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Abstract

Shepherding problem asks how the movement of an agent
(e.g., predator, policeman, or sheepdog) can push a group
of agents (e.g., prey, crowd, or sheep) from one position
to another. The shepherding problem has many important
and practical applications in security, environmental protec-
tion, agriculture, education and more. While much research
has focused on simulating coordinated group behaviors, the
shepherding problem has not received as much attention as it
should be. This work investigate the possibility of addressing
the shepherding problem using motion planning strategies.
From an algorithmic point of view, the shepherding prob-
lem is extremely challenging due to its extremely large state
space. It is clear that the existing motion planning methods
cannot provide an efficient way to solve the problem. Instead,
we propose an approach that incorporates computer-human
interaction techniques with algorithmic robotics: an interac-
tive motion planning method. In our experimental results,
we have shown that this combination indeed provides perfor-
mance improvement over the human-only and the computer-
only approach. Although the proposed work shows promising
initial results from our first prototype system, there are still a
long way to go before we can have a better understanding of
the interactive method for motion planning and the shepherd-
ing problem.

Introduction

Shepherding problem is the problem of group motion con-
trol using agent and agent interactions, where there are
typically one group (such as mob or sheep) and one or
more ‘controller’ agents (such as police officers or shep-
herd dogs), whose objective is to control (e.g., navigate)
the group. An example of group motion control is demon-
strated in Figure 1, where a Border Collie is steering three
sheep toward the camera. Shepherding problem is a chal-
lenging and fundamental problem in many important ap-
plications in security (e.g., simulation of disaster scenar-
ios and responses (Shell and Matarić 2004)), in civil crowd
control (e.g., planning exit strategies for sporting events),
in environmental protection (e.g., collecting oil spills (Fin-
gas 2001)), in agriculture (e.g., sheep herding (Schultz and
Adams 1998)), in transportation safety (e.g., protecting air-
planes from birds (EWT 2002)), in education and training
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Figure 1: A Border Collie (Trek) is steering three sheep to-
ward the camera. Image obtained from (Block 2008).

(e.g., providing immersive museum exhibits and training
systems), and in entertainment (e.g., interactive games).

Despite the importance of the shepherding problem, it is
still very poorly understood how to generate strategies to ob-
tain better control over a group. For example, a recent study
(Kenny et al. 2001) highlighted the fact that incorrect strate-
gies can lead to riots and fatal catastrophes, but strategies
of controlling crowds are largely unknown and there is little
work in the literature addressing the problems. A large body
of work on coordinated group motion focused on only sim-
ulation with low-level interactions, such as collision avoid-
ance. Some work on multiple-robot systems dealing with
the shepherd problem, however, considers only small size
robot teams in environments without obstacles (Schultz and
Adams 1998; Vaughan et al. 2000).

Main Contribution. The shepherding problem, from
the point of view of algorithmic robotics, is very chal-
lenging due to its large state space and highly underac-
tuated nature. Not surprisingly, no existing work can di-
rectly address the shepherding problem. In our previous
work (Bayazit, Lien, and Amato 2002e; Lien et al. 2004;
2005a), we have developed a simulation system capable of
steering and navigating a group (the sheep) in an environ-
ment with obstacles using a single or multiple ‘shepherds’.
However, the predefined locomotions and rules of shep-
herds’ strategy to position themselves limit us from applying
our work directly to more general problems without defining
a larger set and more complex rules.
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In order to provide more adaptability and scalability, we
propose to incorporate computer-human interaction tech-
niques with the ideas from algorithmic robotics. More
specifically, the new technique is an interactive motion plan-
ning method, which will provide visual hints to the users
controlling the shepherds through the provided interface.

More specifically, we use laser pointers as the input de-
vices that control the positions of the shepherds. We then use
motion planning methods to provide visual hints to the users
(i.e., potential shepherds positions that can lead to better
control). We will briefly describe our system in the “System
Overview” section. The interactions between the users and
the planners will be discussed in the “Interactive Planning”
section. In our experimental results, we show that this com-
bination indeed provides performance improvement over the
human-only and the computer-only approach. Although our
experiments show promising results from our first prototype
system, there are still a long way to go before we can have a
better understanding of the shepherding problem. One of the
most important ways of enhancing our system is to design
planners that learn control strategies from user input. More
discussion toward this goal is provided in the “Conclusion”
section.

