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Abstract

We describe stochastic models of user-contributory web sites,
where users create, rate and share the content. These mod-
els describe how aggregate measures of activity arise from
simple models of individual users. This approach provides a
tractable, approximate method to understand user activity on
the web site and how this activity depends on web site design
choices, such as what information on other users’ behaviors is
shown to each user. We illustrate this approach in the context
of user-created content on the news rating site, Digg.

Introduction
The Web is becoming more complex and dynamic as sites
allow users to contribute and personalize content. Such sites
include Digg, Flickr and YouTube where users share and
rate news stories, photos and videos, respectively. Addi-
tional examples of such web sites include Wikipedia and
Bugzilla, enabling anyone to contribute to encyclopedia arti-
cles or help develop open source software. These social web
sites also often allow users to form explicit links with other
users whose contributions they find interesting and highlight
the activity of a user’s designated friends (Lerman and Jones
2007) to help users find relevant content.

Web sites often provide users with aggregate summaries
of recent activity. For example, both Digg and Flickr have
a front page that features ’hot’ (popular or interesting) con-
tent. News organizations, such as The New York Times,
allow users to subscribe to or embed RSS feeds of their
most popular (e.g., emailed) stories in the users’ own pages.
Feedback between individual and collective actions can lead
to nonlinear amplification of even small signals. For ex-
ample, the ’Digg effect’ refers to the phenomenon where a
’hot’ story on the social news aggregator Digg brings down
servers hosting the story that are not equipped to deal with
heavy traffic that a popular story on Digg generates.

Aggregate contributions of many users determine the
structure and usefulness of user-participatory web sites. Un-
derstanding this emergent behavior will enable, for exam-
ple, predicting which newly contributed content will likely
become popular, identifying productive ways to change how
information display on web sites, or changing incentives so
as to improve the content.
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The behavior of an individual web user is certainly com-
plex and unpredictable, governed by a myriad of social, eco-
nomic, emotional and cognitive factors, and often subject to
unpredictable environmental influences, such as the weather
or the stock market. Nevertheless, the combined activities
of many users often give remarkably robust aggregate be-
haviors (Wilkinson 2008).

In this paper, we present a stochastic processes-based
framework for modeling regularities in aggregate behavior
of web users. The models can be written down directly from
the individual behavior descriptions, and quantified with em-
pirical observations of a representative sample of users. This
methodology is valid for behaviors that can be modeled as
Markov processes (of varying complexity). Though at first
glance this may appear overly restrictive, many online activ-
ities have a fairly limited set of actions for users and present
information based on little or no historical context of par-
ticular individuals, allowing a few state variables to capture
the main context involved in user actions. Like all formal ap-
proaches, the stochastic methodology has limitations, which
we also discuss. We illustrate the approach by modeling
online behavior on the social news aggregator Digg, which
allows users to submit and rate news stories by voting for the
stories they like. Digg promotes highly rated stories to the
front page, in essence allowing it to emerge from the deci-
sions made by its users. We show that stochastic models are
able to explain some features of the collective user behavior.

Stochastic Models

Rather than account for the inherent variability of individ-
uals, stochastic models focus on the behavior of average
quantities representing aggregate properties of the system.
In the context of a participatory web site, such quantities in-
clude average rate at which users contribute new content and
rate existing content. Such macroscopic descriptions often
have a simple form and are analytically tractable. Stochastic
models do not reproduce the results of a single observation
— rather, they describe the ‘typical’ behavior. These mod-
els are analogous to the approach used in statistical physics,
demographics and macroeconomics where the focus is on
relations among aggregate quantities, such as volume and
pressure of a gas, population of a country and immigration,
or interest rates and employment.

We represent each user as a stochastic process with a
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small number of states. This abstraction captures much of
the individual user complexity by casting their decisions as
inducing probabilistic transitions between states. This mod-
eling framework applies to stochastic processes of varying
complexity. In this paper, we focus on simple processes that
obey the Markov property, namely, a user whose future state
depends only on her present state and the input she receives.
A Markov process can be succinctly captured by a diagram
showing the possible states of the user and conditions for
transition between those states.

