
Prediction and Discovery of Users’ Desktop Behavior

Omid Madani and Hung Bui and Eric Yeh
Artificial Intelligence Center, SRI International
333 Ravenswood Ave., Menlo Park, CA 94025

Abstract
We investigate prediction and discovery of user desktop
activities. The techniques we explore are unsupervised.
In the first part of the paper, we show that efficient
many-class learning can perform well for action predic-
tion in the Unix domain, significantly improving over
previously published results. This finding is promis-
ing for various human-computer interaction scenarios
where rich predictive features of different types may
be available and where there can be substantial nonsta-
tionarity. In the second part, we briefly explore tech-
niques for extracting salient activity patterns or motifs.
Such motifs are useful in obtaining insights into user be-
havior, automated discovery of (often interleaved) high-
level tasks, and activity tracking and prediction.

1 Introduction
An exciting and promising domain for machine learning
continues to be the area of action monitoring and person-
alization. Adaptive systems find applications in task com-
pletion, for instance in aiding users’ desktop activity, or in
reminding users of actions they may have forgotten (assisted
living) or proposing alternative possibilities. In this paper,
we investigate user action prediction as well as discovery
of salient activity. Our approaches are unsupervised, in that
the user does not explicitly try to teach the system about her
activity. The system simply observes and learns to predict
actions or discovers salient patterns (motifs). As in (Davi-
son and Hirsh 1998; Korvemaker and Greiner 2000), our ex-
periments will be primarily in the Unix domain (Greenberg
1988), as much data on a variety of users is available, and we
can compare prediction accuracy. We also report on logs of
our own desktop activity using the TaskTracer system (Dra-
gunov et al. 2005). The paper is divided into two parts.
1.1 Action Prediction. Here, we focus on the problem of

predicting the entire command line that the user would want
to type next. Depending on the attributes of the context, such
as time of day, current working directory, and recently per-
formed actions, the system may predict that the next com-
mand will be “make”, or “latex paper.tex”, or “cd courses”,
and so on. The user interface can depend on the particular-
ities of the task. For instance, as explained in (Korvemaker

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Greiner 2000), the top five predictions of the system can
be tied to the function keys F1 through F5. If the user ob-
serves the correct command suggested (e.g., on the top bar
of the window), a simple key press executes the action. This
can nicely complement other Unix facilities that aid in typ-
ing commands. We note that while our experiments are in
the Unix domain, similar problems arise in other desktop in-
teraction contexts. For instance, in the Windows domain,
the problem can be predicting the next directory to which or
from which the user will choose to save an email attachment
or load a file (Bao, Herlocker, and Dietterich 2006). Other
domains include devices with a limited interface, such as
cell phones.
1.1.1 Challenges. The prediction task entails a number

of challenges, including (1) high dimensionality and in par-
ticular many classes, (2) space and time efficiency, and (3)
nonstationarity. We seek algorithms that can capture con-
text well. This means the effective aggregation of the pre-
dictions of a rich set of features (predictors). A core as-
pect that distinguishes our approach is viewing the task as a
many-class learning problem (multiclass learning with many
classes: 100s, 1000s, · · ·). The different number of items to
predict, entire commands or parameters and so on, ranges in
hundreds in our experiments. We employ recently developed
efficient indexing algorithms (Madani and Connor 2008;
Madani and Huang 2008). Efficiency is paramount in this
domain: the system must quickly respond and remain adap-
tive. The algorithms we describe are efficient both in space
consumption and in time. As we will see, the prediction
problem is significantly nonstationary. In this paper, we
evaluate the many-class algorithms in this setting for the first
time (as opposed to the more common batch setting). Due
to nonstationarity, an important question is whether a learner
has sufficient time (learning period) to be able to learn good
aggregation of the many features. Indeed (Korvemaker and
Greiner 2000), after trying a number of context attributes
to improve prediction over using a basic method (as we ex-
plain), and failing to improve accuracy, conclude that all the
prediction signal may have been gleaned, yet we show that
via using improved learning techniqueswe can gain substan-
tially (an average of 4% to 5% in absolute accuracy improve-
ment, or about 10% relative, over 168 users). We also find
that the one-versus-rest linear SVM has very poor accuracy
in this domain.