Related work
Despite extensive work on crowd simulation, little work fo-
cused on the shepherding problem. As we will see from the
rest of this review, although there exists some related work,
no work has been proposed to study the shepherding prob-
lem systematically as a whole.

Crowd control and shepherding simulation. Studies
that attempt to address the ‘crowd control’ problem usu-
ally take very simple approaches by either changing or in-
troducing new objects to the environments, e.g., road block
(Kirkland and Maciejewski 2003) or barriers (Brenner et al.
2005), or by exerting influences to the crowd leader (Aubé
and Shield 2004). The major drawback of these approaches
is that these ad hoc techniques cannot be easily adaptable to
the new scenarios and new environments.

Similar to crowd control problem, the shepherding prob-
lem considers scenarios in which one group (the shepherds)
tries to control the motion of another group (the flock). In
robotics, Schultz et al. (Schultz and Adams 1998) applied
a genetic algorithm to learn rules for a shepherd robot to
control the movement of another robot (sheep). The sheep
reacts to the shepherd by moving away from it. Vaughan et
al. (Vaughan et al. 2000) simulate and construct a robot that
shepherds a flock of geese in a circular environment. In com-
puter animation, Funge et al. (Funge, Tu, and Terzopoulos
1999) have simulated an interesting shepherding behavior in
which a T-Rex chases raptors out of its territory. Potter et
al. (Potter, Meeden, and Schultz 2001) studied a herding
behavior using three shepherds and a single sheep in a sim-
ple environment. None of the above mentioned methods are
able to navigate in the presence of obstacles.

We use a roadmap to integrate global navigation and shep-
herding in environments with obstacles (Bayazit, Lien, and
Amato 2002a). However, without considering the influ-
ence of the shepherd’s motion on the flock, the flock is of-

ten disturbed and separated and becomes hard to control.
We further propose several strategies by which a single or
multiple shepherds can position itself more intelligently so
that the flock will stay together better (Lien et al. 2004;
2005a).

Shepherding as multi-robot cooperation. We can view
the shepherding problem as a multiple robot system. Re-
search in multiple robot systems considers how robots can
cooperate to accomplish a task. The survey from Parker
(Parker 2003) provides an overview of these systems. From
the perspective of multiple robot cooperation, the task of
crowd control requires inherent cooperation, in which the
success of a robot in the team depends on the actions of other
robots. Unlike non-inherent tasks, such as covering, inher-
ent tasks, such as crowd control, cannot be decomposed into
sub-tasks that can be solved independently and thus are gen-
erally more difficult.

Shepherding as manipulation. The shepherding prob-
lem can also be viewed as a type of robotic manipulation
task. Several researchers have attempted to use multiple
robots to manipulate or move passive objects cooperatively
such as pushing a box (Yamashita et al. 2003) and kick-
ing a ball (Stone and Veloso 1998). A passive object will
move only if external forces are applied to it. On the other
hand, crowd control attempts to manipulate the motion of
active objects, which have the ability to change their own
movement even without external forces and, thus, are usu-
ally more difficult to control. To our knowledge, no meth-
ods have been proposed to manipulate multiple active ob-
jects using multiple robots. Multiple robots often form a
formation, such as a line, a column, or a V shape (Balch
and Arkin 1998),, to accomplish a given task. Similar obser-
vation is also found in some sociological studies of crowd
control (Applegate 1969).

Shepherding as competition. The shepherding prob-
lem is also related to competitive activities of two or more
groups. Examples include pursuit and evasion behaviors,
or sports such as soccer. A simplified version of pursuit
and evasion problem that considers only one pursuer and
one evader has been studied for decades using methods such
as game theory (Isaacs 1965), genetic algorithms (Reynolds
1994), and neural networks (Cliff and Miller 1996) (see
(Miller and Cliff 1994) for a good survey).

Designing the Interactive System

System Overview

The interactive system involved (1) a projector, which pro-
jected the display of the simulation program; (2) a camera,
pointed at the projected simulation; (3) a set of laser point-
ers, emitting at a wavelength of 650 nm (+/- 10); (4) software
for tracking the laser pointers; and (5) software for running
the shepherding motion planner and simulation. The projec-
tor projected a 3 channel (RGB), 1280×1024 pixel image (at
50 Hz). The camera was an IEEE-1394 Dragonfly2 (DR2-
COL), produced by Point Grey Research, with a maximum
60 fps, 640×480 3 channel (RGB) image, with 8 bits per
channel. Figure 2(a) shows a picture of the actual system.
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(a)

(b) raw image

(c) basic subtraction

(d) color filtering

(e) laser pointer position

Figure 2: (a) An user is using two laser pointers to control
our vision-based interactive shepherding motion planning
system. (b-e) Extracting the position of the laser pointer(s)
from raw images captured by the camera. The (potential)
laser pointer position is shown in white.

