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Abstract

This paper introduces a translation of the job shop scheduling
problem into a qualitative constraint satisfaction problem us-
ing INDU and Allen relations. We show that the translation
is sound and complete. We also use the notion of frozen con-
straints and show that it allows the user to consider only par-
tial solutions when searching for solutions. Our work consti-
tutes a new approach to the problem of constructing content-
motivated benchworks for qualitative calculi.

Introduction

Many qualitative formalisms have been proposed and stud-
ied during the last two decades. Most of the research ac-
tivity in this domain, however, has been devoted to study-
ing the formal properties of those formalisms. A promi-
nent aspect has been the search for tractable classes which
has motivated many studies (Nebel and Bürckert 1995;
Ligozat 1996), starting with the ad hoc study of specific for-
malisms, followed nowadays by the appearance of generic
methods (Renz 2007). More recently, a coordinated ef-
fort has been initiated in order to develop generic software
tools for solving qualitative constraint networks problems
(Dylla et al. 2006; Wallgrün et al. 2006; Gantner, West-
phal, and Wölfl 2008; Condotta, Ligozat, and Saade 2006b;
2006a). These tools try to integrate the theoretical results
obtained during the preceding years.

Contrary to the situation for discrete constraint satis-
faction problems (discrete CSPs), there are few if any
accepted benchmarks for qualitative constraint networks,
whether derived from real world problems or from academic
sources. Most of the experiments on qualitative networks
use randomly generated networks with no externally moti-
vated structure (Ladkin and Reinefeld 1992; Bessière 1996;
Van Beek and Manchak 1996; Nebel 1996).

The main contribution of this paper consists in proposing
a new approach to the constitution of benchmarks for quali-
tative constraint networks based on translations of instances
of the job shop scheduling problem (JSSP). Although we
only consider one particular type of job scheduling problem,
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our translation method should be extensible to other types of
the problem.

We show that for the networks obtained by this transla-
tion process, only partial solutions of the network are of rel-
evance. Hence the notion of frozen constraints introduced
in (Condotta, Ligozat, and Saade 2007) can be used in this
context. We then prove that a property of local consis-
tency (namely, weak path-consistency) on part of the net-
work (namely, the non-frozen part) is a sufficient condition
for detecting the consistency of the full network and, if con-
sistency indeed holds, for obtaining a solution to the original
job shop problem.

The structure of the paper is as follows. In the next sec-
tion, we define the type of job shop scheduling problem we
will be considering. Then, we recall some of the basics of
qualitative networks and Allen’s and INDU formalism. We
define the translation from the JSSP to qualitative networks.
We close the paper with a section devoted to the frozen con-
straints and a conclusion.

The job shop scheduling problem
Many versions of the job shop scheduling problem have ap-
peared in the literature. Here we consider the version pro-
posed by Sadeh (Sadeh 1991) for constituting a benchmark
for discrete CSPs. Note that this benchmark is part of the
benchmarks used in international competitions organized by
the community of discrete CSPs (Van Dongen and Lecoutre
2006).
The job shop scheduling problem consists in assigning a set
of njob jobs {job0, . . . , jobnjob−1} to a set of nres physi-
cal resources {res0, . . . , resnres−1}, where njob > 0 and
nres > 0.

Each job jobi consists in an ordered set of ni opera-
tions {Oi,0, . . . , Oi,ni−1}, where ni > 0. A job jobi has
a starting time tdi and a realization time tri which delimit
an interval during which all operations of the job have to
be realized. Each operation Oi,j has a duration di,j > 0.
Finally, each operation has to be realized on a resource
resi,j ∈ {res0, . . . , resnres−1}, where nres > 0.
Solving a JSSP consists in finding a schedule for its oper-
ations such that some temporal constraints are met. More
specifically, a solution to the problem is a map st which as-
sociates to each operation Oi,j an integer number sti,j (the
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starting instant of the operation) in such a way that the fol-
lowing conditions are met:

