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Abstract

Recognition of daily activities is the key to providing context-
aware services in an intelligent home. This research explores
the problem of activity recognition, given diverse data from
multiple heterogeneous sensors and without prior knowledge
about the start and end of each activity. This paper presents
our approaching to continuous recognition of daily activities
as a sequence labeling problem. To evaluate the capability of
activity models in handling heterogeneous sensors, we com-
pare several state-of-the-art sequence labeling algorithms in-
cluding hidden Markov model (HMM), linear-chain condi-
tional random field (LCRF) and SVMhmm. The experimen-
tal results show that the two discriminative models, LCRF
and SVMhmm, significantly outperform HMM. In particular,
SVMhmm shows robustness in dealing with all sensors we
used, and its recognition accuracy can be further improved
by incorporating carefully designed overlapping features.

Introduction
Collecting information about daily activities plays an im-
portant role in health assessment. As has been pointed out
by healthcare professionals, one of the best way to detect
an emerging medical condition before it becomes critical is
to look for changes in the activities of daily living (ADLs)
(Katz et al. 1963), instrumental ADLs (IADLs) (Lawton &
Brody 1969), and enhanced ADLs (EADLs) (Rogers et al.
1998). According to the definitions from MedicineNet.com,
ADLs are “the things we normally do in daily living includ-
ing any daily activity we perform for self-care such as feed-
ing ourselves, bathing, dressing, grooming, work, home-
making, and leisure”. The ability or inability to perform
ADLs can be used as a very practical measure of ability and
disability in many disorders.
However, self-reporting of ADLs may be unreliable due

to dishonesty or inability of the subjects. With a com-
putational system keeping track of daily activities, it be-
comes easier for family members or care-givers to iden-
tify potential health problem at home. Besides, recogniz-
ing daily activities enables the computer to be an active ser-
vice provider. For example, an intelligent housekeeper can
control the lighting, heating, and air conditioning level, or
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provide prompt help to family members according to their
current activities.
The goal of our research is to recognize when and which

activities take place given a sensor trace. Daily activities
are usually performed without explicit cues available for us
to know the boundary between activities. The number of
activities in any data trace is unknown. Moreover, people
have different patterns of activity execution. For example, a
personmay take a bath for one hour while another completes
it in three minutes. A recognition system is practical only
when it is able to handle such individual differences. We
want to build a robust model that is able to properly deal
with different types of sensor readings as well as ways to
fuse them. It should also be robust to learn the variation of
different individuals.
In this paper, we compare state-of-the-art sequence mod-

els for recognition of daily activities from multiple hetero-
geneous sensors. Our experiments include three types of
senosrs: microphones, a wireless location tracking system,
and an RFID-based object tracking system. In addition, is-
sues on overlapping features, on-line recognition, and seg-
ment errors are discussed.

Related Work
The problem of sequence labeling seeks a mapping from
the input to the output sequences. However, the input space
and output space are exponentially large. Here we introduce
some of the state-of-the-art sequence labeling models.

HMM
Hidden Markov Model (HMM) has been widely used in the
area of speech recognition and natural language processing.
It can be used to learn sequential characteristics in time se-
ries data. Although HMM is a generative model, it is widely
used in discrimination problems. By defining the output se-
quence as the hidden random variable sequence, the states
of random variables are corresponding to labels of output
sequence. The state sequence that has highest joint proba-
bility with the observation is determined as the output se-
quence. While being an efficient model, HMM has some
problems like the difficulty in dealing with complex tempo-
ral dependency, the limitation in the number of hidden states,
and the label bias problem. Some extensions of HMM have
been proposed. Ghahramani et al. (Ghahramani & Jordan
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1997) proposed the factorial HMM which allows large car-
dinality of hidden state in HMMs. A HMM that can deal
with countably infinite number of hidden states can be found
in (Beal, Ghahramani, & Rasmussen 2003). Oliver et al.
(Oliver, Garg, & Horvitz 2004) developed a HMM with lay-
ered structure (Layered HMM) that enables the HMM to
learn in different temporal granularities. The LHMM can
be used to decompose heterogeneous signals and lower the
retraining cost when the environment changes.

