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Abstract

The high resolution tracking data for hundreds to thousands
of urban vehicles, as well as the availability of digitized map
data, provide urban planners unprecedented opportunities for
better understanding urban motor vehicle transportation and
for better exploiting the knowledge thereof. This paper com-
bines the domain knowledge of traffic engineering with ma-
chine learning techniques, and gives a new approach to the
problem of traffic speed estimation and travel time prediction.

Introduction

Human group activities are diverse. They normally involve
large terabytes data sets. The mechanism explaining (the
data of) a specific type of human group behavior may be
very different from the mechanism explaining another type.
So do the purposes of our investigations. On the one hand,
we can often find out some good patterns in the data sets
related to human group activities and make good use of
them without understanding the underlying mechanisms. On
the other hand, a good understanding of the mechanisms
may enable us to get better results and to estimate the hid-
den variables. In other words, model-driven parametric ap-
proaches are more natural to encode the domain knowledge
and to “regularize” the target functions than data-driven non-
parametric approaches. Both types of approaches use statis-
tical learning methods such as support vector methods and
Bayesian networks to model human group activities.

Road traffic is an important type of human behavior. This
is reflected by the large number of publications and peo-
ple’s everyday concerns about the road traffic. On the other
hand, there does not exist a published study of nation-wide
and year-long road traffic based on fine-precision track-
ing records (consisting of longitudes, latitudes and times-
tamps) for a large number of moving vehicles according to
our knowledge. Studying road traffic with terabyte vehicle
tracking data could naturally be benefited by distributed sen-
sor network technologies, machine learning methods, and
the physics of road traffic.

This paper gives a case study of applying the statistical
learning methods and the traffic theory to the problem of
understanding the human behavior related to the road traffic.
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Our paper is the first that we know of to estimate and predict
city-wide traffic speeds from vehicle tracking data.

The tracking data and the map data involved for this case
study are kindly provided by NavSatCR(C) for our research.
The tracking data contains the geographical positions, the
time stamps, the speeds, and the headings of around 200 de-
livery vehicles operating over Costa Rica from the Septem-
ber of 2007 to the March of 2008 inclusive. The tracking is
on a 10 second basis recorded by vehicle-mounted hardware
when a vehicle is in operation (normally from 7:00 to 23:00).
The heading of a vehicle ranges clockwise from 0° when the
vehicle goes northward, to 90° when the vehicle goes east-
ward, and to 360° when the vehicle goes northward again.
The speed of a vehicle is in km/h. It normally ranges from
5 km/h to 40 km/h on local roads, from 30 km/h to 60 km/h
on arterial roads, and from 40 km/h to 100 km/h on major
highways. The map data is used for GPS navigation in Costa
Rica and is converted into separate ESRI Shape files and a
dBase file for our data analysis. The generated shape files
correspond respectively to (1) the POIs (points of interest,
locations with names and attributes, such as restaurants, ho-
tels, schools, and parking lots), (2) the unnamed points, (3)
the lines defining the roads, (4) the polygons defining the
lakes, parks, forests, etc, (5) the marine POlIs, (6) the marine
points, (7) the marine lines, and (8) the marine polygons.
The generated dBase file contains the routing information,
which describes how the road links are connected to one an-
other. The map data contains 22,747 POIs and 35,369 roads.
The roads form a network with 61,560 vertices (road inter-
sections) and 78,507 edges (road links).

In the following sections, we will review the literature re-
lated to the traffic theories and related to traffic speed pre-
diction. We will then give our Viterbi decoding algorithm to
map the (longitude, latitude) sequences in the tracking data
into the corresponding (road segment, offset) sequences.
This “map matching” has long been identified (Smith et al.
2003) as an import problem to be solved for a study like
ours. We will proceed to discuss the traffic patterns at the
road link level in the tracking data set. Motivated by the traf-
fic patterns in the data set and equipped with the knowledge
of road traffic physics, we will give our algorithms for es-
timating/predicting traffic speed and predicting travel time.
We will conclude with our general opinion on understanding
human or human group behavior.