• sti,j +di,j ≤ sti,j+1 for all i ∈ {0, . . . , njob −1} and for
all j ∈ {0, . . . , ni − 1};

• either sti,j + di,j ≤ sti′,j′ or sti′,j′ + di′,j′ ≤ sti,j for all
i, i′ ∈ {0, . . . , njob − 1} and for all j ∈ {0, . . . , ni − 1}
and j′ ∈ {0, . . . , ni′ − 1}, where (i, j) �= (i′, j′) and
resi,j = resi′,j′ ;

• sti,0 ≥ tdi and sti,ni−1 + d(i,ni−1) ≤ tri for all i ∈
{0, . . . , njob − 1}.

More complex models of the job shop scheduling problem
could be considered, including versions where the ordering
of the operations is tree-like rather than linear. However, the
model we use in this paper will suffice to give a full and
precise picture of the translation techniques into qualitative
constraint problems. Moreover, some existing benchmarks
use precisely the model we consider here.

Allen’s calculus and the INDU calculus

A (binary) qualitative formalism is based on a finite set B =
{b1, . . . , bk} of k binary relations defined on a domain D.
These relations are called basic relations. They represent
specific relative positions between the spatial or temporal
objects represented by the elements of the domain D .

Allen’s calculus (Allen 1981) is one of the best known
among qualitative calculi. It is based on 13 binary relations
between objects which are usually interpreted as intervals
in the real line. Each basic relation corresponds to a spe-
cific configuration of the endpoints of those intervals: if the
ending point of the first interval coincides with the starting
point of the second, we get the meets relation; if this start-
ing point is located inside the second interval, the overlaps
relation holds, and so on. The full set of basic relations
contains the relations {meets, met − by, before, after,
equals, overlaps, overlapped− by, finishes, finished−
by, starts, started − by, during, contains}.

The INDU calculus introduced by Pujari et al. (Pujari,
Kumari, and Sattar 1999; 1999) is a refinement of Allen’s
calculus. Namely, besides the relative position of two inter-
vals, the calculus also encodes the relative durations of those
intervals: the first interval can have a shorter or a longer du-
ration, or both can have the same duration. Accordingly,
some among the basic relations of Allen’s calculus split into
sub-relations which are considered as basic relations in the
INDU calculus. For instance, the relation after splits into
three basic relations of INDU: after=, after< and after>.

Qualitative constraint networks are used to represent
some information about spatial or temporal entities. A quali-
tative constraint network N is a pair (V,C) where V is a set
of variables (standing for the entities) and C a map which
to each pair of variables (Vi, Vj) in V associates a subset
of basic relations in B (which stand for the admissible re-
lations between the entities represented by Vi and Vj). In
Allen’s case, for example, C(Vi, Vj) could consist of the set
{meets, after}, which stipulates that the interval Vi either
meets or follows interval Vj . A solution of a qualitative con-
straint network N = (V,C) is a map sol which associates

to each variable Vi ∈ V a value si in D in such a way that
for each pair (Vi, Vj) ∈ V × V , (si, sj) ∈ b for some b in
C(Vi, Vj).

Translating JSSPs into qualitative constraint

networks

Consider an instance JSS of the JSSP as defined in the sec-
ond section. We will now define a qualitative constraint
network for the INDU calculus, denoted by INDU(JSS),
such that for each solution of JSS there is a solution of
INDU(JSS) and conversely, to each solution of INDU(JSS)
there will correspond a solution of JSS.

Let INDU(JSS) = (V, C) be the INDU network defined
as follows:
Time is modelled using tmax consecutive unit intervals of
equal length represented by variables T0, T1, . . . , Ttmax−1.
Here tmax is greater than Maxi∈{0,...,njob−1}(tri). The
starting point of Ti models the discrete instant i, its ending
point the discrete instant i+1. The following constraints are
enforced on these variables:

C(Ti, Ti+1) = {meets=} for all i ∈ {0, . . . , tmax − 2}.
To the jth operation Oi,j of the ith job is associated

a variable Opi,j which represents the time interval during
which this operation is active, as well as a set of di,j vari-
ables Op0

i,j , . . . , Op
di,j−1
i,j which represent the consecutive

unit intervals contained in Opi,j . Those intervals are used to
constrain the duration of Opi,j and each one of them has to
equal one of the intervals representing time. The following
constraints are imposed on these intervals:
• C(Opi,j , Op0

i,j) = {started by>, equals=};

• C(Opi,j , Op
di,j−1
i,j ) = {finished by>, equals=};

• C(Opk
i,j , Opk+1

i,j ) = {meets=}, for all k ∈ {0, . . . , di,j−
2}.