DBN
Dynamic Bayesian network (DBN) is a more general model
that extends BN to represent the temporal relationship be-
tween time slices. Rather than a single latent random vari-
able every frame in HMM, DBN allows complex depen-
dency structure of different random variables in and between
time frames. Patterson et al. (Patterson et al. 2003) and
Liao et al. (Liao, Fox, & Kautz 2005) propose different
DBNs that model the complex dependency of the transporta-
tion mode, speed, location and GPS readings. Some filtering
algorithm such as Rao-Blackwellized particle filter (RBPF)
favors this kind of factored structured since it allows differ-
ent filtering strategies for different parts. Wilson (Wilson &
Atkeson 2005) propose an RBPF that estimates the associa-
tion using the particle filter but estimates the distribution of
the location and activity using Bayes filter. AlthoughDBN is
powerful for modeling complex relationship of multiple ran-
dom variables, it usually pay for more computational effort.
Exact inference algorithm such as junction tree algorithm
(Smyth, Heckerman, & Jordan 1997) needs exponential in-
ference time if the structure is too complex in DBN. Approx-
imation techniques such as Gibbs sampling and loopy belief
propagation try to solve this problem.

MEMM and CRF
Generative models select the sequence with maximum like-
lihood of observation. However, sequence labeling is a dis-
crimination problem that predicts the sequence given the ob-
servation. Directly modeling the conditional probabilities of
the label sequence given the observation seems more nat-
ural for this problem. Maximum entropy Markov model
(MEMM) (Mccallum, Freitag, & Pereira 2000) is a condi-
tional model that uses similar structure of HMM except the
relationship of the observation is inverted. In this way, we
can model dependent observation such as overlapping fea-
tures and long-term observation without making improper
independence assumption. However, like HMM, MEMM
suffers from the label bias problem due to the per-state nor-
malization.
Conditional random field (Lafferty, McCallum, & Pereira

2001) (CRF) achieves great success in this field by solving
the label bias problem in MEMM using the global normal-
ization. CRF has also been applied in activity recognition.
Chieu et al. (Chieu, Lee, & Kaelbling 2006) and Smin-
chisescu et al. (Sminchisescu, Kanaujia, & Metaxas 2006)
utilize a linear-chain CRF (LCRF) for the activity recogni-
tion problem and show the superiority over HMM. Liao et
al. propose using a hierarchical CRF and iteratively infer-
ring activities and important locations simultaneously (Liao,

Fox, & Kautz 2007). Shimosaka et al. (Shimosaka, Mori,
& Sato 2007) and we (Wu, Lian, & Hsu 2007) propose us-
ing a factored structure of CRF for solving the multi-tasking
activity recognition. Benson et al. (Limketkai, Liao, & Fox
2007) propose a CRF-Filter that is adapted from the particle
filter to solve the on-line recognition problem in localization.

Structural SVM
SVM is an effective approach for the classification prob-
lem. Altun et al. (Altun, Tsochantaridis, & Hofmann
2003) propose an extension of SVM, hiddenmarkov support
vector machine, that handles the sequence labeling prob-
lem. A general model for arbitrary output space, struc-
tural SVM, is proposed by Tsochantaridis et al. (Tsochan-
taridis et al. 2005). In an experiment conducted by Nguyen
and Guo (Nguyen & Guo 2007), structural SVM out-
performs 5 other state-of-the-art models including HMM,
CRF, Averaged perceptron (AP), Maximum margin Markov
networks(M3N), and an integration of search and learning
algorithm (SEARN) in two sequence labeling tasks, part-
of-speech (POS) tagging and optical character recognition
(OCR). The experiments show the superiority of structural
SVM in two problems. But in a later technical report
(Keerthi & Sundararajan 2007), CRF is shown to be com-
parable with structural SVM when appropriate features are
used. In this paper, we also address this issue with the activ-
ity recognition problem.