Multiple Laser Pointers Tracking

The laser pointer tracking system itself employs several
stages: (1) background subtraction, (2) color filtering, (3)
connected component identification, (4) association of com-
ponents with laser pointers across successive frames. After
the final stage, the location of each component’s centroid
was transmitted to the shepherding motion planner. Fig-
ures 2(b-e) illustrate the images generated after each stage.
Basic Background Subtraction The background image
to be used in background subtraction was computed man-
ually from the projected display of the paused simulation,
averaged over 15 frames. For our purposes, the background
subtraction routine was designed so as to yield a mask to
be used on the raw frame, which will be referred to as the
primary mask M. Each cell in the primary mask is either 1

or 0. A 1 appears when the Euclidean distance of the dif-
ference between RGB channels in the corresponding pixels
of the background and raw frame is greater than a particu-
lar threshold θM (85 worked well in our setup), 0 otherwise.
Let B be the background image and R be the raw frame from
the camera. Bij and Rij refer to the pixel at the i-th row, j-
th column of the background image and raw camera frame,
respectively. Bij and Rij are each vectors in {0...255}3.

Mij =
{

1 if |BijRij | > θM

0 otherwise
(1)

Color Filtering Once the background image was com-
puted, the tracker ran a main loop, gathering a new raw
frame from the camera at the start of each iteration. In each
iteration, a primary mask M was generated, as explained
above. From here, color filter calibration was performed,
upon manual request by the user. Color filter calibration
proceeds by taking the primary mask M and using it to col-
lect all RGB color vectors from pixels Rij in the raw frame
wherever Mij = 1. This data was clustered using the EM k-
means algorithm, in our case using the implementation from
the open source C Clustering Library (de Hoon 2008). This
color filter calibration routine was performed while waving a
laser pointer at the projected image of the paused shepherd-
ing simulation. Therefore, this gave us a number of clusters
based on colors characteristic of the laser pointer. Following
this initial calibration routine, in each iteration every pixel
from R which passed through the primary mask M was sub-
jected to a test for constructing the secondary mask N. Ini-
tially, N=M. Then, for all pixels Rij from the raw frame
for which Mij = 1, the color clusters obtained earlier were
used such that Nij = 1 whenever Rij is within a certain Eu-
clidean distance threshold θN from the center of any color
cluster. In our experience, θN = 40 gave relatively good
results:

Nij =

⎧⎨
⎩

1 if Mij = 1 or
distToNearestCluster(Rij) < θN

0 otherwise
(2)

Connected Component Identification In each iteration
of the main loop, the primary filter M (from background sub-
traction) and secondary filter N (from color filtering) were
used along with the raw frame image R to produce a new
image Q:

Qij = Mij × Nij × Rij (3)
Each connected component (with 8-adjacency) of image

Q was then labeled according to its contours, with the help
of the OpenCV computer vision library. All components
containing less than 0.001% of the pixels in Q were omitted
(in our case 0.001% × (1/100%) × 640 × 480 pixels = 3
pixels) for the sake of reducing noise.

Association of Components with Laser Pointers In or-
der to consistently associate each of the components pro-
duced by a laser pointer dot with the same laser pointer
across multiple frames, the centroid of each component in
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the current frame was compared with the centroid of compo-
nents in the previous frame. For each centroid in the current
frame, that centroid was assigned to the same laser pointer
as the one representing the centroid from the previous frame
whose Euclidean distance was closest. In the event that there
were more laser pointer dots in the current frame than in the
previous frame, a new laser pointer was identified. In the
event that there were fewer, the oldest laser pointer was not
immediately dropped. Instead, it was maintained at the same
position as in the last frame it existed, up until a sufficient
number of frames (we chose 10 experimentally) had passed
without the reappearance of a corresponding laser pointer
dot. This last scheme was chosen to more robustly handle
cases when a laser pointer was accidentally turned off tem-
porarily, when an object between the laser pointer and pro-
jected screen briefly suppressed the laser pointer dot, or in
similar situations.