These intervals also have to be correctly positioned with re-
spect to those which represent time. Hence we impose the
following constraints:
• C(Op0

i,0, Ttdi
) = {equals=, met by=, after=};

• C(Op
di,(ni−1)−1

i,ni−1 , Ttri−1) = {equals=, meets=,

before=},
• C(Opk

i,j , Tl) = {equals=, meets=, met by=, before=,
after=} for all l ∈ {0, . . . , Ttmax−1} when (j, k, l) �=
(0, 0, tdi) and (j, k, l) �= (ni − 1, di,(ni−1) − 1, tri − 1).

The operations of each job have to be realized sequentially.
Hence we assert the following:
• C(Opi,j , Opi,j+1) = {before<, before=, before>,

meets<, meets=, meets>}, for all i ∈ {0, . . . , njob−1}
and for all j ∈ {0, . . . , ni − 2}.

As for constraints between operations belonging to different
jobs, we need constraints of exclusion expressing the fact
that two operations sharing the same resource have to be
realized on non-overlapping intervals:
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• C(Opi,j , Opi′,j′) = {before<, before=, before>,
meets<, meets=, meets>, after<, after=, after>,
met by<, met by=, met by>}, for all i, i′ ∈
{0, . . . , njob − 1} and for all j ∈ {0, . . . , ni − 1}
and j′ ∈ {0, . . . , ni′ − 1}, with (i, j) �= (i′, j′) and
resi,j = resi′,j′ .

Finally, if a constraint C(Vi, Vj) has been defined between
Vi and Vj , then the inverse of C(Vi, Vj) is enforced between
Vj and Vi. For all remaining pairs, the universal relation,
corresponding to the set of all basic relations, holds.
Theorem 1 The network INDU(JSS) is consistent if and
only if the JSSP JSS has a solution.
Proof.
• Let st be a solution of JSS. Using st, we build a solu-

tion sol of INDU(JSS) in the following way: the interval
sol(Ti) is defined as [i, i+1] for all i ∈ {0, . . . , tmax−1}.
We define sol(Opi,j)as [sti,j , sti,j + di,j ] for all i ∈
{0, . . . , njob−1} and for all j ∈ {0, . . . , ni−1}. Finally,
each interval sol(Opi, jk) is defined as [sti,j + k, sti,j +
k + 1] for all i ∈ {0, . . . , njob − 1}, j ∈ {0, . . . , ni − 1}
and k ∈ {0, . . . , di,j −3}. If we examine the instantiation
sol obtained in this way, we can easily check that it is a
solution of INDU(JSS).

• Let now sol be a solution of INDU(JSS). Define st as
the function that associates to each operation Oi,j the in-
teger sti,j defined by sol(Tsti,j

) = sol(Op0
i,j). We can

easily check that such an integer number exists and is
uniquely defined considering the constraints we have de-
fined. Moreover, an examination of the constraints shows
that st is a solution of JSS.

�

An examination of the constraint network INDU(JSS) and
of the solutions we have just described in the above proof
shows that the fact that the intervals used for modelling time
have a uniform duration plays no important role. Hence
we can construct a network in a similar fashion as before
while forgetting about the relative duration part, and obtain
in this way an Allen network Allen(JSS). For instance, we
will have C(Opi,j , Opi,j+1) as {before, meets} instead of
{before<, before=, before>, meets<, meets=, meets>},
for all i ∈ {0, . . . , njob −1} and for all j ∈ {0, . . . , ni −2}.