49

1.2 Motif Discovery. In the second part of the paper, we
briefly present our efforts on extracting salient repeated pat-
terns, in the form of directed subgraphs, from the action logs
(both Unix and desktop). Such patterns provide insights into
user behavior, can be used as features for prediction, and can
be a basis for learning of higher-level user tasks.
Paper Organization. The next section describes the

problem domain, choice of features, algorithms, and evalua-
tion methods. Section 3 presents a variety of experiments
and comparisons, Section 4 presents our motif discovery
work, Section 5 discusses related work, and Section 6 con-
cludes with future work. An expanded version of this paper
with further experiments is in preparation (Madani, Bui, and
Yeh 2009).

2 Preliminaries
Our setting is standard multiclass supervised learning, but
with many classes and nonstationarity. A learning problem
consists of a sequence of instances, each training instance
specified by a vector of feature values, x, and the class that
the instance belongs to yx (the positive class). We use x
to refer to the instance itself as well. Given an instance, a
negative class is any class c �= yx. xf denotes the value
of feature f in the vector x. We enforce that xf ≥ 0. If
xf > 0, we say feature f is active in instance x, and denote
this aspect by f ∈ x. The number of active features in x is
denoted by |x|.

2.1 Data sets and Tasks
The bulk of our experiments is performed on a data set col-
lected by Greenberg on Unix usage (Greenberg 1988). This
data set is fairly large, collected on 168 users over 2 to 6
months There are four user types: 52 computer scientists,
36 expert programmers, 55 novice programmers, and 25 non
programmers. This data set also allows us to compare to pre-
vious published results.
We use the terminology of (Korvemaker and Greiner

2000): a (full) command is the entirety of what is entered,
this includes the “stub”, meaning the “executable” (or ac-
tion) part, and possibly options and parameters (file and di-
rectory names). Thus, in “ls -l home”, “ls” is the stub part,
“home” is the parameter, and the command is “ls -l home”.
We will focus on the task of learning to predict the (full)
commands, as in (Korvemaker and Greiner 2000). For this
task, the number of unique classes (commands) on average
per user is roughly 470. As one may expect, this average is
highest for computer scientists as a group (around 700 on av-
erage), next is experienced programmers (500), and novice
programmers and non programmers have about the same
(300). It was found that computer scientists were the hard-
est to predict as a group (Korvemaker and Greiner 2000).
As in (Korvemaker and Greiner 2000), over all the users, we
obtain 303,628 episodes (commands entered).

2.2 The Choice of Features and Representation
We experimented with the following feature types, which
we break into two broad categories. Action features reflect
what the user has done recently. The ones we used are the

commands typed at times t − 1 and t − 2,1 as well as only
the stub and only parameter portions of the command, at
time t − 1. We also found the start-session feature to be
useful (each user’s log is broken into many sessions in which
the user begins the session, and after some interaction, exits
the session). The start-session feature was treated like other
action features. Thus, after starting, the start session feature
would be the “command” taken at time t − 1 and after one
command entered, it would be the command taken at time
t − 2.
The other type of features may be called State Features,

i.e., those that reflect the “state” the user or the system is in.
State features do not change as quickly as action features.
We used the current working directory as one state feature.
Importantly, we also used a “default” or an always-active-
feature, a feature with value of 1 in every episode and that
would be updated in every update (but not necessarily in ev-
ery episode). This feature has an effect similar to the LIFO
strategy (see Section 2.4). Episodes have less than 10 fea-
tures active on average. The very first episode of a user has
three features active: the always-active feature, start session
feature, and a feature indicating that the last command had
no parameter (the “NULL” parameter).2
We did not attempt to predict the start of session nor the

exiting action. The recorded logs also indicated whether an
error occurred. A significant portion of the commands led
to errors (e.g., mistyped commands) (about 5% macro aver-
aged over users). We did not treat them differently. These
decisions allowed to us to compare to the results of (Korve-
maker and Greiner 2000).

