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Abstract

We describe a multi-hypothesis mapping system for mobile
robots that learns graph-based topological representations.
Our approach exploits direction information and the assump-
tion of planarity to prune the space of possible map hypothe-
ses. Qualitative spatial reasoning is used to check satisfiabil-
ity of individual hypotheses. We evaluate the effects of ab-
solute and relative direction information and incorporate the
approach into a mapping system based on Voronoi graphs.

Introduction

Learning and maintaining a spatial model of an initially un-
known environment is generally regarded as a fundamental
problem of mobile robot research. During the last decades,
work on this problem has focused on coordinate-based spa-
tial representations like occupancy grids and feature-based
representations. An alternative to these representation ap-
proaches are graph-based representations, often referred to
as topological maps. In these approaches the environment is
typically conceptualized as a route graph (Werner, Krieg-
Brückner, and Herrmann 2000) consisting of nodes that
stand for distinctive places or navigational decision points
and edges that stand for the distinctive paths connecting
these places. The problem of computing the correct graph
model from a history of local observations has been investi-
gated theoretically for graph environments without any ge-
ometric information. For instance, (Dudek et al. 1991)
showed that without further information successful map
learning cannot be guaranteed without the help of at least
one movable marker.

In this text, we are concerned with the problem of mak-
ing topological mapping robust in the presence of uncer-
tainty and ambiguity in the perceived spatial information.
In the majority of toplogical mapping approaches only a
single map hypothesis is maintained with the consequence
that the map construction process tends to fail as soon as a
wrong decision is made. A more promising approach, for
instance suggested in (Dudek, Freedman, and Hadjres 1996)
and (Kuipers et al. 2004), is to keep track of all possible map
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hypotheses simultaneously. However, this approach can in-
crease the computational costs dramatically as the number
of possible topological map hypotheses can grow exponen-
tially with the number of exploration steps. Hence, addi-
tional available information needs to be exploited in order
to eliminate as many hypotheses as possible and make the
multi-hypothesis approach feasible.

In this work, we extend multiple-hypothesis topological
mapping and earlier work on qualitative spatial reasoning in
route graphs (Moratz, Nebel, and Freksa 2003). We adopt
Kuipers abductive learning approach (Kuipers et al. 2004)
and prefer among all valid graph hypotheses one that has a
minimal number of nodes. The resulting mapping approach
incrementally incorporates observations performing a best-
first search through the tree of possible graph hypotheses.
In addition, we incorporate qualitative information about
the directions of leaving hallways and the assumption that
the environment is planar (a constraint which has already
been individually investigated in Savelli and Kuipers 2004).
Qualitative spatial reasoning and incremental planarity test-
ing are used to discard invalid hypotheses and thereby prune
the search space. We employ and compare information from
two different qualitative spatial constraint calculi, the abso-
lute cardinal direction calculus (Ligozat 1998) and the rel-
ative OPRA2 calculus (Moratz 2006). Furthermore, we
combine the described approach with a topological mapping
approach based on generalized Voronoi graphs (Wallgrün
2005) and extensively evaluate our approach using simu-
lation experiments as well as real exploration data from a
mobile robot. The experiments show that direction informa-
tion and the planarity constraint lead to a huge increase in
solution quality and decrease in search space. However, the
application also reveals shortcomings of existing spatial cal-
culi and shows that the overall problem of topological map-
ping could serve as a test bed for evaluating spatial reasoning
methods.

We start by presenting our general multi-hypothesis topo-
logical mapping approach in the next section. We then ex-
plain the incorporation of spatial consistency and planarity
checking. Finally, we describe the different experiments.

Multi-Hypothesis Topological Mapping

Let us consider the following scenario: A robot is roam-
ing through a graph-like environment like the one shown
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Figure 1: Walk of a robot through a graph-like environment

in Fig. 1. The environment consists of junctions and
straight hallways connecting the junctions. For every passed
junction, the robot stores a junction observation Ji con-
sisting of a cyclically ordered set of leaving hallways
〈l[Ji]

1 , l
[Ji]
2 , ..., l

[Ji]
n 〉 and a spatial description consisting of

spatial relations over the set of observed leaving hallways,
e.g. {southwest(l[Ji]

1 ), south(l[Ji]
2 )}.