The flock

Our flock is modeled using Reynolds’ approach (Reynolds
1987) with addition forces that push the flock away from
the obstacles and the shepherds. Reynolds’ influential flock-
ing simulation established the feasibility of modeling such a
system. His work showed that flocking is a dramatic exam-
ple of emergent behavior – global behavior arising from the
interaction of simple local rules. Each individual member
of the flock has a simple rule set stating that it should move
with its neighbors.

Interactive-based Motion Planning

Difficulty of the Shepherding Problem

We view the shepherding problem as a type of motion plan-
ning problems. Our goal in this motion planning problem is
to find a path for the shepherd so that after the shepherd fin-
ishes the trajectory the flock will be in the goal position. It
is obvious that the motion planning version of the shepherd-
ing problem is highly intractable due to its extremely high
dimensional configuration (state) space.

The difficulty of the shepherding problem continues when
we look at the problem more carefully. For example, we
can further categorize the shepherding problem as a “highly-
underactuated multi-robot cooperative deformable-object
manipulation planning problem.”

• Shepherding is a highly underactuated motion planning
problem since the dimensionality of the configuration
space (collectively from all flock agents and from the
shepherds) is much larger than the number of control pa-
rameters (e.g., the positions of the shepherds).

• Shepherding is a type of manipulation planning. More
precisely, group control is a problem of manipulating a set
of ‘active’ objects, which can control their own movement
without external forces and will be forced to move as the
‘end-effector’ (i.e., the shepherds) approaches.

• Shepherding is a type of inherent multi-robot cooperative
task (Parker 2003).

• Shepherding is a motion planning problem dealing with
dynamic and deformable environment (Rodriguez, Lien,
and Amato 2007).
Although there is a strong relationship between the shep-

herding problem and motion planning, no existing mo-
tion planning methods can fully address the shepherding
problem. For example, research on underactuated robots
mostly focused on nonlinear, dynamic, or non-holonomic
constraints (Shammas 2006), and most manipulation plan-
ning considers only grasping-based manipulations (Siméon
et al. 2004). Pushing-based manipulation planning (van der
Stappen and Overmars 2007), which is closer to the group
control problem, only considers “passive” objects. Even
though work exists for planning cooperative manipulat-
ing motion by multiple arms (Koga and Latombe 1994;
Li and Latombe 1997) and by multiple mobile robots (Ya-
mashita et al. 2003), most multi-robot motion planning
considers only a few robots and mostly considers nav-
igation problem without high level interactions. More-
over, planning motion for deformable object usually as-
sumes the object is elastic (Anshelevich et al. 2000;
Bayazit, Lien, and Amato 2002d) or that the object can
actively deform itself (Rodriguez, Lien, and Amato 2006;
Gayle et al. 2005) without the manipulator.

Definitions: Shepherd and Shepherd’s Locomotion

Before going into more details about our planner, lets de-
fine some terms more carefully. A shepherd is an external
agent that influences the movement of the flock. A flock is
a collection of agents that tries to keep away from the shep-
herd. The shepherd’s task is to steer the flock to desired lo-
cations. In addition to steering, the shepherd unites separate
flock groups. In a group, each member can see at least one
member in that group. Usually, flock separation is caused by
repulsive forces exerted from obstacles or shepherds. The
flock contour is the smallest polygon that encloses all flock
members.

A milestone is any position toward which the shepherd
attempts to steer the flock, and a steering point is any po-
sition toward which the shepherd moves himself in order to
influence the movement of the flock; see Figure 3(a). As in
(Bayazit, Lien, and Amato 2002e), a milestone is a node of
a global dynamic roadmap close to the flock and a steering
point is a point on the opposite side of the flock from the
milestone. A roadmap is an abstract representation of the
feasible space in a given environment. A dynamic roadmap
is a roadmap storing information that changes dynamically
during simulation.

Shepherd’s Locomotion. We define a shepherd’s loco-
motion as the manner in which the shepherd will move in
order to control the movement of a flock. The shepherds
locomotion remains invariant in different shepherding be-
haviors and dramatically affects the quality of simulation.
We divide the shepherd’s locomotion into two sub-problems:
approaching and steering.