Road Traffic Theories

The physics of road traffic has a long research history and a
rich collection of bibliographies. The fundamental diagram
and the conservation equation of traffic flow are of our spe-
cial interest, since they establish a relationship among the
traffic speeds on different road links in terms of the relation-
ship of the corresponding traffic flow rates. While traffic
speeds can be much more reliably and easily estimated from
individual vehicle speeds, the traffic in different parts of a
road network is more directly related to each other via traf-
fic flow rates. The implicit traffic speed relationship gives
us a tool for the prediction of traffic speeds, the estima-
tion/prediction of traffic flow rates, and the assessment of the
feasibility of data-driven non-parametric approaches. The
following two paragraphs give more details on the funda-
mental diagram and the conservation equation respectively.

The variables of the traffic on a road segment are the
traffic speed v (km/h), density k (vehicles/kilometer),
and flow rate g (vehicles/hour). Since ¢ = k X v, the
knowledge of any two variables gives the third one. The
fundamental diagram of traffic flow (Greenshields
1935) postulates that there is a (statistically) linear rela-
tionship between the traffic speed and the traffic density
(with a negative slope) in a one-lane traffic flow, i.e.,
k = kmax — (k’max/’l}max) - v where v € [O,Umax} and
k € [0, kmax]. It can be extended to model the equilibrium
state of multi-lane traffic flow. The fundamental diagram
can be explained by a microscopic car following model
that describes how an individual vehicle responds to the
behavior of the vehicle(s) in front of it in order to keep a safe
distance (Gazis, Herman, & Rthery 1961): &, 41 (t + 1) =

(omax - (in(t) = ns1(0))) / (max - (2 (6) = 2041 (1))

i.e., the acceleration of a vehicle is proportional to its speed
difference with the leading vehicle and to the inverse square
of its distance to the leading vehicle.

The traffic on different segments of a road network
is related with each other by the conservation of road
traffic: In an area and a time span, the net traffic vol-
ume flowing into this area plus the net traffic volume
generated equals the increase of the traffic volume,

Jodt < > atw)— X Q(t,xj)> =
iein ramps jeout ramps
Jy dx (k(t1, x) — k(to, z)dx)  + :01 dt [, drg(z,t),
where g(x,z) is the number of new vehicles gener-
ated at time ¢ and location x. In differential form,
6%q(m,t) - %k‘(m,t) = g(x,t). Since our observables are
the traffic speeds sampled by transport vehicles, we can
rewrite the conservation equation in terms of traffic speed
%% — %% = g(x,t) and proceed to estimate the road
parameters (e.g., kmax and vmax for fundamental diagram
approximation), as well as the traffic variables (g, v, and k)
at different times and locations in the road network. The
earliest applications of the conservation equation to the
study of traffic flow and more recent applications in traffic
flow simulation can be found in (Lighthill & Whitham 1955;
Richards 1956; Stephanopoulos & Michalopoulos 1979;

Michalopoulos 1988).

More works on the road traffic theories are listed be-
low. Gartner et al. (Gartner, Messer, & Rathi 2005) gave
an up-to-date overview of traffic theories including the car-
following models, traffic flow theory and traffic flow models
at different types of road intersections. Highway Capacity
Manual (hig 2000) contains concepts, guidelines, and com-
putational procedures for computing the capacity and qual-
ity of service of various highway facilities. Kerner (Kerner
2004) proposed a three-phase theory of the road traffic and
gave an interesting explanation of the “wide moving jam”
phase. The traffic speed theories assign meanings to our ter-
abytes vehicle tracking data. They also enable us to solve
our traffic-related problems in model-driven parametric ap-
proaches and to understand the performance of data-driven
non-parametric approaches.

Literature Review

We summarize below the previous work related to road traf-
fic and having any of the keywords “GPS”, “cellphone”,
“speed”, “jam”, “estimation” and “prediction”.

Prashanth Mohan et al. (Mohan, Padmanabhan, & Ram-
jee 2008) reported their results on using the accelerometer,
microphone, GSM radio and GPS in a smart phone to detect
potholes, bumps, braking and honking. Their experiments
are based on the data collected by several smart phones in
several road trips for a total number of 27.5 hours travel time
and 512 kilometers travel distance.