Junction observations are connected by hallway traver-
sal actions consisting of leaving the current junction via
one of the observed leaving hallways and arriving at the
next junction via one of the leaving hallways belonging to
the next junction observation, e.g., l

[J1]
2 → l

[J2]
1 . A list

〈J1, T1, J2, T2, ..., Tn−1, Jn〉 of alternating junction obser-
vations Ji and hallway traversals Tj forms the history of one
particular exploration run through the graph environment.

The goal of a topological mapping algorithm now is to in-
crementally process the history of observations and actions
and for each step determine a route graph hypothesis that can
be considered a valid explanation of the information pro-
cessed so far. Each route graph hypothesis consists of an
undirected graph with a combinatorial embedding into the
plane (e.g., specified by cyclic orders for the leaving edges
of each node in the graph) and the position and orientation of
the robot at the beginning of the exploration run (e.g., given
by a node and leaving edge).

During exploration, a currently valid hypothesis may turn
out to be invalid when the next junction observation is pro-
cessed. Hence, instead of committing to a single hypothesis,
we track all valid hypotheses simultaneously. Fig. 2 shows
in the top row three possible hypotheses assuming that the
robot has just arrived at junction G in the example (and as-
suming that all hallways are straight and that the junction
observations are given in terms of qualitative cardinal di-
rection relations from Ligozat’s cardinal direction calculus
(Ligozat 1998)). Black nodes here stand for junctions that
have been observed, while white nodes are introduced for
the end points of hallways that have not been traversed so
far. When moving on to F and processing the new obser-
vation J4, the first hypothesis can be complemented in two
different ways leading to two successors in the search tree.
Similarly, the third hypothesis has five successors. For the
second hypothesis, however, the new observation leads to a
contradiction: no hallway leading northeast is observed and,
hence, this hypothesis can be discarded completely.

Minimal Route Graph Model Finding

The approach sketched above performs an exhaustive search
through the tree of possible hypotheses. A modification of

Figure 2: Part of the search space of valid route graph hy-
potheses for the example from Fig. 1
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Figure 3: Two invalid hypotheses for the history from Fig. 1

this approach proposed by Kuipers (Kuipers et al. 2004)
is to prefer among all valid hypotheses the one that offers
the simplest explanation. In this text, we interpret simplest
as meaning a hypothesis that contains a minimal number of
nodes which we will call a minimal route graph model.

The number of nodes grows monotonically with increas-
ing depth in the search tree because new nodes and edges
will be added but never removed when a new observation
is incorporated. As a result, we can search for the minimal
route graph model in a best-first manner. This means that in
the example the right hypothesis in the top row would not
have been expanded because it already has the same num-
ber of nodes as the previously generated hypothesis at the
bottom left.

Valid Route Graph Models

The search tree from Fig. 2 only contains valid route graph
hypotheses, while all other hypotheses have already been
discarded. Given the direction information contained in the
junction observations and assuming that the mapped envi-
ronment is planar, a hypothesis has to satisfy three condi-
tions to be considered valid:

1. repeating the sequence of actions specified in the history
but now within the hypothetical route graph yields a se-
quence of node degrees identical to the original sequence
of leaving hallway numbers (structural constraint),

2. there must exist a way to draw the hypothetical route
graph into the plane without crossing edges that is in
accordance with the specified combinatorial embedding
(planarity constraint), and

3. given this drawing, repeating the actions also reproduces
the direction relations provided by the original junction
observations (direction constraints).

When generating the successor hypotheses in the search
tree, we only generate hypotheses which satisfy the struc-
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tural constraint. In addition, we take into account that two
junction observations can only correspond to the same node
in a hypothesis if the perceived directions match. As a result,
we can simply store the direction information as constraints
to the edges in the graphs.

