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Abstract 
We study the problem of learning from disagreeing 
demonstrators. We present a model that suggests how it 
might be possible to design an incentive-compatible 
mechanism that combines demonstrations from human 
agents who disagree on the evaluation of the demonstrated 
task. Apart from comonotonicity of preferences over atomic 
outcomes, we make no assumptions over the preferences of 
our demonstrators. We then suggest that a reputation 
mechanism is sufficient to elicit cooperative behavior from 
otherwise competitive human agents. 

Introduction   
Task demonstration is a promising approach for dealing 
with the difficulty of robot programming in complex 
settings. Instead of placing the integrity of the process’ 
burden on the learning robot, a fraction of it is assigned to 
humans by the teaching responsibility. This approach is 
inspired by the mimicking behavior witnessed in nature 
and takes advantages of the human cultural expertise in 
transmitting knowledge though demonstration (Breazeal 
and Scassellati, 2007). 
Just like in the literature of supervised learning, the 
demonstration mechanism allows a set of examples to be 
used by robots to learn and produce a general policy. 
However, one of the differences in teaching robots by 
demonstration is that it offers an opportunity for humans to 
criticize the policies generated by the robot (Argall, 
Browning and Veloso, 2007). This ‘contextual criticism’ 
seems to increase the efficiency of the process, making the 
demonstration approach very appealing.  
Unfortunately, a characterizing trait of human nature is the 
idiosyncrasies that distinguish each individual. For almost 
every task, we find ourselves with very particular 
perspectives, usually diverging about the desirability and 
preferences over different states, and sometimes even 
disagreeing about what would be the best strategy to reach 
a certain state. Therefore, we argue that if robots are to 
become a significant part of the human routine, it will be 
essential for them to deal with human peculiarities. 
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Motivated by this remark, this paper introduces a model 
where robots learn from human demonstrators who do not 
share a common preference over states of the world. As an 
inspiring example, imagine a married couple who tries to 
teach a robot how to drive their kids to school. This is a 
task that contains a number of traditional challenges usual 
in the Multiagent Systems community (including the 
problem of imperfect perception when identifying the 
correct state of the world, and the computation of which 
action to perform given an inferred decision point). 
However, we are mainly interested in a different aspect of 
this scenario: we assume that each of our human agents has 
a subjective policy for the task and they agree to disagree 
on the best strategy to transmit to the robot. More 
specifically, one of the human agents has a very aggressive 
driving style, while the other is too passive. 
Clearly, no individual driving profile can be singled out a 
priori as better than the other. While in some cases a 
passive approach will diminish the risk of exposing the 
passengers to accidents, there may be situations where 
there is room for a more aggressive (i.e. less defensive) 
course of action that won’t increase the likelihood of 
accidents by much, while incurring in a considerable 
decrease in the duration of the ride. 
A straightforward way to solve this problem would be to 
give up efficiency and arbitrarily select one of the existing 
human agents to instruct the robot by demonstration. 
However, this would represent an unfair resolution of the 
problem since, in principle, no qualitative order exists over 
humans. Furthermore, we believe that since humans will 
delegate to the robot a task that is currently performed by 
them, a minimal trace of each demonstrator’s driving style 
should be reflected in the robot behavior. 
With these observations in mind, we design a framework 
that intelligently integrates inputs from our disagreeing 
sources and combine them into a single policy. In order to 
avoid a greedy equilibrium where each demonstrator 
ignores prospective combinations of driving styles, we will 
use a similar framework to (Argall, Browning and Veloso, 
2007) and consider a critiquing phase in our mechanism. In 
this step, we encourage each demonstrator to carefully 
evaluate a policy generated from the poll of demonstrations 
of human agents. And in order to achieve incentive-
compatibility, we include a reputation mechanism to the 
mode, in order to collect constructive criticism on the 
evaluation phase. 
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A Model of Learning from Disagreeing 
Demonstrators 

Model Parameters 
We consider a set of humans agents D who wish to 
demonstrate to a single robot how to perform the task of 
driving their kids to school. All of them have unknown 
utility functions which are computed over a set of known 
aspects of the world O. In our model, we assume that the 
preference relations of the demonstrators are comonotonic 
over aspects of the world, i.e. 
 

∀di,dj ∈ D, ∀Ok, oa,ob ∈ Ok  oa �i ob � oa �j ob. 
 

In other words, for each outcome, we assume that our 
demonstrators agree on a weak ordering of its domain. 
However, they need not agree on preferences over 
combinations of the outcomes. In our example, assume we 
have two outcomes in our driving model: Oc is the number 
of crashes before reaching the school, and Od is the 
duration of the ride. Therefore, as long as demonstrators 
agree, e.g., that 1) the smaller the number of crashes the 
better, and also that 2) short rides are preferable over 
longer ones, this would satisfy comonotonicity. 
As for the robot agent, we assume that the robot’s 
perception is faulty, and it recognizes each state of the 
world as dictated by an unknown mapping H : S � P 
which transforms states of the world in S into observations 
in P. On top of that, the goal of the robot is to construct a 
control policy π : A x P � A, from observations into 
actions in A. Since our objective is to allow demonstrations 
from humans to robots, we further assume that the 
mapping H is such that it allows a successful policy 
acquisition through demonstrations of the humans. 