Activity Modeling
We formulate the problem of recognizing daily activities as a
sequence labeling problem, which is to assign a single label
to each element in an observation sequence. In our problem,
the activity is labeled every a fixed interval given the sen-
sor readings. We compare state-of-the-art models including
HMM, linear chain CRF and SVMhmm in this problem. In
this section, we describe briefly how these models are used
in our work. Experimental details will be described in the
next section.
We define the problem as following: Given an observa-

tion sequenceO = (O1, O2, ..., OT ) whereOt is the feature
vector combining data of multiple heterogeneous sensors at
time t, the goal is to generate a sequence of predicted activ-
ities A = (A1, A2, ..., AT ) where At occurs at time t.

HMM
In our work, each activity is modeled as one state of the hid-
den node in HMM. Each dimension of the observation is
assumed conditionally independent of each other given the
activity. The conditional probability of each discrete feature
given the activity is modeled as a multinomial distribution;
the conditional probability of each real value feature given
the activity is modeled as a mixture of 5 Gaussian distri-
butions. We use the Graphical Modeling Toolkit (GMTK)
(Bilmes 2007) for the implementation of HMM.

Linear Chain CRF
We use LCRF (Lafferty, McCallum, & Pereira 2001) for
the recognition problem. LCRF is an instantiation of CRF
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that uses similar graphical structure with HMM. CRF mod-
els the conditional probability P (A|O) by a set of feature
functions {f1(A, O, t), f2(A, O, t), ..., fJ (A, O, t))} and a
weight vector {w1, w2, ..., wJ}. The conditional probability
P (A|O) is defined as

P (A|O) =
exp(

∑
j

∑
t wjfj(A, O, t))

Z(O)

where Z(O) is the normalization constant.
Here we use unigram feature functions between the activ-

ity label and a feature value (observation) in the same frame.
For the discrete feature, a set of binary feature functions is
defined for every combination of the activity and the feature
value. For example, we define a binary feature function for
one activity a ∈ A and one feature value o ∈ O as

fa,o(A, O, t) =

{
1, if At = a and Ot = o.
0, otherwise.

For the real value feature, a set of real value feature func-
tions is defined for every activity. The value of the feature
functions is defined as the feature value. For example, we
define a feature function for the activity a and the mean
value of volume (mv) as

fa,mv(A, O, t) =

{
x, if At = a and Omv

t = x.
0, otherwise.

where Omv
t is the mean of volume at time t.

For modeling the temporal relationship, we use bigram
feature functions between adjacent activities. A set of bi-
nary feature functions is defined for every combination of
the activities. For example, we define a binary feature func-
tion for the consecutive activities of a as

fa,a(A, O, t) =

{
1, if At−1 = a and At = a.
0, otherwise.

We choose CRF++ (Kudo 2007) for the implementation
of LCRF. CRF++ is originally designed for discrete features.
We extend CRF++ to handle the real value features. We
predict the activity sequence with the maximum conditional
probability given the observation sequence using Viterbi al-
gorithm. Given the training data D = (D1, D2, ..., DN)
whereDi = (Ai, Oi), the learning criteria is to find a weight
vector W that maximizes the log-likelihood of the training
data. A zero mean Gaussian prior is assumed to avoid over-
fitting. A single variance σ2 is used to control the degree of
penalization for each weightwi. Higher σ2 makes the model
tend to fit the training data. L-BFGS (Liu & Nocedal 1989)
is used to train the model.

SVMhmm

SVMhmm (Joachims 2008) is a sequence labeling instantia-
tion of structural SVM. Similar to LCRF, structural defines
a linear discriminant function D(A, O) by a set of feature
functions {f1(A, O, t), f2(A, O, t), ..., fJ (A, O, t))} and a
weight vector {w1, w2, ..., wJ}. The linear discriminant
functionD(A, O) is defined as

D(A, O) =
∑

j

∑
t

wjfj(A, O, t).