2.3 Online Evaluation
All the algorithms we evaluate output a ranking of their
predictions. As in (Korvemaker and Greiner 2000; Davi-
son and Hirsh 1998), unless specified otherwise, we report
on the cumulative online accuracy (ranking) performance of
R1 (standard accuracy, or one minus zero-one error) and
R5 (accuracy in top five predictions), computed for each
user, then averaged over all the 168 users (macro averaged).
For this evaluation, for each user, the sequence of episodes
(instances or commands) is ordered naturally in the order
they were typed. Formally, let kxi

be the rank of the pos-
itive class yxi

for the i-th instance xi in the sequence. Let
I{kxi

≤ k} = 1 iff kxi
≤ k, and 0 otherwise (Iverson

bracket). Then Rk (R1 or R5) for a given user with M in-
stances is

Rk =
1

M

∑
1≤i≤M

I{kxi
≤ k} (1)

On each instance, first the system is evaluated (predicts
using the features of the instance), then the system trains on
that instance (the true class is revealed). The algorithms we
present in Section 2.4 perform a simple efficient prediction

1As separate features, i.e., even if the same command was typed
again, it has a different feature id for times t − 1 and t − 2.

2We could also have added the home directory.

50

and possible update on each instance. We note that the sys-
tem always fails on the first instance, and more generally on
any instance for which the true class has not been seen be-
fore. As in (Korvemaker and Greiner 2000), such instances
are included in the evaluation. On average per user, about
17% of commands are not seen before. This number goes to
over 25% for parameter portion of commands, and down to
6% for stubs. We will also report on some variations, such
as when the instances are permuted, to obtain insights on
algorithms’ performances in the more common “stationary”
evaluation setting.

2.4 Algorithms
The main learning algorithm that we propose for the pre-
diction task, shown Figure 1, employs exponential moving
average updaring, and we refer to it as EMA (“Emma”).
On every instance (episode), the algorithm first predicts the
class (in our case, the user’s next command line) and, if
margin threshold is not met, updates each active feature us-
ing exponential moving average updating. The connection
(prediction) weight from feature f to class c is denoted by
wf,c. Updates are kept efficient as each active feature resets
weights (connections) that fall below a threshold wmin. In
our experiments, wmin is set to 0.01; thus, the maximum
out-degree of a feature, denoted d, is 100. The connections
of a feature are implemented via a dynamic sorted linked
list. The first time a feature is seen (in some episode), it
is not connected to any class (all its connection weights are
implicitly 0). We have termed the learned representation an
index, i.e., a mapping that connects each feature to a rela-
tively small subset of the classes (the features “index” the
classes). Both prediction and updating on an instance x take
time O(d|x| log(d|x|)). Several properties of EMA were
explored in (Madani and Huang 2008). It was shown that
EMA updating is equivalent to a quadratic loss minimiza-
tion for each feature, and a formulation for numeric feature
values, as given in Figure 1, was derived. An update is per-
formed only if a margin threshold δm is not met (a kind of
mistake-driven updating). This leads to down weighing the
votes of redundant features, more effective aggregation, and
ultimately better generalization (Madani and Connor 2008).
We compare EMA against the method used in (Korve-

maker and Greiner 2000) as well as linear SVMs, and an-
other indexing variant OOZ (Madani and Huang 2008). In
the approach of (Korvemaker and Greiner 2000), a restricted
version of EMA updating was deployed, which was referred
to as the alpha updating rule at the time, or AUR. AUR
can also be viewed as a nonstationary version of the bigram
method in statistical language modeling. A similar strategy
was used in (Davison and Hirsh 1998), but for the task of
stub prediction. In AUR, only the last command is used as
a predictor, with one exception: if that command does not
give at least five predictions, a default predictor is used to
fill in the remaining of the five slots. Whenever a command
appears as a feature, it is updated, and the default predictor
is updated in every episode (using exponential moving av-
erage). Thus, the differences with our presentation of EMA
are that we use multiple features and aggregate their votes
(their method did not sum, only merge the predictions if