Motion Planning for Shepherd

Instead of developing a complete motion planner (that al-
ways finds a solution if one exists), which has been shown
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(a)

(b)

(c) (d)

Figure 3: (a) An environment and associated terms. Steering the flock using (b) a straight line (c) a side-to-side motion. (d) Six
shepherds approach the flock.

to be impossible in the earlier sections, we sacrifice the com-
pleteness to gain efficiency. Our planner will require assis-
tance from the user to provide input (using laser pointers)
that can correct the errors made by the planner. Our plan-
ner simply re-plans the shepherd’s motion after the user pro-
vides any modifications. Briefly, our planner will first find
a path from the center of the flock to the goal position us-
ing a roadmap. The shepherd then pushes the flock along
the path by performing a sequence of ‘local plannings’ (i.e.,
the locomotions) based on the flock’s current position. Note
that this approach may not lead the flock to the final goal
position because, for example, the shepherd may not have
enough room to navigate the flock. Therefore, the planner
will depend on the user to recognize the problem and pro-
vide input to correct this. From the interactions between the
user and the planner, our new method gains both efficiency
and accuracy.

More specifically, we have developed the motion plan-
ner for shepherd using adaptive roadmap-based tech-
niques (Bayazit, Lien, and Amato 2002c; 2002b; 2005;
Lien et al. 2005b). We used the global information pro-
vided by our adaptive roadmaps to improve the behavior of
autonomous characters, and in particular, to enable more so-
phisticated group behaviors that are impossible using tradi-
tional (local) flocking methods. A roadmap of a given envi-
ronment is a motion planning technique that attempts to rep-
resent the connectivity of feasible areas in an environment;
see Figure 3(a). An adaptive roadmap is a roadmap whose
node and edge values can be updated according to informa-
tion gathered by agents in a group. We also extended ideas
from cognitive modeling and embedded “behavior rules” in
individual flock members and in the nodes and edges of the
roadmap. Key features of our approach include:

• The roadmap provides a convenient abstraction of global
information in complex environments.

• Adaptive roadmaps (e.g., modifying node and edge
weights) enable communication between agents.

• Associating rules with roadmap nodes and edges enables
local customization of behaviors.

Single Shepherd. A shepherd can use roadmaps to steer

Table 1: Experiment with one laser pointer

using laser pointer
without hints with hints simulated

time (sec) 80.6 57.1 105.0

the flock and to re-group separated flock members. When
the shepherd re-groups separated flock members, the shep-
herd does not consider how its own movements will affect
the flock. For example, when the shepherd approaches the
flock, the shepherd does not attempt to avoid disturbing or
separating the flock. We focus on improving the shepherd’s
movements to gain better control of the flock’s motion and
use this improved control to demonstrate a wider variety of
shepherding behaviors. An improvement of the shepherd’s
locomotion can be seen in Figures 3(b) and 3(c). We have
shown that a shepherd can control a flock more efficiently
using more intelligent locomotion techniques. We observe
that flock separation and traveling time were reduced when
the shepherd uses these new locomotions in both open and
cluttered environments. We have also shown that our lo-
comotions enhance the shepherd’s ability to handle larger
flocks and to handle different types of flocks.

Multiple Shepherds. We further extend this work to mul-
tiple shepherds and we study how a group of shepherds can
work cooperatively without communication to efficiently
control the flock. We explored how multiple shepherds can
be used to gain better control of more difficult or larger
flocks. In real working situations, it is typical to see sev-
eral dogs herding a flock. In such circumstances, the shep-
herds need to work cooperatively to guide the flock; see Fig-
ure 3(d).

We observe that a relatively large flock (≈ 40 members)
or a flock composed of members that are more difficult to
control, such as cattle, which is less afraid of the shepherds
thus harder to ‘push’, can be herded more efficiently using
multiple shepherds than with a single shepherd.
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Figure 4: (a) Navigation without visual hints. (b) Our mo-
tion planner provides visual hints to the user by suggesting
the desired trajectory of the shepherd.

Experimental Results

In this section, we evaluate the proposed system.
All videos captured during our experiments can be
downloaded from http://cs.gmu.edu/˜jmlien/
shepherding/. These videos demonstrate how a single
or multiple laser pointers can be used to solve the shepherd-
ing problems.

In our first set of experiments, we compare the total nav-
igation time for a single shepherd to push a flock with 15
members to the goal. We asked four people to guide the
shepherd individually first using a laser point without the vi-
sual hints and then we asked the users to perform the same
task again with dynamic visual hints shown on the screen.
These users are allowed to have practice runs before the
experiments. We also assessed autonomous navigation of
the shepherds without user inputs based on the method de-
scribed in the previous section. Figure 4 shows the differ-
ences between the navigations with and without visual hints.
The visual hints provided by the motion planner include:

• the desired positions of the shepherds (shown in green)

• the path that connect each (sub-)group to its goal position

• groups of flock that are visible from each other (shown as
yellow circles)

• global roadmap for navigating the flock groups

Table 1 shows the averaged navigation times from these
three approaches from four users.