In Fig. 3 we see two examples of invalid hypotheses, this
time for the complete walk depicted in Fig. 1. Both are de-
picted by one particular drawing of the route graph into the
plane and both satisfy the structural constraint. The drawing
of the first hypothesis would also reproduce the observed di-
rection relations. However, it has crossing edges and, more
importantly, no drawing without crossing edges exists that
is in accordance with the combinatorial embedding because
the combinatorial embedding itself is not planar.

The drawing of the second hypothesis is planar but the
positions assigned to the nodes do not reproduce the direc-
tion information correctly as the hallway that is supposed
to directly connect the junctions labeled J2 and J4 is sup-
posed to lead east from J2 and arrive at J4 from the west.
Hence, J4 would have to be to the east of J2. However,
from the knowledge that the hallway connecting J2 with J3

leads south and the hallway connecting J3 with J4 leads to
the west it can be concluded that J4 has to be somewhere
to the west of J2. As a result, no drawing satisfying the di-
rection constraints can exist because the contained direction
information is inconsistent.

The minimal route graph model finding problem we have
described here is a combinatorial optimization problem. For
deciding whether a given hypothesis is valid or not, we
need to determine whether a drawing exists that satisfies
the planarity as well as the direction constraints. This is a
constraint satisfaction problem over infinite domains (points
in the plane). However, as the two examples demonstrate
that many structurally valid hypotheses generated during the
search process can be ruled out by testing planarity of the
combinatorial embedding and the global consistency of an-
notated direction constraints individually. This is the ap-
proach we will take in this work and it allows us to employ
the efficient techniques for deciding consistency developed
in the area of qualitative spatial reasoning. Nevertheless, the
approach is incomplete in the sense that it may not filter out
all invalid map hypotheses: There may exist a drawing for a
given map hypothesis that is planar and one that is compliant
with the direction constraints but none that is both. Results
on how well this approach works in practice will be given in
the section on experimental evaluation.

Two Mapping Variants

Up to now, we have described a version of the minimal
model finding problem in which each model is a complete
closed environment that might contain unvisited junctions
which form the end points of perceived but never traversed
hallways. A less complex version of the problem can be ob-
tained by restricting the models to visited places and allow-
ing hallways with open endings. We will investigate both
variants and refer to them as CompEnv and VisOnly.

Rejection Based on Spatial Constraints

In the following, we briefly describe how checking of pla-
narity and, in particular, of consistency of the direction
constraints using the absolute cardinal direction calculus
(Ligozat 1998) and the relative OPRA2 calculus (Moratz
2006) are realized in our mapping approach.

Planarity Constraint

Each graph hypothesis for which the cyclic order informa-
tion derived from the cyclic orders of perceived hallways
does not describe a planar embedding (which can be decided
in linear time) can be immediately discarded. The criterion
used is whether the genus of the graph given by Euler’s for-
mula is zero.

Our approach to planarity checking is similar to the one
described in (Savelli and Kuipers 2004). We integrate pla-
narity checking into our search algorithm by representing
the route graph hypotheses as bidirected graphs and updat-
ing the information about faces of the embedding whenever
we modify the graph structure. When the genus becomes
non-zero, the hypothesis at hand can be discarded as the pla-
narity constraint is violated.

Qualitative Direction Information

To incorporate direction constraints, we formulate observed
directions by using the relations from a qualitative constraint
calculus. To decide whether the direction information stored
in a hypothesis is consistent, we first extract a constraint net-
work from the route graph hypothesis and then employ the
qualitative spatial reasoning toolbox SparQ (Wallgrün et al.
2007) for the consistency check using the standard algebraic
closure algorithm which runs in cubic time.

Realizing both mentioned calculi allows us to compare
the effects of absolute and relative direction information.
However, both calculi have their individual shortcomings.
The cardinal direction calculus, on the one hand, while be-
ing rather efficient because a large tractable subset exists for
which the algebraic closure algorithm decides consistency,
does not allow for expressing the cyclic order information
about the leaving edges in the route graph. As a result, it can
happen that a constraint network deemed consistent by the
consistency check, only has solutions for which the cyclic
order information is not preserved.
OPRA2, on the other hand, can express the cyclic order

information. However, for OPRA2 algebraic closure does
not decide consistency even for atomic constraint networks
which also means that inconsistent hypotheses may not be
discovered. We still have chosen OPRA2 as to our knowl-
edge no better suited relative direction calculus exists.