EMA(x, yx, β, δm, wmin)
1. ∀c, sc ←

P
f∈x

xfwf,c /* Score classes for ranking/prediction */
2. δx ← syx

− sc′ , where sc′ ← maxc �=yx
sc /* compute margin */

3. if (δx < δm), then ∀f ∈ x do: /* If margin not met, update */
/* All active features’ connections are decayed, then
the connections to true class is boosted */
3.1 ∀c, wf,c ← (1 − x2

fβ)wf,c /* 0 < xf ≤ 1 */
3.2 wf,yx

← wf,yx
+ xfβ /* Boost connection to true class */

3.3 If wf,c < wmin, then /* drop small weights */
wf,c ← 0

Figure 1: The EMA (“Emma”) learning algorithm, which
uses exponential moving average updating and a margin
threshold. β is a learning rate or a “boost” amount, 0 <
β ≤ 1, and xf is the “activity” level of active feature f ,
0 < xf ≤ 1. The end effect after an update is that the
weight of the connection of feature f to the positive class,
wf,yx

, is strengthened. Other connections are weakened and
possibly zeroed (dropped).

R1 R5 R1>1k R5>1k

LIFO 0.075 ±0.05 0.42 ±0.15 0.07 ±0.04 0.40 ±0.15
AUR 0.28 ±0.12 0.47 ±0.14 0.28 ±0.12 0.47 ±0.14
EMA 0.30 ±0.11 0.51 ±0.13 0.30 ±0.11 0.52 ±0.13

Table 1: Accuracies on full command prediction.R1>1k and
R5>1k are averages on users with no less than 1000 episodes
(EMA: β = 0.15, δm = 0.15, wmin = 0.01).

need be), we update in a mistake-driven manner (in particu-
lar we use a margin threshold), we drop weak edges, and we
l2 normalize the feature vectors. We also compare against
a last-in-first-out strategy, or LIFO. LIFO keeps track of the
last five unique commands and reports them in that (reverse
chronological) order, so that the command typed last (time
t − 1) is reported first.3

3 Experiments
Table 1 shows the performance comparisons between LIFO,
AUR, and EMA. For all these methods, an entire evaluation
on all 168 users takes less than 2 minutes on a laptop. We
observe that the effective aggregation of predictors (or cap-
turing more context) can lead to a substantial boost in ac-
curacy, in particular in R5. The performance on users with
more than 1000 instances appears to lead to some improve-
ment for EMA (but not for AUR)4, over those users with
fewer than 1000. We note that Kovermaker and Greiner tried
a number of ways and features to improve on AUR, but their
methods did not lead to a performance gain (Korvemaker
and Greiner 2000). In Figure 2, the performance on each

3Another similar baseline is reporting the five most frequent
commands seen so far. As (Korvemaker and Greiner 2000) show,
that strategy performs substantially worse than LIFO (several per-
centage points below in accuracy), underscoring the nonstationar-
ity aspect.

4For AUR, we obtained the same accuracies of (Korvemaker
and Greiner 2000).

51

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1 0.2 0.3 0.4 0.5 0.6

R
1

fo
r E

M
A

 -
R

1
fo

r A
U

R

R1 for AUR

users with less than 1000
users with at least 1000

0

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
5

fo
r E

M
A

 -
R

5
fo

r A
U

R

R5 for AUR

users with less than 1000
users with at least 1000

0

Figure 2: The spread of performance over users. For each
user, the x-axis is the performance of AUR (R1 or R5), the
y-axis is the difference from EMA (above 0 means higher
performance for EMA).

user is depicted by a point where the x-coordinate is R1 (or
R5) using AUR, and the y-coordinate is that same value sub-
tracted from R1 (or R5) obtained using EMA. We observe
that R5 values in particular are significantly improved using
EMA, and the improvements tend to be higher (in absolute
as well as relative value) with lower absolute value of the
performance. The values for users with fewer than 1000 in-
stances shows somewhat higher spread, as may be expected.
We compared the number of wins, when results on the same
user are paired, and performed a sign test. On R1, EMA
wins over AUR on 141 of the users, loses on 26 users, and
ties on 1 (Figure 2). On R5, winning is more robust: EMA
wins in 162 cases and loses in 6. Both comparisons are sig-
nificant with over 99.9% confidence (P value is < 0.001).