With the representation of users based on a small set of
relevant states, the same set of states for all users, and tran-
sitions depending only on the state and not the individual
user, the system as a whole is described simply by the num-
ber of users in each state at a given time. That is, the
system configuration is defined by the occupation vector:
�n = (n1, n2, . . .) where nk is the number of users in state k.
For example, in the context of Digg, nk could be the number
of users who have voted for story k.

The occupation vector changes as people use the web site,
e.g., to view, post and rate content. In principle, one could
follow the history of the system, giving a sequence of oc-
cupation vectors. However, to investigate typical behavior
rather than the details of, say, how users rate a particular
story on Digg, we consider a collection of histories of simi-
lar content (as determined through a few characteristic prop-
erties). This grouping allows the model to generalize from
simply describing what has already been observed to predict
behavior of similar content that may arise in the future.

The next step in developing the stochastic model sum-
marizes the variation within the collection of histories with
a probabilistic description. That is, we characterize the
possible occupation vectors by the probability, P (�n, t), the
system is in configuration �n at time t. The evolution of
P (�n, t), governed by the Stochastic Master Equation (Kam-
pen 1992), is almost always too complex to be analytically
tractable. Fortunately we can simplify the problem by work-
ing with the average occupation number, whose evolution is
given by the Rate Equation

d〈nk〉
dt

=
∑

j

wjk(〈�n〉)〈nj〉 − 〈nk〉
∑

j

wkj(〈�n〉) (1)

where 〈nk〉 denotes the average number of users in state k at
time t, i.e.,

∑
�n nkP (�n, t) and wjk(〈�n〉) is the transition rate

from configuration j to configuration k when the occupation
vector is 〈�n〉.

Using the average of the occupation vector in the transi-
tion rates is a common simplifying technique for stochastic
models. A sufficient condition for the accuracy of this ap-
proximation is that variations around the average are rela-
tively small. In many stochastic models of large numbers of
components, variations are indeed small due to many inde-
pendent interactions among the components. More elaborate
versions of the stochastic approach give improved approxi-
mations when variations are not small, particularly due to
correlated interactions (Opper and Saad 2001). User behav-
ior on the web often involves distributions with long tails,
whose typical behaviors differ significantly from the aver-
age (Wilkinson 2008). In this case we have no guarantee

that the averaged approximation is adequate. Instead we
must test its accuracy for particular aggregate behaviors by
comparing model predictions with observations of actual be-
havior, as we report below.

In the Rate Equation, occupation number nk increases
due to users’ transitions from other states to state k, and de-
creases due to transitions from the state k to other states. The
equations can be easily written down from the user state di-
agram. Each state corresponds to a dynamic variable in the
mathematical model — the average number of users in that
state — and it is coupled to other variables via transitions
between states. Every transition must be accounted for by
a term in the equation, with transition rates specified by the
details of the interactions between users.

In summary, this stochastic modeling approach to typical
aggregate behavior requires specifying the aggregate states
of interest for describing the system and how individual user
behaviors create transitions among these states. The mod-
eling approach is best suited to cases where the users’ deci-
sions are mainly determined by a few characteristics of the
user and the information they have about the system. These
system states and transitions give the rate equations. Solu-
tions to these equations then give estimates of how aggregate
behavior varies in time and depends on the characteristics of
the users involved.

The descriptions of aggregate behavior by the Rate Equa-
tions is universal, meaning the same mathematical descrip-
tion can be applied to a variety of systems governed by
the same abstract principles. This approach was used suc-
cessfully to study the behavior of several distributed robot
systems (Lerman et al. 2001; Lerman and Galstyan 2002;
Martinoli, Easton, and Agassounon 2004; Galstyan, Hogg,
and Lerman 2005). Stochastic models have also been ap-
plied to group behavior in social science, with model pa-
rameters estimated from social surveys (Robins et al. 2007).