When using the absolute cardinal direction calculus, the
extracted constraint network contains one variable for each
node in the graph and the constraints holding between them
are directly derived from the direction relations annotated to
the edges. In contrast, the OPRA2 calculus is a relative
calculus describing the relative orientation of two oriented
points (points in the plane with an additional direction pa-
rameter) towards each other. In order to determine the right
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OPRA2 relation, a robot would only need to be able to es-
timate the angles between the leaving hallways instead of
needing a compass. In the constraint network, one oriented
point variable is introduced for each pair of node and inci-
dent edge (meaning one for every leaving hallway). Hence,
we end up with 2 × n variables where n is the number of
edges in the hypothesis.

Experimental Evaluation

To evaluate the application of qualitative spatial reasoning
approaches to the topological mapping problem, we per-
formed several simulated exploration experiments in ran-
domly generated graph environments of varying size and us-
ing random walks of varying length through the graphs. In
addition, we combined the overall approach with a mapping
system based on Voronoi graphs and applied it to a data set
from a real-world exploration run.

Simulation Experiments

In the simulation experiments, we investigated several as-
pects of our approach. The main results are summarized
below.

Solution quality We first investigated how much the pla-
narity constraint and qualitative direction information helps
in order to improve the solution quality by ruling out in-
correct hypotheses and, as a result, increase the frequency in
which the correct solution is found by the minimal model ap-
proach. To measure the quality of a solution, we use a simple
error measure: We count how often either two junction ob-
servations that correspond to different junctions have been
mapped to the same node or two observations that corre-
spond to the same junction have not been unified. To assure
that even searching without pruning is possible in reason-
able time, we used rather small problem instances varying
the size of the environment between 4 and 16 junctions.

Table 1 shows the results of 15600 trials for each of the
following settings and both the CompEnv and VisOnly vari-
ants of the minimal model algorithm: (1) only structural
constraint, (2) structural constraint and planarity constraint,
(3) structural constraint and cardinal direction constraints,
(4) structural constraint, planarity constraint, and cardinal
directions. In addition, Fig. 4 shows how the average er-
ror distances increase with the size of the correct model
throughout the experiment.

As the average error distances show, the planarity con-
straint and in particular the direction constraints significantly
improve the solution quality. For the CompEnv variant, the
planarity constraint achieves a 26.27% reduction of error
distance, while direction information decreases the error dis-
tance by 85.70%. Combining both planarity and direction
constraints only gives slightly better results than without ap-
plying the planarity constraint. The application of the con-
straints is highly beneficial but in most cases is not sufficient
to resolve all ambiguities.

For the VisOnly case in which unvisited junctions are
not included in the model, the improvements are even more
drastic. The application of cardinal direction information
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Figure 4: Average error distance depending on the size of
the correct model for the CompEnv and VisOnly variants

leads to the correct model being found in 98.15% of all tri-
als and has an extremely low average error distance of 0.20,
or 0.17 when combined with the planarity constraint.

Setting Correct model
found

Average error
distance

CompEnv structural only 4.77% 9.86
structural, planarity 5.97% 7.27
structural, card. dir. 50.62% 1.41
structural, planarity, card. dir. 50.92% 1.18

VisOnly structural only 59.00% 5.63
structural, planarity 64.77% 4.07
structural, card. dir. 97.92% 0.20
structural, planarity, card. dir. 98.15% 0.17

Table 1: Experimental results regarding the solution quality

The experiment shows that the planarity constraint and in
particular the cardinal direction constraints are able to re-
solve most of the model ambiguities remaining on the struc-
tural level leading to a largely increased solution quality.