3.1 Ablation Experiments on EMA
Figure 3 shows (macro) average R5 performance as a func-
tion of learning rate andmargin. We notice the performances
are fairly close: the algorithm is not heavily dependent on
the parameters. It is also interesting to note that relatively
high learning rates of 0.1 and above give the best or very

 0.492

 0.494

 0.496

 0.498

 0.5

 0.502

 0.504

 0.506

 0.508

 0.51

 0.512

 0 0.1 0.2 0.3 0.4 0.5

R
5

margin

BETA=0.05
BETA=0.15
BETA=0.25

Figure 3: Plots of R5 performance (macro average over
users) as a function of choices for margin threshold and the
learning rate.

good results here. In previous studies in text cateogrization
(Madani and Huang 2008), lower learning rates (of 0.05 or
0.01 and below) gave the best results. When we compare the
best overall R5 average for learning rate of 0.15 versus 0.05,
we obtain 120 wins (for learning rate of 0.15), 41 losses and
7 ties (where the average is respectivelyR5 of 0.51 for learn-
ing rate of 0.15 and 0.50 for learning rate of 0.05). As might
be expected, the best results are obtained when the margin
(threshold) is not at the extremes of 0 (pure mistake-driven
“lazy” updating) or very high (always update). If we in-
clude more features, such as stub and parameters from time
t−2 or features from earlier time points, tending to increase
redundancy and uninformativeness, performance somewhat
degrades (the average remains 0.5 or around it), and the se-
lection of margin becomes more important. It may be possi-
ble to adjust (learn) the learning rate or margin over time as
a function of user behavior for improved performance.
With the default parameters of 0.15 for both learning rate

and margin, we raised the minimum weight threshold wmin

to 0.05 and 0.1 (from default of 0.01), and respectively ob-
tainedR5 of 0.509 (small degradation) and 0.45 (substantial
degradation).

3.2 Feature Utilities
In the results given here, the default parameters are used and
all features are available (as explained in Section 2.2) except
for those that we explicitly say we remove. The performance
is fairly robust to removal of various feature types: the re-
maining feature types tend to compensate. All the features
tend to help the average performance somewhat. Removing
the stub or the (full) command at time t−1 yields the largest
drop in performance, leading to just over 0.50 averageR5. If
we remove both, we get an R5 = 0.486. The other features
in order of importance are current directory, always active,
start session, and parameter at time t − 1. Removing any
such type of feature results in degradation of about 0.005
(from the maximum of just over 0.51).

52

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 1000 2000 3000 4000 5000 6000 7000 8000

R
5

time point

 CONTINUE LEARNING
STOP LEARNING AT T = 2000

STOP LEARNING AT 1500
STOP AT 1000

LIFO

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1000 2000 3000 4000 5000 6000 7000 8000

R
5

time point

CONTINUE LEARNING
STOP LEARNING AT t=2000

LIFO

Figure 4: The need for sustained learning: Performance
plots (R5 for scientist 52) obtained from continued learning,
LIFO, as well as cases in which (EMA) learning is stopped
after a certain episode (1000, 1500, and 2000) (top: cumula-
tive performance, bottom: moving average with β of 0.01).
Continued learning is required to sustain prediction perfor-
mance.

3.3 The Need for Continued Adaptation
Figure 4 shows R5 performances as a function of time, av-
eraged over the first t episodes, and the moving average, for
scientist 52, for whom we have about 8000 total episodes.
While the learning curve seems to reach local maxima at say
around 1000 to 2000, we see the need for continued learn-
ing to sustain the performance: if we stop the learning, the
performance curve takes a downward turn. The system’s
performance eventually degrades to below that of LIFO if
learning is stopped.