At the heart of this argument is the concept of sepa-
ration of scales, which holds that the details of micro-
scopic (user-level) interactions are only relevant for com-
puting the values of parameters of the macroscopic model.
This principle applies broadly to naturally evolved systems,
as found in biology and economics, and designed techno-
logical artifacts (Courtois 1985; Simon and Ando 1961;
Simon 1996). From the perspective of large-scale group
behaviors, this decomposition often arises from processing,
sensory and communication limitations of the individuals
and the restricted range of actions. In effect, these limits
mean users can only pay attention to a relatively small num-
ber of variables (Hogg and Huberman 1987).

Example: Digg case study
As an example of the stochastic modeling approach, we ex-
amine aggregate behavior on Digg, a social news aggregator
that relies on users to submit and rate stories. When a user
submits a story, it goes to the new stories queue. There are
a few new submissions every minute and they are displayed
in reverse chronological order of their submission time, 15
stories to a page. A user votes on a story by “digging” it.
Sufficiently popular stories are promoted to the front page.
Although the exact promotion mechanism is kept secret and
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Figure 1: State diagram of user behavior with respect to a
single story. A user starts in the ∅ state at the left, may then
find the story through one of the three available interfaces
and then may choose to vote on it.

changes occasionally, it appears to take into account the
number of votes the story receives and how rapidly. Digg’s
popularity is fueled in large part by the emergent front page,
which is formed through the actions of many users.

Digg allows users to track friends’ activities (stories they
recently submitted or voted for) through the Friends Inter-
face. The friend relationship is asymmetric. When user A
lists user B as a friend, A is able to watch the activities of B
but not vice versa. We call A the fan of B.

We identified stories that were submitted to Digg over the
course of approximately one day in May 2006 and followed
them over several days. Of the 2858 stories submitted by
1570 distinct users over this time period, only 98 stories by
60 users made it to the front page. For this example, we
restrict attention to modeling the behavior of stories eventu-
ally promoted to the front page, though the model can also
describe the dynamics of the majority of stories that never
reach the front page. While in new stories queue, a story
accrues votes at a slow rate. Once it is promoted to the front
page, it accumulates votes at a much faster rate. As the story
ages, accumulation of new votes slows down (Wu and Hu-
berman 2007), and the story’s rating saturates at some value,
depending on how interesting it is to the Digg community
(see Fig. 3(a)). In this section we illustrate the stochastic ap-
proach by constructing a model describing how the number
of votes received by stories changes in time. Our goal is to
produce a model that can explain — and predict — the pat-
terns of collective voting on Digg and how this relates to the
ways Digg enables users to discover new content.

Behavioral Model

Consider the behavior of a Digg user. When the user visits
Digg, she can choose to browse its front pages to see the re-
cently promoted stories, new stories pages for the recently
submitted stories, or use the friends interface to see the sto-
ries her friends have recently submitted or voted for. She can
select one of the stories to read, and depending on whether
she considers it interesting, vote for it. Alternatively, after
perusing Digg’s pages, she may choose to leave it. Figure 1

shows the model of user’s behavior. The user’s environment,
the stories she is seeing, is itself changing in time, depend-
ing on users’ actions. A newly submitted story is visible on
the new stories pages for 24 hours after the submission, but
also to the submitter’s fans through the Friends interface. If
the story accumulates enough votes, it is promoted to the
front page, and becomes visible there. With each vote, a
new story also becomes visible to the voter’s fans through
the “dugg upcoming” part of the Friends interface, which
shows the newly submitted stories that user’s friends voted
for.

