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Abstract

In this paper we introduce a task which can serve as a bench-
mark for qualitative relative position calculi. In this task am-
biguous local landmark observations have to be integrated
into survey knowledge. We show that the most prominent rel-
ative position calculus, Freksa’s Double Cross Calculus can
solve a specific instance of this task. The observations can be
represented in a constraint network and standard constraint
propagation solves the ambiguity problem.

However, more general instances of the ambiguous landmark
problem cannot be solved using the Double Cross Calculus.
Therefore we present an extension to relative position ternary
point configuration calculi which uses an adaptable level of
granularity. This family of calculi is capable to solve general
instances of the proposed benchmark. Thereby robot applica-
tions including reasoning about ambiguous perceptions will
be made possible.

Introduction

A qualitative representation provides mechanisms which
characterize central essential properties of objects or con-
figurations. A quantitative representation establishes a mea-
sure in relation to a unit of measurement which has to be
generally available. Qualitative spatial calculi usually deal
with elementary objects (e.g., positions, directions, regions)
and qualitative relations between them (e.g., ”adjacent”, ’on
the left of”’, ”included in”).

The constant general availability of common measures is
now self evident. However, one needs only remember the
example of the history of technologies of measurement of
length to see that the more local relative measures, which
are qualitatively represented, (for example, “one piece of
material is longer than another” versus “this thing is two
meters long”) can be managed by biological/epigenetic cog-
nitive systems much more easily as absolute quantitative
representations. Typically, in Qualitative Spatial Reason-
ing relatively coarse distinctions between configurations are
made only. However, certain configurations can be distin-
guished more precisely using qualitative methods (Freksa
1991). For example the intersection point of two straight
lines can be represented either metrically using real valued
Cartesian coordinates or alternatively by using qualitative
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relations. The qualitative relations would represent that the
intersection point lies on both straight lines. In contrast with
the metrical, quantitative method and real valued Cartesian
coordinates a test for the distance between this intersection
point and each of the straight lines may generate the mis-
leading information that the point has a non-zero distance to
both lines (due to rounding errors) (Giiting 1994). There is a
significant loss in the semantics when using metrical infor-
mation only (Egenhofer et al. 1999).

The two main trends in Qualitative Spatial Reasoning
are topological reasoning about regions (Randell, Cui, and
Cohn 1992; Renz and Nebel 1999; Egenhofer and Franzosa
1991) and positional reasoning about point configurations
(?; Schlieder 1995a). Especially positional reasoning is im-
portant for robot navigation (Musto et al. 1999). In the next
section we give a short introduction about positional calculi.
Then we present a benchmark for constraint reasoning with
these calculi.

Qualitative Relative Position Calculi

Positional calculi are influenced by results of psycholinguis-
tic research in the field of reference systems (Moratz and
Tenbrink 2006). The results point to three different options
to give a qualitative description of spatial arrangements of
objects labelled by Levinson (Levinson 1996) as intrinsic,
relative, and absolute.

We can find examples of all three options of reference sys-
tems in the QSR literature. For instance, an intrinsic refer-
ence system is used in the dipole calculus (Schlieder 1995b),
(Moratz, Renz, and Wolter 2000), a relative reference sys-
tem in QSR was introduced by Freksa (Freksa 1992b), and
finally Andrew Frank’s cardinal direction calculus is suit-
able for an absolute reference system (Frank 1991), (Ligozat
1998).

Qualitative relative position calculi can be viewed as com-
putational models for projective relations in relative refer-
ence systems. To model projective relations (like “left”,
“right”, ”front”, ”back”™) in relative reference systems, all
objects are mapped onto the plane. The centers of projected
objects can be used as point-like representation of the ob-
jects.

Figure 1 shows a simple model for the left/right-
dichotomy in a relative reference system, which is given
by origin and relatum (corresponding to Levinson’s termi-
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Figure 1: The left/right-dichotomy in a relative reference
system

nology (Levinson 1996)). In this figure origin and relatum
define the reference axis. The reference axis naturally par-
titions the surrounding space in a left/right-dichotomy. The
spatial relation between the reference system and the refer-
ent is then described by naming the part of the partition in
which the referent lies. In the configuration depicted in Fig-
ure 1 the referent lies to the left! of the relatum as viewed
from the origin.