Here we use the same feature functions in LCRF and
SVMhmm.
Unlike the maximum likelihood estimation in CRF and

HMM, structral SVM does not model the probabilities but
discriminate between different label sequences. The learn-
ing criteria is similar to conventional SVM that maximizes
the margin. The loss function is the misclassified labels in a
sequence. A cost factor c is used to control the trade off be-
tween the margin and loss. Higher c makes the model tend
to fit the training data.

Other Approaches
To evaluate how we benefit from the modeling of the tem-
poral relationship, we use three classifiers, NBC, maximum
entropy classifier (MEC), and SVM for comparison. In this
formulation, each time frame is viewed as an instance and
the activity is independently classified with the observation
in the frame. NBC, MEC and SVM can be viewed as a spe-
cialization of HMM, CRF and SVMhmm. Here we use the
same implementation in HMM, CRF and SVMhmm.

Experiment
We use E-Home dataset as the evaluation dataset. E-Home
dataset is collected in a home-like environment for the re-
search of the activity recognition by Yen (Yen 2007). The
dataset involves 13 subjects and each performs 12 activities.
The order of activities is random and the parts of reading ex-
perimental instructions in the trace is manually eliminated.
The dataset consists of totally 27818 seconds and the activ-
ity is annotated every second. In the dataset, three primary
kinds of sensors including a microphone in the corner of the
room, a wearable RFID reader and 40 load sensory blocks
on the floor are used. For the audio stream from the mi-
crophone, 24 real value features like mean of volume, vari-
ance of volume, and mean of zero-crossing rate are extracted
from it. A location system estimates the most active block of
the 40 load sensory blocks by filtering out the deformation
noise. The RFID reader returns null or one of the 24 tagged
objects. The features are extracted every second. We do not
know how many activities occur as well as the duration of
each activity.
More details about this dataset, including RFID deploy-

ment and audio features, can be found in (Yen 2007).

Performance Measures
The output (P2, P2, ..., PT ) is a string of T predictions of
activities. The ground truth (G1, G2, ..., GT ) is the anno-
tated activity sequence. According to the E-Home dataset
we used, the cardinality of the output set of these Pi’s
and Gi’s are 12, and the time interval of each predicted
and annotated activity is 1 second. To evaluate how our
recognition algorithms perform, we use leave-one-subject-
out cross-validation in our experiment. Since the data set
involves 13 subjects, the model is trained using the data se-
quence containing 12 subjects and tested using the remain-
ing one. The following two accuracy values are used for the
comparisons.
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Frame Accuracy The frame accuracy (FA) is the rate
of matching frames between the prediction and the ground
truth.

Average Class Accuracy The frame accuracy is easily af-
fected by the long activity. For example, in E-Home dataset,
a system that always predicts the activity as ”watching TV”
can be as accurate as 17% that is much higher than random
guess due to the high coverage of watching TV. The average
class accuracy (ACA) is the normalized frame accuracy by
each activity.

Parameter Settings A weight w of the uniform distribu-
tion is used to control the smoothness of CPTs used by the
viterbi algorithm in GMTK, the toolkit we used to run HMM
experiments. We smooth each multinomial distribution us-
ing a weighted sum of the learned distribution and a uni-
form distribution. This parameter w is tested from 0.90 to
0.99 and 0.01 in our experiment. The variance σ2 for LCRF
and the cost factor c for SVMhmm are tested from 2−3 to 24

and multiplied by 2 as a step. The parameters that achieve
highest frame accuracy are used for each model.