Procedure for Knowledge Acquisition 
Our framework is based on (Argall, Browning and Veloso, 
2007). As in that work, we assume knowledge transmission 
is performed in a two-stage process. In the first stage, as 
depicted in Figure 1, each human agent di ∈ D directly 
demonstrates the task to the robot by executing it a finite 
number of times. For each execution in di’s demonstration, 
the robot collects a sequence of (pm,an) points. This pair 
maps the robot’s perception pm to the action an, which the 
demonstrator di regards as the best response to the current 
world state.  
 
 
 
 
 
 
 
 
 
 

After this data collection, the robot possesses a set of 
demonstrations, each of which are in turn a collection of 
sequences of (pm,an) pairs. From this set of demonstrations, 
it constructs a knowledge base M. 
With the conclusion of this first stage, the robot possesses 
a set of action points in M which recommends candidate 
actions given state observations. For those perceived states 
which do not match any element in M, the robot can 
employ any heuristic similarity search procedure to infer 
an appropriate choice (e.g. a Nearest Neighbor search). 
The problem with this set M is that it is a slack union of 
different perspectives of the task. This is because we 
assumed that each demonstrator executed the task without 
concerns about the behavior of fellow demonstrators. 
Therefore, a naïve policy based on this resulting set might 
display inconsistent actions due to random crossover 
combinations of very diverse behaviors.  
This motivates the second stage of our procedure (Figure 
2), which aims at polishing this set M into a new dataset 
that not only maintains a broad coverage of the 
demonstrators’ perspective on the problem, but also has a 
more homogeneous behavior. In this stage, we introduce a 
critiquing step for the humans. Now, the robot is the one 
who simulates the series of executions of the task to the 
humans, and expects for each human an informative signal 
that indicates how they evaluate the most recent execution. 
Consequently, positive feedback from humans will 
strengthen the elements in M which contributed to the 
execution, while negative feedback weakens them. For this 
reason, each element in M is now coded as a (pm,an,c) 
tuple, where c is a quantitative measure of the robot’s 
confidence that an is a good response to pm. Since the 
confidence of the (pm,an) is affected by the critiques of all 
the demonstrators, the values in M after this stage will 
reflect a unified understanding of the task, as opposed to 
the segregated state of M before this critiquing step. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1. The first stage of our procedure, where a set of 

demonstrators execute the task to the robot, in order to allow the 
generation of a knowledge base M. 

Figure 2. The second stage of our procedure. In this step, the 
robot will refine the knowledge base M into a more universal 

perspective of the task. The critique of the demonstrators to the 
execution of the robot points out the pragmatic value of each 

behavior demonstrated in the 1st stage of the procedure. 
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After each feedback is received by the robot from di, the 
confidence of each (pm,an) used in the most recent 
execution is updated according to: 
 

c := c + ri * f( feedback ), 
 

where ri is the demonstrator’s credibility (as explained in 
the next subsection) and f( feedback ) is a function that 
depends also on the similarity search procedure used in the 
construction of the current task execution.1 
It is noteworthy that the confidence c of each perception-
action pair affects the similarity search procedure: it should 
result, for less trusted elements of M, in a smaller 
probability of being employed in future executions of the 
task. 

Incentive-compatibility on the Critiquing Stage 
It is clear that this desirable fusion of perspectives in M is 
strongly dependent on the quality of the critiquing signal. 
But unfortunately, the premises of our model make it 
natural to expect that demonstrators’ spontaneous feedback 
would be correlated to their greedy executions 
demonstrated in step 1. In this case, the critiquing signal 
would not be very informative to a robot that already 
possesses the results of the original demonstrations. 
This observation motivates the introduction of a reputation 
mechanism that attempts to control the human agents’ 
behavior in the critiquing step. In this mechanism, we 
assign to each agent di a credibility rank ri that estimates 
how much each agent’s feedback to the robot’s execution 
improves its performance on the task. The rationale for this 
design comes from the remark that each behavior profile 
for our task (e.g. driving defensively) is more appropriate 
in some situations and less desirable in others. Therefore, 
for each execution context we need a human input to 
indicate which profile would better fit the context. This is 
an incentive to prevent agents praising acts that resemble 
their own demonstrations and knocking other behaviors 
which might have come from fellow demonstrators. As a 
result, we induce this critique to be mindful. Therefore, the 
emerging pattern that results from this incentive-
compatible scheme is the combination of the original 
demonstrated behaviors, normalized by their effectiveness 
in each context. 
Since our assumption is that we don’t know the utility 
functions of our agents, a natural question that comes up is 
how to evaluate the effect of a critique on the robot’s 
execution in an acceptable way? To answer this question, 
we make use of the set of world aspects O. Since we 
assumed before that the agent’s preferences over each 
aspect is comonotonic, we can now generate a Pareto 
ordering over the values of these world aspects that 
resulted from each task execution. For example, for any 