At an aggregate level, we focus on how the number of
votes a story receives changes over time. Specifically, let
Nvote(t) be the number of votes the story has received by
time t after it was submitted to Digg. Using Fig. 1 as a
a modeling blueprint, the rate equation that governs how
Nvote(t) changes during a time interval Δt is:

ΔNvote(t) = r(νfront(t) + νnew(t) + νfriends(t))Δt (2)

where r measures how interesting the story is, i.e., the prob-
ability it will receive a vote once seen by the user, and νfront,
νnew and νfriends are the rates at which users find the story
via one of the front or new pages, and through the friends
interface, respectively. In terms of the general rate equa-
tion (Eq. 1), the occupancy vector �n describing the aggregate
user behavior has the following components: the number of
users who see a story via one of the front pages, one of the
new pages, through the friends pages, and numbers of users
who vote for a story, Nvote. Since we are interested in the
number of users who reach the vote state, we do not need a
separate equation for each state in Fig. 1, but simply let νfront,
etc. represent the number of users who discover a particular
story through the front, etc. page during some time interval.
In addition to r, the parameters users’ state transitions are c,
the rate at which users choose to browse new pages, cf , the
rate they move from one front page to the next, and cu, the
rate they move from one new page to the next.

The choice of Δt in Eq. 2 is somewhat arbitrary. For a
discrete model, it could correspond to the rate at which the
web site is updated or data collected to compare observa-
tions with the model. We could also choose to take the limit
Δt → 0 to give a continuous-time model.

Model parameters

Before we can solve Eq. 2, we must determine its param-
eters, which depend on the details of user behaviors, the
sociological and psychological factors that are not readily
available for measurement. Instead, we estimate them using
data collected from Digg, as described below.

Front page The visibility of a story on the front page de-
creases as newly promoted stories push it farther down the
list. The front pages stories are split into groups of 15, with
the first front page displaying the 15 most recently promoted
stories, page 2 the next 15 stories, and so on. While we
do not have data about Digg visitors’ behavior, specifically,
how many proceed to page 2, 3 and so on, generally when
presented with lists over multiple pages on a web site, suc-
cessively smaller fractions of those users visit later pages in
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the list (Huberman et al. 1998). While this framework can
incorporate any distribution of how users visit sequences of
web pages and how they view stories presented in a list on
individual pages, we consider a simple model that holds that
users view all 15 stories presented on a page and some frac-
tion cf of users who view the current front page proceed to
the next front page. Thus, if ν users visit Digg within a unit
time interval, say one hour, the rate users visit the second
page is cfν, and cp−1

f ν users per unit time see page p sto-
ries. This model, shown in Fig. 1, captures the decreasing
likelihood with which users visit subsequent pages.

New stories queue A similar model describes how the
number of users who see the story on the new stories queue
changes, as the story is superseded with newer submissions.
If a fraction c of Digg visitors proceed to the new stories
pages, and of these, a fraction cu proceed to the next new
page, then the rate users see second page stories is ccuν, and
ccq−1

u ν is the rate for page q stories.
Figure 2(a) shows how the page number of a story on the

new and front pages changes in time for three randomly cho-
sen stories from the May data set. This behavior can be fit
by lines q, p = ku,f t with slopes

ku = 3.60 pages/hr (3)
kf = 0.18 pages/hr

on the new stories and front page respectively. Since each
page holds 15 stories, these rates are 1/15th the submission
and promotion rates respectively.

We use a simple threshold to model how a story is pro-
moted to the front page. When the number of votes a story
receives exceeds a promotion threshold h, the story is vis-
ible on the front page. Before that many votes, the story
is visible on the new stories pages. This threshold model
approximates Digg’s promotion algorithm as of May 2006,
since in our data set we did not see any front page stories
with fewer than 44 votes, nor did we see any upcoming sto-
ries with more than 42 votes. For evaluating the model, we
take h = 40. Moreover, Digg imposes a recency require-
ment for front page stories, specifically Digg removes new
stories after 24 hours.

Friends interface The Friends interface allows the user to
see the stories her friends have (i) submitted, (ii) voted for,
and (iii) commented on in the preceding 48 hours. Although
people can use all these features, we only consider the first
two and their effect on upcoming stories. Votes for front
page stories mostly come from users seeing them directly
on the front page so additional votes via the friends interface
are a minor contribution. These uses of the friends interface
closely approximate the functionality offered by other social
media sites: e.g., Flickr allows users to see the latest images
his friends uploaded, as well as the images a friend liked
(marked as favorite).