Raw Features
We first use the raw features for the evaluation. Raw features
include a 24-dimensional sequence of real value vector for
the audio sensor, a discrete sequence for the RFID system
and a discrete sequence for the location system. The fea-
tures of these three sensors diverge in form. Audio features
are real value vectors while RFID features and location fea-
tures are discrete values. In additions, RFID features differ
from location features in sparsity. In E-home dataset, RFID
returns null in 90% of time.

Results The results are summarized in Table 1.

FA/ACA(%) HMM LCRF SVMhmm

Audio 23.5/24.8 37.6/27.3 45.0/36.4
RFID 44.9/44.1 51.4/44.4 59.5/50.9
Location 31.5/37.4 43.3/37.1 40.2/37.5

Audio+RFID 31.9/33.5 62.3/54.9 69.7/63.5
Audio+Location 39.5/41.9 56.3/48.6 61.0/56.0
Location+RFID 39.6/45.0 63.8/56.8 65.2/60.3

All 44.3/46.8 68.8/64.6 72.0/67.8

Table 1: Performance Comparison of HMM, LCRF and
SVMhmm using Raw Features.

In HMM, the result of fusing all sensors is even worse
than using RFID only. The situation informs us that it can
be dangerous to fuse sensors in a single HMM.Assuming in-
dependence for the 24-dimensional audio features in HMM
is dangerous since these features are extracted from the same
audio signal. With discriminative models such as LCRF and
SVMhmm, fusing more sensors generally performs better.
The accuracy of LCRF and SVMhmm using all sensors is
much better than HMM. In our experiment, LCRF performs
slightly worse than SVMhmm. We can see that SVMhmm

show robustness in dealing with varieties of sensors while
LCRF is relatively weak in dealingwith RFID and audio fea-

tures. It seems inappropriate to assume simple distribution
between the activity and the audio features. Fitting param-
eters to a wrong distribution can result in severe bias. For
RFID, since the event is sparse, there may not be enough
counts for CRF to overcome the prior.
To show the usefulness of temporal relationship, we eval-

uate how sequence models improve over the frame-based
classification by considering the temporal relationship. The
results of different models are shown in Table 2.

FA/ACA(%) NBC MEC SVM
Classification 35.5/34.2 42.7/39.7 43.7/40.9
FA/ACA(%) HMM LCRF SVMhmm

Sequence Models 40.9/43.1 68.8/64.6 72.0/67.8

Table 2: Performance Comparison of Frame-Based Classifi-
cation and Sequence Models.

The results show that all sequencemodels outperform cor-
responding classifiers in both performance measures. The
improvement of the frame accuracy by considering the tem-
poral relationship can be up to 28.3% in SVMhmm. The im-
provement of the average class accuracy can be up to 27%
in LCRF. The significant difference shows us frame-based
classification is not adequate in this problem.

Overlapping Features
Observation can be view in multiple ways. For example,
in natural language processing, the word ”White” can be
viewed as the word itself or a capitalized word. In rec-
ognizing the name entity, the capitalization feature may be
very informative. Discriminative models such as LCRF and
SVMhmm are shown to be able to utilize this kind of over-
lapping features. We describe three different strategies to
extract features in our problem.
Generative Audio Probabilities The audio in a single
second may not contain sufficient information. In additions,
performing activities may generate different sounds in dif-
ferent stages. For example, in preparing meals, the sound of
chewing can be very different from using microwave.
We use an HMM to model the relationship between a spe-

cific activity and a small segment of audio features.
Given the training data, at each time c, we seg-

ment a small length l of audio features SLR
c =

(OAudio
c−l , OAudio

c−l+1
, ..., OAudio

c ) and associate the segment
SLR

c with the activity label Ac . For each activity i, we
independently train an HMM parameter λLR

i using the seg-
ments with activity label i. By reversing the time index, we
segment a set of audio features SRL

c and train an HMM pa-
rameter λRL

i for each activity i. As a result, we have 24
HMM parameters.
For a testing sequence, we use a backward sliding window

as well as a forward sliding window to segment two audio
sequence of w frames with 50% overlapping. We then use
the 24 HMM parameters to estimate the generative proba-
bilities of the two segments. The probability estimations are
logged and scaled to values ranging from 0 to 1. These 24
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Figure 1: Generative Audio Probabilities.