This scheme ignores configurations in which the referent
is positioned on the reference axis. Freksa (Freksa 1992b)
used a partition that splits these configurations into three
sets, corresponding to the relatum: the referent is either be-
hind, at the same position or in front of the relatum. Ligozat
(Ligozat 1993) subdivided the arrangements with the refer-
ent in front of the relatum in those cases where the referent
is between the relatum and the origin, at the same position as
the origin, or behind the origin. We then obtain the partition
shown in Figure 2. Ligozat calls this the flip-flop calculus.
For a compact notation, we use abbreviations for the relation
symbols.

left (le)

same as origin (so) same as relatum (s

- — hd v
behind origin (bo) front (fr) back (ba)

right (ri)

Figure 2: Adding relations for referents on the reference axis

For A, B, and C as origin, relatum, and referent, Figure 3
shows point configurations and their qualitative descriptions,
respectively. Isli and Moratz (1999) (Isli and Moratz 1999)
introduced two additional configurations in which the origin
and the relatum have exactly the same location. In one of the
configurations the referent has a different location, this rela-
tion is called dou (for double point). The configuration with
all three points at the same location is called tri (for triple
point). A system of qualitative relations which describes
all the configurations of the domain and does not overlap is
called jointly exhaustive and pairwise disjoint (JEPD). Such

!'The natural language terms used here are meant to improve the
readability of the text. For issues of using QSR representations for
modelling natural language expressions please refer to (Moratz and
Tenbrink 2006).
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a calculus was formulated in the scheme of a relation alge-
bra (Diintsch, Wang, and McCloskey 2001) by Scivos and
Nebel (Scivos and Nebel 2005).
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Figure 3: Examples of point configurations and their ex-
pressions in the flip-flop calculus. We use an infix notation
where the reference system consisting of origin and relatum
is in front of the relation symbol and the referent is behind
the relation symbol.

The simple flip-flop calculus models “front” and “back”
only as linear acceptance regions. Vorwerg et al. (Vorwerg
et al. 1997) showed empirically that a cognitively adequate
model for projective regions needs acceptance regions for
“front” and “back”, which have a similar extent as “left”
and “right”. Freksa’s single cross calculus (Freksa 1992b)
has this feature (see Figure 4). The front region consists
of “left/front” and “right/front”, the left region consists of
“left/front” and “left/back”. The intersection of both regions
models the left/front relation.

left/back

left/front

right/front right/back

Figure 4: The single cross calculus

For a given calculus one can try to build the closure with
respect to a set of operations by iteratively adding the op-
eration results (e.g. potential subsets of the original base
relations) to a new set of base relations until a fix point is
reached. This construction was performed for Freksa’s sin-
gle cross calculus by Scivos and Nebel (Scivos and Nebel
2001) for the permutation operations. The resulting calcu-
lus is an extension of Freksa’s original Double-Cross calcu-
lus (Freksa 1992b). The acceptance regions of the extended
Double-Cross calculus are depicted on figure 5.

A first benchmark compares the adequateness of the flip-
flop and the Double Cross Calculus with respect to mod-
elling natural language spatial references (see the table on
figure 6). The result is that the flip-flop calculus is less ad-
equate for modelling projective predicates than the Double
Cross Calculus.



Figure 5: Acceptance regions of the extended Double-Cross
calculus
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Figure 6: Relative reference by projective predicates
for the different calculi

Ambiguous Landmark Problems

In this section we introduce a task which can serve as a
benchmark for reasoning with qualitative relative position
calculi. In this task ambiguous local landmark observations
have to be integrated into survey knowledge. We show that
the most prominent relative position calculus, Freksa’s Dou-
ble Cross Calculus can solve a specific instance of this task.
The observations can be represented in a constraint network
and standard constraint propagation solves the ambiguity
problem.

Figure 7: Double Cross reference system/partition

We use for our demonstration the QSR toolbox SparQ
(Wallgriin et al. 2007). In this system the original version
of the Double Cross Calculus without Thales’s circle is used
(the relation symbols used in this system can be found on
figure 7).

We can use the Double Cross Calculus to represent our
local observation based underdetermined spatial knowledge
of the robotics example depicted in figure 8. The robot’s
observation at time point 1 (the red landmarks are close and
can be distinguished, the green ones are to far away to be
distinguished):

G1
G2

R1, R2
R1, R2

(2.5, 3.6)
(2.5, 3.6)

ey
(@)

The robot’s observation at time point 2 (the green landmarks
are close and can be distinguished, the red ones are to far
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Figure 8: Two observation resulting in ambiguous spatial
knowlede

away to be distinguished):

G1,G2
G1,G2

(5.2,6.3)
(5.2,6.3)

R1
R2

3)
“

The observation corresponding to equation (4) can be refor-
mulated:

G1,R2 (35,36) G2 5)
It follows:
R2,G1 INvV (3.5,3.6) G2 (6)
R1,R2 (2.5,3.6)CINV(3.5,36) G2 7
R1, R2 (35,2.5,1.5) G2 (8)

The conjunction (intersection) of equation (2) and equation
(8) yields:
R1,R2 25 G2 ©)

This manual deduction shows how the ambiguity is resolved
in this landmark configuration. In general the observations
can be represented in a constraint network and standard con-
straint propagation solves the ambiguity problem.