3.4 Comparisons with other Methods
Davison and Hirsch performed comparisons on the task of
stub prediction (Davison and Hirsh 1998) and showed that
their AUR rule for stubs (using the predictions of the pre-
vious stub) outperformed batch learning algorithms such as
decision trees and naive Bayes as well as stationary vari-
ants of probability computation on their task. EMA outper-

random split SVM EMA OOZ
R1 0.057 0.247 0.259
R5 0.306 0.474 0.484
chronological SVM EMA OOZ
R1 0.01 0.210 0.187
R5 0.215 0.404 0.391

Figure 5: Comparisons between EMA, one-versus-rest lin-
ear SVM, and OOZ, on 21 selected users who had at least
1000 episodes. For all the algorithms, several parameters
were tried (see text) and the best, on R5, is reported, with
80% for training, 20% test. (top) Traditional “batch” eval-
uation setting wherein instances are randomly permuted be-
fore splitting data. (bottom) Chronolgical split, where the
first 80% is used for training.

forms AUR on stub prediction as well (about 3% improve-
ment in R5). Here we compare EMA with another online
feature-focus variant OOZ (Madani and Huang 2008), as
well as one-versus-rest (binary) linear SVM training (Fig-
ure 5). Over the 168 users, OOZ obtained a maximum accu-
racy of around 0.481 on R5, with the best parameter choice
of margin close to 0, and β of 0.05 or 0.15, significantly un-
derperforming EMA. This underscores the nonstationarity
of the problem: while OOZ is an online method, the empha-
sis on hinge-loss minimization may not be the appropriate
learning bias in this nonstationary task. EMA, with its weak-
ening of all connections, may be more appropriate (unlike
OOZ, which weakens certain most-violating connections):
EMA can quickly forget associations that become old (e.g.,
do not repeat).
To further test this aspect, as well as to compare to one-

versus-rest SVMs (substantially slower), we chose 21 users
that had a number of episodes exceeding 1000 and com-
pared performance in a batch setting, as well as the on-
line or chronological setting. In the batch setting, each
user’s episodes are randomly permuted, 20% are held out
for evaluation, and the algorithms are trained on the remain-
ing 80%. In the online setting, the first 80% of episodes
are kept for training (in chronological order), the remain-
ing for test. These instances are presented to the online
learners, EMA and OOZ, in order. For SVM training the
order does not make a difference. In all cases, as before,
the feature vectors are l2 normalized. We use the same
feature representations (default setting) in all experiments.
For all the algorithms, we evaluated under many different
parameters to get their best performance. For the linear
SVM, the regularization parameter was picked from the set
C ∈ {0.5, 1, 5, 10, 20, 100}. For both OOZ and EMA, we
tested learning rates in {0.01, 0.05, 0.1, 0.15, 0.25, 0.5} and
margin thresholds in {0.01, 0.05, 0.15, 0.25, 0.5}. We see
that one-versus-rest SVM underperforms substantially, un-
der both conditions. As explained in (Madani and Connor
2008), one-versus-rest can do a relatively poor job of rank-
ing classes for a given instance, when there are many classes.
SVM is also a batch algorithm. OOZ performs better than
EMA under the batch setting (similar to findings of (Madani
and Huang 2008)), but lags on the chronological splits.

53

4 Motif Discovery
In addition to stub and full command prediction, we attempt
to inducemotifs, meaningful sequences of related events that
can correspond to coherent high-level tasks. This section
is short, only describing and briefly demonstrating the ap-
proach. Our data for this experiment is taken from the se-
lected 21 Unix activity logs (Section 3.4), and from two
users’ Windows desktop activities, recorded over a period
of three months using the TaskTracer system (Dragunov et
al. 2005). In TaskTracer the events have a form similar to the
Unix commands, consisting of event names (or stubs) such
as “SendEmai” or “MSWord.Open” along with arguments
such as the email’s recipient, and the file being opened. Our
intent is to build up higher-level models of user activities
from these sequences, and to eventually leverage these mo-
tifs for other purposes such as task tracking.
Central to the discovery of motifs is a measurement of

association between pairs of events. We adapt an often-
used measurement of word association in the NLP do-
main, namely, the pointwise mutual information between
two words log Pr(b|a)

