represent “students”; each QRIO
is assigned two AIBO students as its “class”. The task sim-
ulates a playground scenario in in which the teachers col-
lect their students at the end of recess and take them back to
lessons. The task begins with recess, during which the QRIO
robots talk to each other while the AIBOs play. Once the
bell sounds, the QRIOs stop their conversation and walk to
opposite sides of the playground. Each QRIO then calls its
respective class and waits for it to arrive. The AIBOs play in
the open space until they are called. Once called, each robot
should navigate to its QRIO teacher. Once a QRIO has all
of its students around it, it leaves the playground with the
AIBOs following.



(a) Ball sorting domain

(b) Beacon homing domain

(c) Playground domain

Figure 4: Multi-robot demonstration learning domains with Sony QRIO and AIBO robots.

Ball Sorting Beacon Homing Playground
Robots 2 QRIOs 7 AIBOs 2 QRIOs and 4 AIBOs
Actions Wait, SortBallLeft, SortBall- | Forward, TurnLeft, TurnRight, | Q: Talk, WalkToOpenSpace,
Right, PassBallRamp, Send- | Stop, Search CallAIBOs, Wait, LeadAIBOs
HaveBall A: Forward, Left, Right, Stop,

Search, Play

Action Description

High-level manipulation, com-
munication

Low-level navigation

Low-level navigation, high-
level behavior, communication

State

HaveBall, TeammateHaveBall,
BallColorg, BallColorg,
BallColorg, SentHaveBall

Bla’ B1d7 Blnr’ B2a’ BQd’
B2nra B'?)m B3d7 B3nra
OccupiedBeaconl D

Q:  Bell, InOpenSpace,
CalledAIBOs,  NumStudents
A: Recvd@QRIOCall, Q1,,
Qld’ Q2aa Q2d

State Description

Noisy real-valued and boolean
features

Noisy real-valued and discrete
features

Noisy real-valued and boolean
features

Communication Explicit communication | Passive communication Explicit and passive communi-
actions cation
Interaction Loosely collaborative task, no | Non-collaborative task, full | Loosely collaborative task,

physical interaction

physical interaction

full physical interaction

Table 1: Overview of demonstration learning tasks.

All three of the above tasks were successfully learned us-

ing the flexMLfD system. Table 1 presents an overview of
the various aspects of each learning task, including the state
and action representations and styles of interaction and com-
munication. Different elements of each task showcase the
flexibility of the proposed system, including the following
features:

Multiple robotic platforms, the Sony QRIO and AIBO.
Variable number of robots, from 2 to 7.

Heterogeneous and homogeneous groups of robots.

Each robot platform was utilized for multiple tasks, with
distinct states, actions and policies. The QRIO robots in
particular use very different abilities in the ball sorting
and playground domains.

The ability to train an individual policy for each robot pro-
vides the teacher with the choice of train all robots the
same policy, as in the beacon homing domain, or distinct
policies, as in the ball sorting and playground domains.
The flexible action representation supports wide range
of actions, ranging from low-level navigation commands,
such as TurnLeft, to high-level behavioral commands,
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such as T'alk, an action that causes the QRIO to use con-
versational pose and gestures to simulate speaking.

The flexible state representation includes boolean, dis-
crete and real-valued features and both locally observed
and communicated information.

Communication actions are incorporated seamlessly
into a robot’s policy along with physical actions.
Teaching communication actions explicitly, such as
SendH aveBall in the ball sorting domain, enables the
teacher to specify the exact conditions under which com-
munication should occur, a useful technique for domains
with high communication costs. Alternately, passive com-
munication can be used to automatically communicate
data at a fixed time interval, as is done in the beacon hom-
ing domain for the Occupied Beaconl D feature.

Policy learning supports variable degrees of collaboration
and interaction between robots, ranging from physically
separate but collaborating QRIO robots in the ball sort-
ing task, to competitive and physically interacting AIBO
robots in the beacon homing domain.

All of the above variations are fully supported by the



SflexMLfD learning system and no special adaptations to the
underlying architecture are required for each task.