Smith at el. (Smith ez al. 2003) gave a critical assessment
of past studies of WLT (wireless location technology) based
traffic monitoring and documented the evaluation of one of
the most recent operational tests — the 2001 Virginia De-
partment of Transportation (VDOT), Maryland State High-
way Administration (MSHA), and US Wireless Corporation
(USWC) effort in the Washington, D.C. region. Based on
the results of the operational tests, they concluded that the
early generation WLT-based system produced link speed es-
timates of moderate quality, but it showed some promise in
future traffic monitoring applications. For the data sets used
by Smith at el., the geographical precision is around 100 me-
ters, the sample rate is 1 sample per several minutes, and the
samples are collected by vehicles traveling along a specific
road link under investigation.

Huisken (Huisken 2006) benchmarked the performance
of different traffic jam prediction methods (using linear re-
gression, ARMA, MLF/RBF/Elman/SOM neural networks
respectively) using the traffic data (traffic speed and traf-
fic flow rate) collected by inductive loops buried under the
roads at two test sites. Each of the test sites is composed of
two 10-kilometer-long highways connected with each other
by a cloverleaf road intersection.

Lint (van Lint 2004) proposed to use (data-driven) neural
network models to predict the travel time on a road link from
the traffic information collected by inductive loops. He used
simulated traffic information to benchmark his method.

Froehlich and Krumm (Froehlich & Krumm 2008) in-
spected the driving data (latitudes, longitudes, and times-
tamps) of 252 drivers in the Seattle, WA area — most of



whom are Microsoft employees and affiliates — for an av-
erage duration of 15.1 days, with a sample rate of 6 seconds
per sample when the vehicles are in operation, and collected
in year 2005. They noted that 39.3% of the trips are re-
peated trips, and 40% of the repeated trips can be identified
halfway.

Horvitz et al. (Horvitz et al. 2005) used a Bayesian net-
work to predict traffic jams on the major highways in the
Seattle, WA area. The prediction is based on the past and cur-
rent traffic jams, accident reports, time of day, day of week,
holiday and special event information, and weather informa-
tion. The Bayesian network is trained from 15 months of (1)
traffic jam information reported by WDOT (the Washington
Department of Transportation) and (2) the aforementioned
factors that are used to predict traffic jams. From what we
know, the local drivers generally know the daily/weekly pat-
terns, which account for about 80% of traffic speed variance,
and they are more concerned about the irregular traffic con-
ditions. The traffic jam and the traffic speed are both com-
plex and hard-to-define phenomena (Kerner 2004). In this
sense, the approach of Horvitz et al. is one by the machine
learning researchers rather than one by the traffic engineers.

Data Preprocessing and Inspection

In this section, we will describe our inspection of the data
set, as well as some patterns in it. A good statistical mod-
eling of the city-wide road traffic should either exploit the
patterns or implicitly reflect the patterns.

Inspection of the Data Quality

According to our inspections, most of the (longitude, lat-
itude) pairs in the tracking data have sub-meter accuracy.
Instantaneous vehicle speed can be estimated from consecu-
tive (longitude, latitude, time) 3-tuples, since .00001 degree
in both latitude and longitude corresponds to 1.1 meters in
Costa Rica and since a vehicle moves straight statistically in
a 10 second interval. The instantaneous vehicle speed esti-
mated with the just described method differs from those by
the vehicle mounted hardware by a RMS (root mean square)
of 0.25 km/h. The vehicle heading data estimated by the ve-
hicle mounted hardware agrees with the direction of the road
segment that the vehicle is on by no more than 3° deviation
for over 95% of the tracking records.

Mapping Geographical Coordinates to Roads

Since vehicles operate in roads, the road network provides
both a structure for understanding the relationships of ve-
hicles in different road segments and a way for describing
the traffic information. Recall that the raw tracking data
has only geographical coordinates and corresponding times-
tamps. Without mapping the geographical coordinates in
the tracking data to roads, we may only be able to tell the
drivers to avoid the horizontal strip that goes through the
center line of San Jose, San Jose, Costa Rica and that is 1/4
mile from north to south, With the map information consid-
ered, we might tell the drivers only to avoid the segment of
Paseo Colon that connects the Pan-American Highway and
that goes to the airport.