Figure 2: Regions and Sensory Blocks.

probability estimations are used as an additional feature vec-
tor. Figure 1 show the process of creating these features.
Region and Region Transitions We group the 40 load
sensory blocks into 3 places including the living room, the
dining room and the workspace. The location feature is the
index of the 40 blocks while the region feature is the corre-
sponding place. In additions, we consider all transitions be-
tween these 3 places as additional features. Figure 2 shows
the relationship of the regions and location sensory blocks.
NextRFID and LastRFID When a non-null object is read
by the RFID reader, it is usually very informative for dis-
ambiguating activities. Referring to the recent non-null ob-
ject reading is helpful. For example, if we hold the TV re-
mote control at last 3 seconds, it is very possible that we are
watching TV currently. We define two features, NextRFID
and LastRFID for expanding the raw RFID features.
For non-null object i at the time frame c, if the nearest

RFID reading of object i is at the time frame c′ where c′

is larger than c, NextRFID distance is defined as (c′ − c).
To prevent referring to the object that is irrelevant in time
frames of other activities, the maximum distance is limited.
In additions, the forward referencing process ended when it
encounters the location change or another object. LastRFID
distance is defined in the same way of the NextRFID ex-
cept that the order of time frames is reversed. The resulting
distances for objects are scaled to values ranging from 0 to
1. As a result, we have a new 48-dimensional features for
RFID. These features are used as a replacement of the raw
RFID readings.

Results To show the effect of incorporating these overlap-
ping features, we evaluate the performance of LCRF and
SVMhmm with these overlapping features. The results are
summarized in Table 3 and 4.

FA/ACA(%) CRF SVMhmm

Audio 37.6/27.3 45.0/36.4
RFID 51.4/44.4 59.5/50.9
Location 43.3/37.1 40.2/37.5
All 68.8/64.6 72.0/67.8

Table 3: Performance Comparison of LCRF and SVMhmm

Using Raw Features.

FA/ACA(%) CRF SVMhmm

Audio 40.1/29.8 45.9/37.4
RFID 63.6/56.8 63.0/55.4
Location 45.9/39.2 44.1/40.3
All 74.8/70.0 73.0/71.1

Table 4: Performance Comparison of LCRF and SVMhmm

Using Overlapping Features.

By combining these overlapping features, we improve the
accuracy of LCRF and SVMhmm in all sensor settings. Note
that the frame accuracy of LCRF is improved from 51.4% to
63.6% with the NextRFID and LastRFID features because
the two features solve the sparsity of the raw RFID read-
ings. With these features, the performance of LCRF and
SVMhmm is close.

Conclusion and Future Work
This paper presents our formulation of continuous recogni-
tion of daily activities as a sequence labeling problem. We
compare the capacity of several state-of-the-art models in-
cluding HMM, LCRF, and SVMhmm in handling hetero-
geneous sensors. In our experiment, discriminative mod-
els such as LCRF and SVMhmm significantly outperform
HMM. While LCRF is weak with respect to RFID and au-
dio sensors, SVMhmm is robust in dealing with all types of
sensors in the E-home dataset. To better utilize the sensor
data, we propose strategies for extracting overlapping fea-
tures. For example, the NextRFID and LastRFID features
significantly improve the accuracy of LCRF by eliminating
the sparsity of the RFID sensor.
This research can be extended in several ways. The E-

home dataset was collected by subjects following instruc-
tions in a lab environment. In reality, multiple activities may
be carried out concurrently or with interruption. The highest
frame accuracy of 74.8% in activity recognition, may not be
good enough for practical applications. We plan to explore
additional sensors such as accelerometers and biophysical
sensors to improve recognition.
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