Scalability Analysis

In addition to exploring the flexibility of the learning system,
we are interested in analyzing the scalability of flexMLfD. In
this section, we discuss how the number of robots taught by
the teacher at the same time affects the number of demon-
strations required to learn the task, the demands for time and
attention placed on the teacher, and the delay that each robot
experiences in obtaining a demonstration. Evaluation was
performed in the beacon homing domain using 1, 3, 5, and
7 robots.

All evaluation results presented in this paper were per-
formed with a single teacher. As with all human user tri-
als, we must account for the fact that the human teacher
also learns and adapts over the course of the evaluation. To
counter this effect, the teacher performed a practice run of
each experiment, which was then discarded from the evalu-
ation. An alternate evaluation method would be to eliminate
the human factor by using a standard controller to respond
to all demonstration requests in a consistent manner. This
approach, however, would prevent us from evaluating the
effect multiple robots have on teacher performance.

Robot Autonomy

Figure 5 shows how the level of autonomy, measured as the
percentage of autonomous actions versus demonstrations,
changes for an individual robot over the course of training.
Data in the figure presents the average autonomy over time
of robots in the 5-robot beacon homing experiment. The
shape of the curve seen in this figure is typical of CBA learn-
ing, in which robots begin with no initial knowledge about
the task and request many demonstrations early in the train-
ing process. The domain knowledge acquired from these
initial demonstrations provides the robot with the experience
for handling most commonly encountered domain states. As
aresult, following the initial burst of demonstration requests,
the robot quickly achieves 80-95% autonomous execution.
The remainder of the training process then focuses on re-
fining the policy and addressing previously unencountered
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Figure 5: Average level of autonomy of a single robot over
the course of training (5-robot learning example).
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states. The duration of this learning time is dependent upon
the frequency with which novel and unusual states are en-
countered. Learning is complete once the correct action is
selected for all states with high confidence.

Training Time

Figure 6 presents the change in the overall experiment train-
ing time with respect to the number of robots. The data
shows a strongly linear trend, with seven robots requiring
just over 1.5 hours to train. This result is significant as it
suggests that this approach will continue to scale to even
larger tasks.

Total Training Time
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6: Total training time with respect to number of

Importantly for the scalability of the CBA algorithm,
training time grows linearly with the number of robots. In
the following sections, we examine the factors that con-
tribute to the training time, such as the number of demon-
strations and demonstration delay.

Number of Demonstrations

In this section, we examine how the number of demonstra-
tions performed by the teacher on average for each robot,
and in total for each experiment, changes with respect to the
number of robots.

Figure 7 shows that as the number of robots grows, we
observe a slight increase in the number of demonstrations

Average Number of Demonstrations Per Robot
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Figure 7: Average number of demonstrations performed by
the teacher for each robot.



required per robot. This possibly surprising increase is due
to the fact that, although the number of state features in the
representation of our domain does not change, the range of
possible feature values does. Specifically, in an N-robot ex-
periment, the value of features representing the number of
robots located at a beacon, b,,,., have the range [0,/V]. As a
result, extra demonstrations are required in the presence of
a greater number of robots to provide guidance in the ad-
ditional states. While similar effects are present in many
domain representations, state features can often be designed
or modified in such a way that their range is independent
of factors such as the number of robots. For example, in the
beacon homing domain this could be achieved by converting
bn, to a boolean feature that indicates whether the beacon’s
capacity has been reached or not.

Figure 8 shows how the total number of demonstrations
required for each experiment changes with respect to the
number of robots. The rate of growth is nearly linear, with
seven robots requiring nearly 300 total demonstrations to
learn the task. The overall number of demonstrations that
must be performed has a significant effect on the overall
training time, as discussed in the next section.
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Figure 8: Total number of demonstrations performed in each
experiment.

Attention Demand on the Teacher

In addition to the overall training time and number of
demonstrations, it is important to understand the demands
that multiple robots place on the teacher. The teacher experi-
ences the greatest number of demonstration requests during
the earliest stages of learning, possibly from multiple robots
at the same time. To evaluate the demand on the teacher’s at-
tention during this most laborious training segment, we cal-
culate the longest continuous period of time during which
the teacher has at least one demonstration request pending.
This value provides insight into the degree of mental effort
that is required from the teacher.