We subsequently mapped the (longitude, latitude) se-
quences in the tracking data set to the corresponding (road
segment, offset) sequences with the Viterbi algorithm for
hidden Markov models. One reason for this preprocessing
step is that many interesting phenomena of road traffic hap-
pen at the road level. Another reason is that the tracking
records at the (longitude, latitude) level are also very sparse,
even after they are aggregated into 10 meters by 10 me-
ters cells. Since two consecutive samples in the data set
are around 10 seconds apart in time, there exists a strong
relationship between the road(s) or road link(s) correspond-
ing to the two samples. As a result, we can expect a bet-
ter mapping by making sense of a (consecutive) sequence
of vehicle positions than by simply choosing the road seg-
ments that have the shortest distances to the individual ve-
hicle positions. The hidden Markov model that describes
the behavior of an operating vehicle is constructed in the
following way. The latent state S; of a vehicle (at sam-
ple time ¢) is the road link that the vehicle is on at time .
Corresponding to latent state .S; is the observed (longitude,
latitude) pair of the vehicle at time 7. The probability of ob-
serving (longitude, latitude) when the vehicle is in state Sy is
P((longitude, latitude)|S;). The state transition Sy — S¢11
of the vehicle from time ¢ to time ¢ + 1 is either that the ve-
hicle keeps on the same road link (S; = Sy41) or that the
vehicle passed through several road intersections and arrives
at different road link (S; # S:+1). The conditional proba-
bility P(S;+1|S;) defines how likely that a vehicle on road
link S; at time 7 is on road link Sy, at time ¢ + 1, and it
is 0 when the transition from S; to S;; is unlikely. Given
a sequence of observations {(latitude;, longitude;)} ¥ ,, the
Viterbi path is then the best estimation of the corresponding
road link sequence that maximizes the likelihood function
1Y, P(S;|S;_1) - P((latitude;, longitude;)|S;).

We inspected a randomly selected set of 50 traces involv-
ing different vehicles operating on different days. By our in-
spection, 100% of the corresponding (road segment, offset)
sequences make sense. The error rate of the Viterbi algo-
rithm should be close to our empirical estimation.

Histogram of Road Usages

The road usage in the tracking data obeys the 80-20 rule
(power law). In other words, the vehicles are on a small
number of road segments most of the time, and they are
widely dispersed throughout a large number of road seg-
ments for the rest of the time. This road usage pattern
coincides with the pattern noticed by Lammer (Lammer,
Gehlsen, & Helbing 2006): In the data set, there is one ma-
jor highway — Pan-American Highway (Route 1, 1a, 1b, 2,
2a) — which is 657 km in length, and has 1,959,478 track-
ing records on it. There are another 34 numbered highways,
with total length 1187 km, and corresponding to 1,863,884
tracking records. There are 391 named/numbered arterial
roads, with total length 4739 km, and corresponding to
2,530,482 tracking records. The collector roads and resi-
dential streets are unnamed. Their total length is 33002 km
and they correspond to 2,609,084 tracking records.

The 80-20 rule of the road usage has some indications
on the road traffic speed estimation and travel time predic-



tion. A vast amount of local roads are infrequently used,
they are less likely to have large variations in traffic condi-
tions including traffic jams, and they are sparsely sampled
by the delivery vehicles. Their traffic conditions are con-
cerned about by a few the drivers. A few roads, such as
some highways and arterial roads, are densely used, they are
more likely to have large variation in traffic conditions, and
they are densely sample by the delivery vehicles. Their traf-
fic conditions are concerned by many of the drivers.

Periodic Patterns of Road Traffic

Different road segments and different directions along the
same road segment have different temporal patterns on traf-
fic speed. These patterns on a road segment can be under-
stood and modeled in terms of how the multitude of vehi-
cles pass through it in both directions: Where are they from,
where do they go, and when do the trips happen. Since the
road segments are connected into a network, the patterns are
related to each other through the network connection. On
a major highway that connects one administrative district
to another district, the traffic speed normally drops signif-
icantly to an identical level during peak hours (around 9:00
am ~ 10:00 am and/or around 4:00 pm ~ 5:00 pm during
weekdays). The peak hours are relatively longer on Mon-
day mornings and Friday afternoons. The road traffic speed
is likely to remain high for the rest time of a week. This pat-
tern is induced by people commuting between where they
live and where they work. Since this behavior is stable in
the tracking data set, we can believe that commuters ac-
counts for a large fraction of travelers along the major high-
way. Many other highways, arterial roads, and collector
roads close to the major highways in the road network show
similar patterns. In contrast, the traffic speed on a local
street is more determined by factors such as the POIs on and
around the street, and whether the street connects a major
highway. On many local streets, speed slow-downs during
evenings and weekends can be observed from the tracking
data. Many of the local streets are very infrequently sam-
pled by the transportation vehicles. The weekly traffic speed
pattern of a section of a major highway and the periodogram
of the same section are plotted in Figure 1.