                                                 
1 Argall et al. use a 1-NN as a similarity search procedure and the inverse 
of the distance between the actual perception and the actual execution 
point as f( feedback ). The latter is to avoid penalizing decision pairs over 
contexts which they had weak correlation. 

given simulated drive of the robot, we can compute the 
number of crashes (Oc) and the duration of the drive (Od). 
If we compare the values of (oc,od) = θ1 from the initial 
execution of the robot with (oc’,od’) = θ2 from a 
subsequent execution after each the demonstrator’s 
critique, we can define that the feedback resulted in an 
improvement if, and only if, 
 
∀Oi ∈ O  θ2(Oi) � θ1(Oi)  and  ∃Oj ∈ O  θ2(Oj) � θ1(Oj), 

 
where θ(Oi) means the value of aspect Oi under θ. An 
analogous calculation yields a definition of feedbacks that 
result in decline. 
Now that we introduced a fair procedure to judge critiques 
from humans, we can apply it to our reputation 
mechanism. This method assigns to demonstrators’ 
reputation ri an initial value of r0, and after each critique 
from the demonstrator, we update his/her reputation 
estimate using the following rule:  
  

ri := ri + α * result( feedback ), 
 

where result( . ) is a function that returns 1 if the feedback 
resulted in an improvement, -1 if it resulted in decline, and 
0 otherwise. Here, α is a parameter of the model which 
indicates how fast the reputation of agents should increase 
or decrease on a single step. 
Noticeably, this design of the reputation requires an 
attentive act by the agent on the critiquing phase. If a 
demonstrator adopts the strategy of persistently defending 
an ineffective behavior profile in detriment of giving 
truthful evaluations of the context presented by the robot, it 
is expected that the agent’s reputation will drop to a point 
where it has no meaningful effect on the policy of the 
robot. Therefore, in order to continue influencing the result 
of the robot’s policy (in other words, continue advocating 
for their own behavior profile), the agent must be mindful 
when evaluating current executions. 

Related Work 
As mentioned above, our model is an extension of (Argall, 
Browning and Veloso, 2007). In that work, the authors 
demonstrate how it may be possible to take advantage of 
contextual criticism by humans to teach a robot how to 
intercept a ball. Like our model, their framework also 
involves two stages. In the first, they assume that a single 
demonstrator presents the robot with a sequence of 
executions. Therefore, our model’s first stage can be seen 
as a parallel instance of the original version, where in each 
new instance a particular demonstrator presents a set of 
executions to the robot. 
Additionally, Argall et al. introduced the critiquing stage 
following the initial demonstration from the humans. In 
this phase, our departure is conceptually stronger. Even 
though both models assign to each pair (pm,an) of a 
perceived and an action a measure of confidence, in our 
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model this confidence parameter is more general. Not only 
does it represent a quantitative uncertainty, but we also 
endow its semantics as an intersection of diverging 
perspectives from different demonstrators. Finally, our 
reputation mechanism is not applicable to their non-
strategic model. 
In (Ekvall and Kragic, 2006), the authors introduce the 
possibility of having a group of humans cooperatively   
demonstrating a task to the robot. However, their model 
does not incorporate the non-cooperative behavior that 
might emerge when they explicitly cannot agree on goals 
or courses of actions.  
Similar learning approaches of mixtures of cooperative 
sources can be found in the supervised learning literature. 
Product of experts (Hinton, 2000) and Mixture of experts 
(Jacobs et al., 1991) are examples of this trend. 

Conclusions 
We have introduced a model that suggests how a robot can 
learn from multiple demonstrators who disagree on the 
evaluation of the outcomes of a task. Our model makes 
weak assumptions over the preferences of the 
demonstrators, imposing only comonotonicity of 
preferences. We believe that a reputation mechanism is a 
sufficient element for inducing cooperative behavior from 
our demonstrators. 
There are many ways in which we are expanding this 
research. First, we are working on the formalism of our 
problem and how to measure the quality of solutions. Since 
we do not assume any explicit representation on the utility 
of our demonstrators, we are looking for an objective 
measure to validate our claims of incentive-compatibility 
of the mechanism. Also, future experiments will help 
evaluate the quality of policies generated with our model, 
as well as allow comparison of our approach to other 
existing works. Ideally, we want our resulting policy to 
integrate the behavior of the different human agents in a 
coherent way. Another one open question is to measure the 
general satisfaction of the demonstrators with the solutions 
returned by our mechanism.  
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