Figure 9 plots the duration of the longest continuous
demonstration request period for each experiment. The data
shows that the duration grows quickly, possibly exponen-
tially, with the number of robots. In experiments with only a
single robot, demonstration requests last only a few seconds
at a time; as soon as the teacher responds to the request, the
robot switches to performing the demonstrated action. As
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Figure 9: Attention demand on the teacher.

the number of robots increases, however, so does the num-
ber of simultaneous requests from multiple robots. In the 7-
robot experiment, this results in a 3.5 minute uninterrupted
segment of demonstration requests for the teacher.

Demonstration Delay

As discussed in the previous section, simultaneous demon-
stration requests from multiple robots become common as
the number of robots increases. As a result, robots are often
required to wait while the teacher responds to other robots.
Figure 10 shows that the average time a robot spends wait-
ing for a demonstration grows with respect to the number of
learners from only 2 seconds for a single robot to 12 seconds
for seven robots.

Average Time Robot Waits for Demonstration
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Figure 10: Average amount of time a robot spends waiting
for a demonstration response from the teacher.

Figure 11 plots the percentage of time a robot spends
waiting on average for a demonstration over the course of
training. Not surprisingly, we observe that the demonstra-
tion delay is greatest early in the training process when the
teacher is most busy with initial demonstration requests. A
promising direction for future work is to examine the pos-
sibility of staggering the times at which novice robots are
introduced to the task in order to reduce the demand of the
initial training phase on the teacher.
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Figure 11: Average percentage of time a robot spends wait-
ing for a demonstration over the course of training.

Evaluation Summary

In summary, our findings show promising trends for the scal-
ability of the presented multi-robot demonstration learning
approach. Particularly significant is that the total training
time grows linearly with the number of robots, allowing
learning to scale to larger tasks. Somewhat unsurprisingly,
we also found that increasing the number of robots also sig-
nificantly increases the workload of the teacher, as measured
by the number of pending demonstration requests. In our
evaluation, we show that this in turn impacts demonstra-
tion delay and robots must spend more time waiting for the
teacher’s response. While this has no negative impact on
learning in the presented domain, delay may impact perfor-
mance in other tasks.

Further studies are required before making broad conclu-
sions about the scalability of flexMLfD. In particular, more
research is needed to determine what impact state represen-
tation, action duration, and degree of collaboration between
robots have on learning performance and scalability.

However, based on the presented case study we find that
no absolute upper bound exists on the number of robots
that can be taught at the same time. The maximum num-
ber of robots used in the experiments, seven, represents our
own limitation in terms of time and the number of available
robots, not a limitation of the algorithm. Insights gained in
this evaluation can be used as a guide for the development
of future applications for flexMLfD. For example, our knowl-
edge of the trend in overall training time requirements can
be used to limit the number of robots in other applications
for which the availability of an expert teacher is limited to
some fixed time. Similarly, the number of robots in other
domains may be affected by the amount of time a robot may
remain idle while waiting for a demonstration.

Conclusion

Multi-robot applications are an exciting and promising new
direction for demonstration and imitation based learning
methods. In this paper, we presented an overview of
the flexMLfD multi-robot demonstration learning system.
Our approach is based on the Confidence-Based Auton-
omy demonstration learning algorithm, which provides the

27

means for a single robot to learn a task policy through in-
teraction with a human teacher. We utilized the general-
ized representation and adjustable autonomy provided by
the CBA algorithm to develop a flexible multi-robot demon-
stration learning system. To highlight the generality of the
presented approach, we presented three multi-robot domains
which showcase learning using multiple robotic platforms in
uniform and heterogeneous groups, utilizing different state
features, actions, and styles of communication and collabo-
ration. Additionally, we presented an evaluation of the scal-
ability of this approach with regard to the number of demon-
strations required to learn the task, the demands for time and
attention placed on the teacher, and the delay that each robot
experiences in obtaining a demonstration. The results of our
case study indicate that no strict upper bound exists on the
number of robots due to limitations of the algorithm.

We hope that the presented work serves as a stepping
stone for further research into multi-robot demonstration
learning. Promising future research direction include, and
are not limited to, alternate representations and learning
techniques, additional methods of human-robot interaction,
interface design, multi-robot control and scalability.
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