Road traffic speed is a tricky concept. It has many in-
compatible definitions and is widely argued in traffic the-
ory works. Concerning our vehicle tracking data set, we
point out that the root mean square of the speed difference
of any two tracking records about a vehicle around 10 sec-
onds apart is 9.35 km/h. On the other hand, we also noted
that the road traffic speed is very predictable given the in-
stantaneous speeds of a moving vehicle. Thus traffic speed
is a reasonable concept and can be estimated from vehicle
speeds, but traffic speed is by no means equivalent to vehi-
cle speed. This observation from the tracking data coincides
with the common sense about road traffic speed. A vehicle
driver normally observes that other vehicles around his ve-
hicle travel in the same speed on the road. He normally does
not change lanes frequently on a road in order to be faster,
because he believes (at least partially) that passing over other
vehicles does not make him much faster.
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Figure 1: Top: weekly traffic speed pattern on a section of
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tom: A closer distance to the downtown corresponds to a
lower traffic volume and a lower speed.



Methodologies and Results

In this section, two approaches are given for road traf-
fic speed estimation and prediction. The support vector
method can be used to approximate a function f(z) in terms
of a linear combination of a finite number of basis func-
tions > ; a; (¢(x), ¢(x;)) y; where the bilinear operator
(e, @) is a dot product, and the parameters «; are trained
by from the training set {(z;,y;),i = 1,---,n} by the
structural risk minimization (SRM) principle (Vapnik 1998;
Cristianini & Shawe-Taylor 2000). In the dynamic Bayesian
network approach, the traffic in the road network is de-
scribed in the following way. The traffic speed in a road
link has a Gaussian distribution conditioned on the traffic
flow rate v, (t) ~ N (v;(qz(t)), 0,(¢t)%. When road link 1
and road link 2 merges into road link 3, the traffic flow rates
of the three road links satisfy g3(t) = ¢1(¢) + ¢2(¢). With
this description and the EM (estimation maximization) algo-
rithm, we can “learn” the relationship between traffic speed
and traffic flow rate, estimate the (latent) flow rates, and pre-
dict future speed and flow rate on different road links. The
dynamic Bayesian network takes the form of the latent struc-
ture influence model (Dong & Pentland 2007).

We used a data driven non-parametric approach (support
vector regression with Laplacian kernel) to estimate road
traffic speeds. Short term traffic speed prediction and the
travel time prediction for vehicles on a road segment is based
on the tracking records before the time of the predictions. To
assess the performance of our non-parametric approach to
predict the travel time through a road segment, we randomly
separated out the tracking data for 25% of the delivery ve-
hicles for validation. The average relative error for highway
travel time prediction is 14%, and more than 95% predic-
tions have less than 20% relative errors. In comparison, the
travel time prediction based on road average speeds is 22%,
and 30% of the predictions have more than 20% relative er-
rors.

The support vector method improves the travel time pre-
diction by finding the “abnormal” points — the points
(t;, x;) whose speeds deviate from the expected ones (which
can be roughly treated as the prior derived from historical
data) by a value Avy, ,, greater than the given threshold e —
and expressing the speed Correction Av(t,z) = Zil oy
Avy, 1, - exp(—ov/(x — ;)2 + (t — t;)2) (which is added
to the prior speed to give the estlmated instantaneous traffic
speed) as a linear combination of the Awvy, ,,’s correspond-
ing to those abnormal points. Since The Laplacian ker-
nel K((z,t), (zi,t;)) = exp(—o/(z —x;)2 + (t — ;)?)
decreases exponentially fast when the point of speed-
estimation (¢, ) goes away from the sample point (¢;, z;),
the influence of Avy, ,, quickly becomes negligible with in-
creasing distance between (¢, z) and (t;, x;). We set € to be
10%, and choose C and ¢ by 3-fold cross-validation.