Pruning efficiency To investigate the effects of the indi-
vidual settings on the size of the hypothesis space that has to
be searched, we performed random experiments running the
search until all solutions up to the size of the correct solution
had been determined to mask out the effects of varying solu-
tion quality. We recorded (1) the number of expansion steps
in which successors of a hypothesis are generated, (2) the
average branching factor in the search tree, and (3) the max-
imal queue size occurring during the search.

The result of this experiment are summarized in Table 2.
Fig. 5 shows how the number of expansions grows with in-
creasing size of the environment (logarithmic scale is used
for the y-axes).

Setting Expansions Branch.
factor

Max.
queue size

CompEnv structural only 2407.09 4.49 833.96
structural, planarity 284.97 2.38 86.17
structural, card. dir. 39.84 2.48 13.58
structural, planarity, card. dir. 21.85 1.64 6.10

VisOnly structural only 790.61 3.19 160.88
structural, planarity 254.25 2.00 47.87
structural, card. dir. 20.72 1.18 2.95
structural, planarity, card. dir. 20.11 1.15 2.76

Table 2: Results regarding the pruning efficiency

We clearly see that the CompEnv variant of the minimal
model finding problem is much more complex than the Vi-
sOnly variant. The planarity constraint leads to an 88.16%
decrease in expansion steps for CompEnv and 67.84% for
VisOnly. The average branching factor has been decreased
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Figure 5: Comparison of expansion steps depending on the
size of the correct model for CompEnv and VisOnly
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Figure 6: Error distance and expansion steps for the cardinal
direction calculus and OPRA2 (VisOnly)

by 46.99% to 2.38 (CompEnv) and by 37.30% to 2.00 (Vi-
sOnly). For the cardinal direction constraints, we see a very
high reduction of node expansions of 98.35% for CompEnv
and 97.38% for VisOnly. By combining both, an extreme
reduction in expansion steps of 99.99% was achieved for
CompEnv which corresponds to an average branching fac-
tor of 1.64. For VisOnly the cardinal direction constraints
yields a 99.97% reduction (branching factor 1.18).

We conclude that the planarity assumption and the coarse
direction information given by the qualitative cardinal re-
lations lead to a much increased efficiency of the minimal
model finding approach which would otherwise only be fea-
sible for very small problem instances.
Absolute vs. relative direction information One of the
goals of our analysis was to compare the effects of employ-
ing absolute direction information (e.g., relations from the
cardinal direction calculus) and relative direction informa-
tion (e.g., OPRA2 relations). Therefore, we repeated the
experiments for determining solution quality and pruning ef-
ficiency for both calculi using all constraints. Fig. 6 shows
the diagrams for error distance and expansions steps for Vi-
sOnly. With regard to solution quality, the change from ab-
solute to relative direction information increased the average
error distance from 1.64 to 1.82 for CompEnv and from 0.44
to 0.68 for VisOnly. The average number of expansion steps
increased from 49.12 to 82.60 (branching factor from 1.33
to 1.42) for CompEnv and from 12.79 to 13.93 (branching
factor from 1.21 to 1.24) for VisOnly.

The observed decrease in performance is not surprising
as relative direction information in general allows for more
perceptual aliasing. Taking this into account, the decrease
in performance seems to be rather mild, especially for the

VisOnly variant, and still much lower than for the less con-
strained settings investigated in the previous experiments.
The main advantage of relative information is that it often
can be obtained more easily and more reliably.

Overall computational costs When investigating the
pruning efficiency, we restricted ourselves to small problem
instances. In addition, we focused on the effects of the dif-
ferent settings on the search space. For the complete min-
imal model finding approaches featuring all kinds of con-
straints, we further investigated how the approaches perform
for larger problem instances. This investigation yielded two
main results: First, even applying all constraints is not suffi-
cient to conquer the combinatorial explosion for the Com-
pEnv variant. Second, the computational costs of global
consistency checking when employing the relative OPRA2

calculus quickly becomes excessive, making this approach
infeasible for large environments for both variants.