However, since the Double Cross calculus is coarse only
special configurations of landmarks can be solved with this
formalism. In the configuration which we used for our
demonstration the landmarks are arranged as corner points
of a rectangle. This rectangular shape corresponds to the
structure of the double cross. Landmark configurations
which do not follow this structure cannot be disambiguated
based on constraint-propagation reasoning with the Double
Cross Calculus.

More fine grained calculi like the Gpcc,, calculi de-
scribed in the next section are capable of solving much more
general problems. This approach is ongoing work, first re-
sults are promising.

Generalizing ternary point configuration
calculi

Applications exist in which finer qualitative acceptance ar-
eas are helpful. The possibility to use finer qualitative dis-
tinctions can be viewed as a stepwise transition to quanti-
tative knowledge. The idea of using context dependant di-
rection and distance intervals for the representation of spa-
tial knowledge can be traced back to Clementini, di Fe-
lice, and Hernandez (Clementini, Di Felice, and Hernandez



1997). However, only special cases of reasoning were con-
sidered in their work. Here, we will propose a calculus that
makes direct use of general purpose constraint propagation.
Thereby robot applications including reasoning about am-
biguous perceptions like in our proposed benchmark task
will be made possible. In 2-dimensional space, two points A
and B can be used to “localise” a third point C; this is relative
localisation, which means that no absolute reference system,
such as in (Frank 1991), is used: (1) A is the origin (which
may be, for instance, the speaker’s location); (2) B is the re-
latum; and (3) C is the reference object. The localisation of
C relative to A and B consists then of describing C relative
to the reference system determined by A and B. We shall be
considering two kinds of relative localisation:

1. Relative distance: how far is C from B compared to A? In
other words, how does the distance from C to B compare
with the distance from A to B?

2. Relative direction: what is the direction of C from B for
an observer placed at A? In other words, what is the an-
gle determined by the directed straight lines (BA) and
(BC)?

These two relative localisations will then be combined to
lead to relative position.

The newly proposed calculus is called granular point con-
figuration calculus GpCC. In this calculus two points are the
basis for a reference system. The reference system can be in-
terpreted as a partition of the plane into acceptance regions
for a third point. All options for places of the third point
which are in the same part of the partition are considered to
be in an aquivalence class and are treated in the same way in
categorization and reasoning tasks by subsequent modules.
One variant of the GPCC calculus and its partition on the
plane is shown in figure 9.

Figure 9: The partition of the GPCC3-Calculus

To give a precise, geometric definition of the GPCC-
relations we describe the corresponding geometric config-
urations in an analogue way to the TPCC calculus (Moratz
and Ragni 2008) on the basis of a Cartesian coordinate sys-
tem represented by R2. First we define the special cases for
A= (va,ya), B= (zp,yp) and C = (2¢, yc).

A, BdouC :=

A,BtriC = z4=x=xc/ANya=YyB=Yyc
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For the cases with A # B we define a relative radius 74, p,c

\/(:Ec —25)" + (yc — yp)*

\/(CCB —24)” + (yB — ya)®

TA,B,C =

A, B sam C = rapc =0

and for A # B # (' arelative angle ¢4 p.c:

-1 Y% —YB
Tc —TB

—1YB — YA
B —TA

tan tan

pABC =

The further base relations have an acceptance area depend-
ing on the granularity of the calculus to be applied. The
calculus shown in figure 9, GPCC3, has a level of granular-
ity of 3 and 267 relations. A calculus of the granularity level
m, described below as GPCC,,,, has (4m — 1)(8m) + 3 base
relations. The base relations of GPCC3y are thus defined:

ABsly C = 0<rapc<1/3A¢apc=0
ABsli C = 0<rapc<1/3AN0<dapc<1/6r
A,B3J_% C = O<7’A’Bﬁcgl/3/\¢A?370:1/6ﬂ'
ABsly C = 0<rapc<1/3A1/6m<¢apc<2/6rm
A,Bal%3 Cc = O<7’A,B,C§1/3/\

11/67‘( S ¢A,B,C S 12/67T
ABsl12 C = rapc=1/3N¢apc=0
ABsl} C = 1/3<rapc<2/3Ndapc=0
ABsl) C = 3/2<rapc<3/1Ndapc=0
ABsl3y C = 3/1<rapcAl1l/6r <dapc <12/6m