Let S be the number of fans the story’s submitter has,
i.e., users who are watching the submitter’s activity. As with
other aspects of the model, we can use any distribution for
the times fans visit Digg. A simple model takes these users

to visit Digg daily, and since they are likely to be geographi-
cally distributed across all time zones, the rate fans discover
the story is1 aSΘ(1 − at) at time t since the story was sub-
mitted, where a = 1/24 per hour. The step function ac-
counts for the fact that the pool of fans is finite. As fans read
the story, the number of potential voters gets smaller.

As the story receives votes, fans of those voters can see
the story through the “newly submitted stories my friends
dugg” part of the Friends interface. We use Sv to denote
the combined number of fans of the previous Nvote voters.
The number of users who see the story through this part of
the Friends interface is aSvΘ(h − Nvote), where the step
function accounts for the fact that only stories on the new
pages are shown this way, and h is the vote threshold for
promotion to the front page.

Figure 2(b) shows the average size of Sv , the combined
number of fans of the first Nvote users to vote on the story.
Although Sv is highly variable from story to story, it’s aver-
age value has consistent growth, approximately

Sv = 112.0 log(Nvote) + 47.0 (4)

Dynamical model

In summary, the rates in Eq. 2 are:

νfront = c
p(t)−1
f νΘ(Nvote(t) − h)

νnew = ccq(t)−1
u νΘ(h − Nvote(t))Θ(24hr − t)

νfriends = a( SΘ(1 − at) + SvΘ(h − Nvote(t)) )

where t is time since the story’s submission. The first step
function in νfront and νnew indicates that when a story has
fewer votes than required for promotion, it is visible in the
upcoming stories pages; and when Nvote(t) > h, the story is
visible on the front page. The second step function in νnew
accounts for a story staying in the upcoming queue for 24
hours. The story’s current page number on the upcoming
page q and the front page p change in time according to:

p(t) = (kf (t − Th) + 1)Θ(t − Th) (5)
q(t) = kut + 1 (6)

with ku and kf given by Eq. 3, and Th is the time the story
is promoted to the front page, before which p(t) = 0.

We solve Eq. 2 subject to initial condition Nvote(0) = 1,
because a newly submitted story starts with a single vote,
from the submitter. We take Δt to be one minute. The so-
lutions of Eq. 2 show how the number of votes received by
a story changes in time for different values of parameters c,
cu, cf , r and S. Of these, only the last two parameters —
the story’s interestingness r and number of fans the submit-
ter has S — change from one story to another. Therefore,
we fix values of the first three parameters c = 0.3, cu = 0.3
and cf = 0.3 and study the effect of various r and S values.
We also fix the rate people visit Digg at ν = 10 users per
minute. The actual visiting rate may be vastly different, but
we can always adjust the other parameters accordingly.

Figure 3(a) shows the evolution of the number of votes
received by six real stories from our data set. S is the num-
ber of fans the submitter has at submission time. Figure 3(b)

1Θ(x) is a step function: 1 when x ≥ 0 and 0 when x < 0.
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Figure 2: (a) Current page number of a story on the new stories and the front page vs. time for three different stories. Time is
measured from when the story first appeared on each page, i.e., time it was submitted or promoted, for the new and front page
points, respectively. (b) Growth of the number of distinct users who can see the story through the friends interface of the first
46 users to vote on a story. The points are average values for 195 stories, including those shown in (a), and the curve is from
Eq. 4.
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Figure 3: (a) Evolution of the number of votes received by six stories. S gives the number of submitter’s fans. (b) Predictions
of the model for the same values of S and values of r chosen so as the votes saturate at their observed values.