As a result of the first observation, the CompEnv vari-
ant seems limited to scenarios with a rather small number
of junctions in which the ability to predict the structure of
unvisited parts is worth the increased computational costs.
Taking a closer look at the second issue revealed that the
computation times spent on global consistency checking for
OPRA2 rise sharply, in some cases making up 90% of the
overall computation time. We believe that there are two is-
sues that contribute to this explosion in computational costs:
the large number of base relations in the OPRA2 calculus
which makes it impossible to store the complete composi-
tion table of general relations, and the size of constraint net-
works contains 2× the number of edges as variables.

As a result, it seems that currently the VisOnly variant in
combination with absolute direction information is the only
one that scales sufficiently well to larger environments.

Real-World Experiment

In a last experiment, we integrated the minimal model
framework into a topological mapping system based on gen-
eralized Voronoi graphs (see Wallgrün 2005 for details) to
demonstrate its ability to map real environments. The en-
vironment and the trajectory of the robot during the exper-
iment is shown in Fig. 7(a)1. The mapping system extracts
local Voronoi graphs from local grid maps of the robot’s im-
mediate surrounding and incrementally generates the history
information about the observed Voronoi nodes and traversed
Voronoi edges. The minimal model finding module updates
the search tree based on new history information and com-
putes a new minimal graph model using the VisOnly variant.

To apply the minimal model approach to the Voronoi
graph representation several adaptations were made:

1. Multiple connections between two nodes are allowed.

2. Observed local Voronoi graphs can contain multiple
nodes and edges which are translated into history infor-
mation without actually traversing the edges.

1The data set has been recorded at the Intel Research Lab,
Seattle, and is available at (http://radish.sourceforge.
net/), courtesy of D. Hähnel.
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(a) (b)

Figure 7: (a) Environment used in the real-world experi-
ment. (b) Minimal route graph hypothesis computed
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Figure 8: Error distance and expansion steps over the steps
of the real-world exploration experiment

3. In practice, it may not be possible to reliably determine
the exact direction relations. Therefore, we utilize dis-
junctions of base relations when the perceived direction is
a linear relation or lies close to the boundary of a relation
sector (e.g., {ne, n, nw} for observed relation {n}).

4. Voronoi curves are typically not straight line connections.
Hence, we only employ direction constraints in the global
consistency check if both connected Voronoi nodes have
been perceived simultaneously. Otherwise, the direction
information for this edge is only used for matching junc-
tion observations.

Fig. 7(b) shows the minimal model computed using the
cardinal direction calculus which is indeed the correct graph
model for this exploration run. For OPRA2, the resulting
model was correct as well except for two wrongly merged
nodes in a room that was entered via two different doors.
However, while the computation took 16 seconds using car-
dinal directions, it took over 10 hours for OPRA2 because
of the issues described in the previous section.

Fig. 8 shows how error distance of the current minimal
model and number of expansion steps develop over the 150
exploration steps for both spatial calculi. The diagram for
the error distance shows that the variant using cardinal di-
rections immediately settles for the correct hypothesis when
the first loop traversal is completed in step 23, while this
takes almost the entire second loop for OPRA2. We later
see another increase in error distance caused by entering the
new rooms. We also see that the number of expansion steps
required and the number of tracked alternative hypotheses is
significantly higher for OPRA2. However, the main reason
for the hugely increased computation time again is the time
spent on the global consistency checking.

Conclusions
We formulated topological mapping as the problem of find-
ing a minimal route graph model that explains a sequence
of observations and actions. Our solution consists of a
search through the tree of possible graph hypotheses exploit-
ing qualitative direction information (absolute or relative)
and the planarity assumption. The experimental evaluation
showed that this approach leads to a significantly reduced
search space and improved solution quality. The approach
has also been incorporated into a Voronoi-based mapping
system and been applied to real exploration data.

The results with regard to spatial consistency checking
based on qualitative direction information can be seen as a
challenge for future research on qualitative spatial reasoning
to improve current reasoning methods. We also think that
the described problem can serve as a test bed to evaluate and
compare different approaches.
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