Pr(b) ((Manning and Schutze 1999), see
also (Chambers and Jurafsky 2008)). This basic measure-
ment needs to be extended for our domain so that (1) the
order of the events matters, (2) events that are temporally
close or share the same argument values are more likely to
be associated.
We propose the following extension to the pointwise mu-

tual information score. Let ω be a random window (of fixed
size d ≥ 2) of eventsXi, . . . , Xi+d−1. Note that each event
Xi is pair of stub and argument list (Ti, Gi). We define the
following random variables. S(ω) is the stub (event name)
of the first event in ω. For each stub a, Ca(ω) is a random
variable representing the cohesiveness of a with respect to
the beginning event of ω:

Ca(ω) =

d−1∑
k=1

(
1 −

k − 1

d − 1

)
Overlap(Gi+k, Gi)I{Ti+k = a}

In the above, the first term penalizes events further away
in the window, the second term, Overlap(G, G′) = |G∩G′|

|G∪G′| ,
measures how similar the two argument lists are, and the
third I{Ti+k = a} is the Iverson bracket (value of 1 if
Ti+k = a, otherwise 0). Our measure of association for
an ordered pair of stubs (a, b) can be taken as

Assoc(a, b) = log
E[Cb(ω)|S(ω) = a]

E[Cb(ω)]

To gain further insight about this association measure, we
first note that if the random variable Ca is boolean (i.e., in-
dicator function), then the expectations reduce to probabil-
ities and we obtain the familiar form for pointwise mutual
information. Further, if a and b are uncorrelated, one might
conjecture that knowing the window begins with a would
not change the expected value of Cb, yielding an associa-
tion score of zero. On the other hand, if b tends to follow
a, knowing the same condition would increase the expected
value of Cb, yielding a positive association score. In prac-
tice, the score is computed (estimated) by replacing the ex-
pectation with the empirical expectation evaluated from the

(a) (b) (c)

ps

kill

who

rwho mesg

write

SaveEmailAttachment

MSWord.Open

MSWord.Save

MSWord.SaveAs

MSWord.Close

Figure 6: Example motifs drawn over a few users.

data. Finally, we note that the proposed association score is
not symmetric as the order of the events is important.
Using the above, an association graph is constructed for

each log, with nodes consisting of all unique stubs. A di-
rected edge is drawn from stub a to b if Assoc(a, b) exceeds
a threshold. Motifs are extracted by finding subgraphs of the
association graphs. The window size for the Unix dataset is
set to 3 to reflect the shorter nature of command motifs, and
is set to 50 for the Desktop data. Rarely occurring (fewer
than five times) stubs are filtered out and not included in the
graphs.
In general, the motifs matched to plausible user activity

sequences. From sample motifs in Figure 6, we can identify
several high-level user tasks, such as listing and killing pro-
cesses in (a) or sending quick messages to other users (b) in
the Unix domain. In the Desktop domain, (c) is an example
of saving several MS Word attachments and operating over
them. In comparison with Desktop motifs, those from the
Unix set tended to be shorter, and in the case of the computer
scientists, appeared more arbitrary. A possible explanation
would be that the Unix data consisted of command line inter-
actions, and not activity inside applications, such as Emacs
or mail, whereas the Desktop activity record does contain
events from analogous applications, such as Microsoft Word
and Outlook. In addition, we find that argument sharing is
an important feature that should be utilized by the associa-
tion score. Dropping the Overlap term in the score leads to
densely connected association graphs where individual mo-
tifs are no longer well separated.