shows solutions of Eq. 2 for the same values of S and dif-
ferent values of r chosen to lead the predicted votes to sat-
urate at their observed values. Overall there is qualitative
agreement between the data and the model, indicating that
the basic features of the Digg user interface we considered
are enough to explain the patterns of collective voting. The
more interesting stories (with higher r values) get promoted
to the front page (inflection point in the curve) faster and re-
ceive more votes than less interesting stories. As discussed
in (Lerman 2007), a story submitted by a poorly connected
user (small S) has to be very interesting (high r) in order to
be promoted to the front page, and vice versa, a less interest-
ing story submitted by a highly connected user is able to get
to the front page. The only significant difference between
the data and the model is visible in the lower two lines. In
the data, a story posted by the user with S = 100 is pro-
moted before the story posted by the user with S = 160, but
saturates at smaller value of votes than the latter story. In

the model, the story with bigger r is promoted first and gets
more votes. The disagreement is not too surprising, given
the number of approximations in the model. Another effect
not in the model is that a story could have a different r to
user’s fans than to the general Digg audience. The model
can be extended to include inhomogeneous r.

Discussion

We described a general approach to relating simple models
of user choices to aggregate properties of systems involving
large numbers of users. Modeling user-participatory web
sites is one application of this approach, as we illustrated
with how stories accumulate votes on the Digg web site.
This example illustrates how the stochastic approach, based
on user state diagrams such as Fig. 1, relates models of in-
dividual user behavior to aggregate behavior of the site. Ob-
servations allow estimating the quantitative rate parameters
appearing in the model. Comparing solutions to the model
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with observations can also help identify approaches to im-
proving the model, e.g., by including heterogeneous prefer-
ences among users. The user state diagram is determined
by the actions and information the web site makes available
to users. Whether this approach results in a tractable model
depends on the kinds of questions one is interested in and
how much user behavior depends on details of user history
or on the specific choices of other users rather than just a
few aggregate measures provided by the web site.

The connection between user state transitions and aggre-
gate behavior allows investigation of how changes to the
web site may change aggregate behaviors. Such hypothet-
ical uses of the modeling approach can suggest improve-
ments to the web site. For example, Digg’s promotion algo-
rithm could take into account the number of fans a submitter
has, making it more difficult for highly connected users to
get uninteresting stories promoted to the front page.

This framework is particularly relevant when information
on specific users is limited, as is their range of actions (e.g.,
posting stories and voting on them in Digg). The frame-
work is less well suited to describing complicated history-
dependent actions (e.g., individual users who remember how
others treated them in the past as when forming reputations
in an e-commerce context). Moreover, while the model can
suggest how changes to underlying parameters or user be-
haviors will affect overall observations, the model provides
correlations rather than causal connections between users
and observed behavior. In general, there could be other ef-
fects, not included in the available observations of the users,
that significantly affect behavior and therefore may limit in-
ference from the model of changes that may achieve some
more desired behavior (e.g., users spending more time at
a web site). Nevertheless, the relations seen with stochas-
tic models can suggest ways to improve the behavior which
could be tested, either directly through experimental manip-
ulation of the web site (Salganik, Dodds, and Watts 2006) or
through smaller-scale experiments (Kagel and Roth 1995).

A practical challenge for using these models is identify-
ing the relevant states for the users and estimating the tran-
sition rates among these states. To some extent, online ac-
tivities simplify this problem through their limited range of
actions and information provided to users. However, web
sites can become more personalized over time, e.g., with col-
laborative filtering for recommendations based on history.
This leads to more history-dependence in user behavior and
the open question of whether the history-dependence can be
summarized in simple additional state variables for the user
– such as probability a recommendation is relevant being a
function of number of visits the person has had to a site. If
so, the model only requires a few additional state variables
– in this case number of visits – to regain the Markov prop-
erty. Alternatively, we can generalize the model to allow the
transition to the next state to depend not just on the current
state but also some fixed number of past states, as has been
applied to dynamic task allocation (Lerman et al. 2006).

As web sites develop greater complexity and personaliza-
tion, model-based design tools could help identify aggregate
consequences of design choices of actions and information
provided to users. More broadly, such models could also

complement economic or game theory analyses of the in-
centives for participation provided to the users.
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