It is clear from Table 1 that the computer-only planner
is the slowest among the three approaches. Without vi-
sual hints, navigation using laser pointer is about 25 sec-
onds faster than the computer-only planner. With the help
from the planner (with visual hints), users save about 23
more seconds. This shows our strategy is working. We ob-
serve that the plans and the visual hints generated by our
planner is more useful for some situations (e.g., when flock
forms a single group) but when there are several separated
flock groups, the plan generated by the planner is difficult
to follow for either the computer-only or the user-controlled
shepherd. However, the users soon learn that they do not

need to follow the visual hints when there are many sepa-
rated groups and therefore outperforms both “without hints”
and “computer-only” methods.

(a) Environment 2. (b) Environment 3

Figure 5: Two additional environments in our experiments

In the second set of experiments, we study the navigation
efficiency by varying the flock size and the shepherd size.
All visual hints from the motion planner are rendered in this
set of experiments. Table 2 shows experimental results using
the environment in Figure 5(a). We compare the navigation
times using one and two laser pointers. Note that navigation
tim is measured in simulation time steps and each time step
is 1

25 seconds. The navigation times are not significantly dif-
ferent when the flock size is less than 20. However, the navi-
gation times using two laser pointers are about 400 and 6000
time steps faster than using just one laser pointers for navi-
gating the flock with 25 and 30 members. When we compare
the autonomous navigation using one or two simulated shep-
herds, the difference is even more pronounced. Even though
the autonomous navigation outperforms the interactive navi-
gation with small flock, it simply cannot navigate more than
20 members in this environment. In many cases (i.e., those
marked with > 30000), the shepherds are not even able to
push the flock forward.

Table 3 shows another set of experimental results using
the environment in Figure 5(b). In this experiment, using
two laser pointers also result in more efficient navigation.
However, in this example, we found that the autonomous
navigation with two shepherds outperforms the interactive
navigation. The main reason for this is because of the limi-
tations of our interactive interface that restricts the minimum
distance between the laser pointers. In this environment,
shepherds need to stay closely in order to push the flock out
of the first enclosed region. Our interactive shepherds failed
to accomplish this task and have to break the flock into sub-
groups, which make the navigation more difficult. We ex-
pect to improve the efficiency of the interactive navigation
when more sophisticated tracking methods are used.

Conclusion and Discussion

In this work, we investigated the possibility of addressing
the shepherding problem using motion planning strategies.
From an algorithmic point of view, the shepherding prob-
lem is extremely challenging due to its large state space
and spanning a broad range of research areas. However, no
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Table 2: Navigation time in Environment 2 (Figure 5(a))

size of the flock
5 10 15 20 25 30

1 laser pointer 4400 5585 6624 8949 10395 19453
shepherd 2 laser pointers 3931 5863 6862 8585 9964 13437

control type 1 autonomous 1309 3571 4976 >30000 >30000 >30000
2 autonomous 1499 4534 7253 16247 >30000 >30000

Table 3: Navigation time in Environment 3 (Figure 5(b))

size of the flock
20

1 laser pointer 12376
shepherd 2 laser pointers 11726

control type 1 autonomous >30000
2 autonomous 8026

existing motion planning methods can provide an efficient
way to solve the problem. Therefore, we propose an ap-
proach that incorporates computer-human interaction tech-
niques with algorithmic robotics: an interactive motion plan-
ning method. In our experimental results, we have shown
that this combination indeed provides performance improve-
ment over the human-only and the computer-only approach.

Although our system shows promising results from the
first prototype system, there are still a long way to go before
we can have a better understanding of the shepherding prob-
lem. There are many possible ways we can take to improve
our methods.

Learning from Users

One way to improve our system is to design our planner so
that it learns from the user inputs. As we observed in our ex-
perimental results, the planner does not perform well when
the flock separates into small groups. The planner should
identify such cases easily and should start to observe the
order that users (re-)group the flock. We understand that
the users may also make mistakes, thus an evaluation step is
necessary before learning. To do so, the planner will first ob-
serve if the laser pointer follows the provided hints or not. If
so, then the user and the planner agreed on the same strategy.
If not, the planner will evaluate if the user control makes the
flock closer to the goal state or reduces the number of the
separated groups. If the flock control is indeed improving,
the planner will remember in what order the flock groups are
handled.
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