Frozen constraints

We now use the notion of frozen constraints introduced in
(Condotta, Ligozat, and Saade 2007). Essentially, a frozen
constraint is a constraint whose relation remains fixed and
cannot be changed while looking for a solution or during
local constraint propagation. Freezing constraints is of prac-
tical interest, as it allows to use efficient constraint prop-
agation and search techniques, as explained in (Condotta,
Ligozat, and Saade 2007). Those constraints which have
been frozen by the user are constraints which do not have
to be refined when looking for a solution. For example, if
we consider the construction of INDU(JSS), obviously the
instantiations of the constraints between variables represent-
ing the operations and time as basic relations is relevant for

the search of a solution to the JSSP. Hence these constraints
cannot be frozen. We will later determine, using a particular
property, what constraints can be frozen when looking for a
solution to the JSSP.
In what follows, we assume given a qualitative constraint
network N = (V, C) and a set SFrozen ⊆ V ×V of frozen
constraints. We assume that, if (Vi, Vj) ∈ SFrozen, then
(Vj , Vi) ∈ SFrozen.

Definition 1 A SFrozen-scenario of N = (V, C) is a sub-
network (V, C ′) of N such that:

• C ′ij = Cij if (Vi, Vj) ∈ SFrozen, and C ′ij =
{A}, where A ∈ Cij otherwise.

One of the interests of the use of the notion of frozen sce-
narios is that in some cases it is possible to isolate “critical”
constraints which can result in the inconsistency of the sys-
tem, in particular using local consistency properties. Such
a property was introduced in (Condotta, Ligozat, and Saade
2007). It is a property of weak closure under weak compo-
sition defined as follows:

Definition 2 Let N = (V, C) be a network, and
SFrozen ⊆ V × V a set of frozen variables. N is said
to be (SFrozen, ◦)-closed if for each pair of variables
Vi, Vj ∈ V such that (Vi, Vj) �∈ SFrozen, C(Vi, Vj) ⊆
C(Vi, Vk) ◦ C(Vk, Vj) for all Vk ∈ V .

If we now consider our translation of the JSSP, and define
the set SFrozenJSS as SFrozenJSS = {C(Ti, Tj) :
i, j ∈ {0, . . . , tmax − 1}} ∪ {C(Opk

i,j , Opk′
i′,j′) : i, i′ ∈

{0, . . . , njob − 1}, j ∈ {0, . . . , ni − 1}, j′ ∈ {0, . . . , ni′ −
1}, k ∈ {0, . . . , di,j − 1} and k′ ∈ {0, . . . , di′,j′ − 1}}
∪ {C(Opk

i,j , Opi′,j′) : i, i′ ∈ {0, . . . , njob − 1}, j ∈
{0, . . . , ni−1}, j′ ∈ {0, . . . , ni′−1}, k ∈ {0, . . . , di,j−1}}
∪ {C(Opi,j , Opk′

i′,j′) : i, i′ ∈ {0, . . . , njob − 1}, j ∈
{0, . . . , ni − 1}, j′ ∈ {0, . . . , ni′ − 1}, k′ ∈ {0, . . . , di′,j′ −
1}} then we can prove the following property:

Proposition 1 Any SFrozenJSS-scenario of INDU(JSS)
which is (SFrozenJSS, ◦)-closed is consistent.

Conclusion

We have introduced a method for translating the job shop
scheduling problem (JSSP) in terms of qualitative constraint
networks for the INDU and Allen calculi. This method can
be generalized to other variants of the JSSP. We have also
shown that the notion of frozen constraints can be used for
the networks obtained in this way, and we have given a char-
acterization of a set of constraints which can be frozen and
for which a local consistency property is a sufficient condi-
tion for consistency. We are now running experiments us-
ing the software platform QAT in order to validate our ap-
proach, aiming to get state-of-the-art efficiency. Using ex-
isting benchmarks for JSSPs, our work opens a perspective
for constructing content-motivated benchmarks for qualita-
tive networks.
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