Figure 2 illustrates the results of traffic speed estimation
and travel time prediction on road 25608 (the segment of
Pan-American highway from Juan Santamara International
Airport to downtown San Jose) and road 34682 (the seg-
ment of Pan-American highway from downtown San Jose to
Juan Santamara International Airport) on 02/29/2008. This
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figure is representative of the results for other roads and on
other days according to our experiments. In the four plots,
the axes going horizontally and vertically are respectively
hour-of-day (from 00:00:00 to 24:00:00) and location-of-
road (from O kilometer to 12 kilometers). Plot one and plot
three from top to bottom visualize the results of estimating
the traffic speeds on road 25608 and 34682 respectively. In
the two plots, the colored points correspond to the track-
ing records, and different colors represent different vehicles.
The solid lines represent the estimated tracks of imaginary
vehicles that go from location 0 to location 12-kilometers of
the roads, starting from different times of the day. Plot two
and plot four visualize the results of predicting travel times
from known tracking records on road 25608 and 34682 re-
spectively. In the two plots, the dotted lines correspond to
the tracking records used for traffic speed estimation. The
points that are not blue represent the tracks to be estimated,
and different colors represent different vehicles. The blue
points represent the predicted tracks for those vehicles. As
evidenced by the four plots, better estimation of traffic speed
and prediction of travel time are possible because the track-
ing records provide evidence of instantaneous traffic speeds.

Traffic speed estimation based on the above non-
parametric approach works by considering nearby vehicle
speed abnormalities. Predicting traffic speed abnormality
(e.g., traffic jam) in advance is a harder problem since we
need to “learn” a functional rather than a function, V :
v(i,z,t') - 1y« — vj,,(t + At). Specifically, we are given
the traffic speed at different locations x of different road seg-
ments i up to time #, (which is a function of x, i and #’;t
respectively), and we are required to estimate the speed at
location y of road j at a future time ¢ + At. This functional
is non-linear since V' (awy + Bva) # aV (v1) + 5V (v2) gen-
erally. While the functional can be estimated with support
vector methods in a model-driven parametric approach, and
we can use our knowledge on the traffic flow theory to assess
the performance of any (blind) data-driven non-parametric
approach, we will give below a dynamic Bayesian network
approach, since the latter is much simpler.

We can represent the road network by a directed graph
{V,€} where V is the set of road links and & is the
set of transitions from one road link to another road
link. For each road link ¢ € V), its traffic flow rate is
min(3° ;e 45 (), 4" (t)) + g(t) where ¢["@%(t) is the
maximum flow rate of road link i, and g;(t) is the traffic
flow generated at sample time t. Both ¢M#%(¢) and g, (¢) is
an (unknown) periodic function. The traffic speed at road
link 7 has Gaussian distribution around a non-linear function
vi(t) = N (vi(q;(t)), 02(t)), where v and g satisfies the fun-
damental diagram approximation. Our goal is to learn the
parameters g;, k** and v]"**, and to estimate ¢;(t).

With the EM algorithm similar to (Dong & Pentland
2007), we can predict traffic jams half an hour to two hours
on highways. We note that the further ahead in time we pre-
dict, the more information and computation we need, and
the traffic conditions of the less number of places we can
predict with required precision based on limited amount of
information. Since the further we look into the future, the
more uncertainty is going to add into our computation.
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Figure 2: Traffic speed estimation and travel time predic-
tion on road 25608 (the segment of Pan-American highway
from Juan Santamara International Airport to downtown San
Jose) and road 34682 (the segment of Pan-American High-
way from downtown San Jose to Juan Santamara Interna-
tional Airport) on 02/29/2008.

Conclusions

The paper studies an important type of human group behav-
ior — the city-wide road traffic. The study is based on a
multi-terabyte data set containing latent information. We as-
sign a meaning to the data set by mapping its (longitude, lat-
itude) sequences to the corresponding (road segment, offset)
sequences , and by making use of the known results from
traffic engineering. The combination of domain knowledge
and machine learning methods both generate better under-
standing of the data set and shed light on its latent informa-
tion.
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