5 Related Work
Modeling user activities on the desktop has been an active
topic of research in the AI and user modeling community. It
is generally accepted that good predictive models of user ac-
tivities play a central part in building an intelligent adaptive
interface that can potentially help to increase user produc-
tivity. The availability of the UNIX data (Greenberg 1988)
has led to a number of efforts in building predictive models

54

of the data as well as facilitated direct and objective compar-
isons among different algorithms (Davison and Hirsh 1998;
Korvemaker and Greiner 2000). These authors have also ob-
served the nonstationarity nature of the task. For the related
problem of automated email foldering, see also (Segal and
Kephart 2000) on the importance of incremental learning,
and (Bekkerman and McCallum 2004) on the importance of
taking account of the nonstationarities in evaluation. Work
onmodeling user interactionswithWindows can be traced to
the LookOut system (Horvitz 1999), which can observe user
email and calendar activities and attempt to learn a model of
calendar-related emails. More recent work in this area in-
cludes the TaskTracer system (Dragunov et al. 2005) and
BusyBody system (Kapoor and Horvitz 2007). These sys-
tems can capture a wide range of Windows and application
events. The recorded events have been used for training var-
ious prediction tasks such as folder prediction (Bao, Her-
locker, and Dietterich 2006), task-switch prediction (Shen
et al. 2006) and user business (Kapoor and Horvitz 2007),
although some amount of explicit user feedback has been
required at times (such as specifying the current user tasks).
Our work focuses on building a good predictive model of
the entire event log and extracting salient motifs in the data
based on purely unsupervised methods.

6 Future Work
We presented a simple efficient learning technique to effec-
tively aggregate prediction of multiple features when there
are many possible classes to predict and in a nonstation-
ary setting. For action prediction, we are investigating other
tasks such as folder (directory) prediction on our own Task-
Tracer logs. For motif discovery, we are exploring algorith-
mic variations, as well as assessing utility in prediction and
in user modeling.

Acknowledgments
Thanks to the reviewers, whose comments improved the pre-
sentation. This material is based upon work supported by the
Defense Advanced Research Projects Agency (DARPA) un-
der Contract No. FA8750-07-D-0185/0004. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessar-
ily reflect the views of DARPA or the Air Force Research
Laboratory.

References
Bao, X.; Herlocker, J.; and Dietterich, T. 2006. Fewer
clicks and less frustration: Reducing the cost of reaching
the right folder. In IUI.
Bekkerman, R., and McCallum, A. 2004. Automatic cat-
egorization of email into folders: benchmark experiments
on enron and sri corpora. Technical report, Enron and SRI
corpora (Technical Report IR-418). CIIR, UMass.
Chambers, N., and Jurafsky, D. 2008. Unsupervised learn-
ing of narrative event chains. In ACL.
Davison, B. D., and Hirsh, H. 1998. Predicting sequences
of user actions. In AAAI-98/ICML’98 Workshop on Pre-
dicting the Future: AI Approaches to Time Series Analysis.

Dragunov, A.; Dietterich, T.; Johnsrude, K.; McLaughlin,
M.; Li, L.; and Herlocker, J. 2005. Tasktracer: a desktop
environment to support multi-tasking knowledge workers.
In IUI, 75–82. New York, NY, USA: ACM.
Greenberg, S. 1988. Using Unix: collected traces of 168
users. Technical report, University of Calgary, Alberta.
Horvitz, E. 1999. Principles of mixed-initiative user inter-
faces. In ACM CHI.
Kapoor, A., and Horvitz, E. 2007. Principles of lifelong
learning for predictive user modeling. In Proc. Eleventh
Conference on User Modeling (UM 2007).
Korvemaker, B., and Greiner, R. 2000. Predicting UNIX
command lines: Adjusting to user patterns. In AAAI/IAAI.
Madani, O., and Connor, M. 2008. Large-scale many-class
learning. In SIAM Conference on Data Mining.
Madani, O., and Huang, J. 2008. On updates that constrain
the number of connections of features during learning. In
ACM KDD.
Madani, O.; Bui, H.; and Yeh, E. 2009. Prediction and
discovery of users’ desktop behavior. Technical report, AI
Center, SRI International.
Manning, C. D., and Schutze, H. 1999. Foundations of
Statistical Natural Language Processing. The MIT Press.
Segal, R. B., and Kephart, J. O. 2000. Incremental learning
in SwiftFile. In ICML.
Shen, J.; Li, L.; Dietterich, T.; and Herlocker, J. 2006.
A hybrid learning system for recognizing user tasks from
desktop activities and email messages. In IUI.

55