This schema can be transferred and applied to arbitrary

A=z ANys=yp (o # 1A VY # yA%ranularity m of a calculus GPCC,,,. The general segments

A, B 1% C are then so defined:



Figure 10: An example configuration of three points
A,B,C. The depicted configuration corresponds to
A B3

0<j<8M—2Ajmod2=0 — ¢A,B,C:L7T
4m
— 1
1<j<8m—-1Ajmod2=1 — J4—m7r<¢,4,3,c<
i+l
dm
,— 1
1<i<2m—-1Aimod2=1 — Z2m <rapc <
1+ 1
2m
2<i<2m Aimod2=0 — TA,B,C:L
2m
2m+1<:<4m —3A
) m
timod2=1 — =1 <raBcCc <
2m — 57
m
i+l
2 — 51
2m+2<i<4dm —2A
tmod2=0 — TA,Bﬁczim.
2m — 5

t=4m—-1 — m<raBc

Because we have three arguments, we have 3! = 6 pos-
sible ways of arranging the arguments for a transforma-
tion. Following Zimmermann and Freksa (Zimmermann and
Freksa 1996) we use the following terminology and symbols
to refer to these permutations of the arguments (a,b : c):

term symbol | arguments
identical ID ab:c
inversion INV ba:c
short cut Sc ac:b
inverse short cut | SCI ca:b
homing Hw™m b,c:a
inverse homing | HMI cb:a

With ternary relations, one can think of different ways of
composing them. However there are only a few ways to
compose them in a way such that we can use it for enforcing
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local consistency (Scivos and Nebel 2001). In trying to gen-
eralize the path-consistency algorithm (Montanari 1974), we
would like to enforce 4-consistency (Isli and Cohn 2000).
We then had to use the following (strong) composition oper-
ation:

VA,B,D: A,B(Tl OT‘Q)D — 3C: A,B(T‘l)C/\B,C(Tg)D

Unfortunately, the GPCC,, calculi are not closed under
strong composition. For that reason we can not directly en-
force 4-consistency. But we can define a weak composition
operation 71 Org of two relations 71 and ro. It is the most
specific relation such that:

VA,B,D : A,B(T1<>T‘2)D — 3C : A,B(Tl)C/\B,C(TQ)D

While using the weak composition we can not enforce 4-
consistency we still get usefull inferences.

The problem is calculating the permutation and composi-
tion results for such structures by machine. The operation
tables can be approximated with the aid of a composition of
distance orientation intervals (DOI) (Moratz and Wallgriin
2003). Thereby areal segments and their borders are sum-
marized. Thus one obtains thereby a quasi-partition in which
only linear overlappings occur.

The calculi are, with respect to the transformation HMI,
closed:

_ dm—1
-m J‘8171717]'

HMI (L))

In robotic applications the relevant areal base relations
with their borders are summarized into general relations.
Out of this, one obtains a closed region in a plane (with the
exception of its exterior segments which continue infinitely)
as acceptance area for the third point of a ternary relational
proposition. The bounded line segment acceptance areas be-
long to both neighboring segments and border points typi-
cally belong to four segments. All inner segments contain
the point which corresponds to the relation sam.

The areal measure of these ambiguous acceptance areas
is however 0. In the event that a corresponding border point
triple is to be represented qualitatively, a disjunction of all
bordering base relations must be used. As a result one ob-
tains then a fine grained quasi-partition for the representa-
tion of the relative position of a point with respect to a refer-
ence system build by two points.

Obviously, the calculi Gpccs, GPCCy4, and GPCCy can
solve more natural instances of the ambiguous landmark
problem than the Double Cross Calculus. Which granular-
ity is needed to solve reasonably designed random instances
of the ambiguous landmark benchmark is subject to future
investigations.

Conclusion

We showed a robotics problem about the disambiguation
of landmarks. This disambiguation of landmarks can be
achived by constraint-propagation only, since the underde-
termined spatial knowledge about the landmark position can
be expressed as constraint networks. The Double Cross Cal-
culus is capable to solve a simple instance of this problem.
For more general tasks one needs a finer granularity of the



position calculus. We presented a first draft of such a cal-
culus which in principle can solve general instances of the
landmark disambiguation problem.

With the ambiguous landmark benchmark we have a test
case which puts an emphasis on a qualitative decision as out-
put of qualitative spatial reasoning based on observed data.
From my point of view this is a more natural task than ab-
stract constraint satisfaction problems which try to find spa-
tial instances based on purely abstract input constraints.
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