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Abstract

In our research, we view human behavior as a structured se-
quence of context-sensitive decisions. We develop a con-
ditional probabilistic model for predicting human decisions
given the contextual situation. Our approach employs the
principle of maximum entropy within the Markov Decision
Process framework. Modeling human behavior is reduced
to recovering a context-sensitive utility function that explains
demonstrated behavior within the probabilistic model.

In this work, we review the development of our probabilis-
tic model (Ziebart et al. 2008a) and the results of its appli-
cation to modeling the context-sensitive route preferences of
drivers (Ziebart et al. 2008b). We additionally expand the
approach’s applicability to domains with stochastic dynam-
ics, present preliminary experiments on modeling time-usage,
and discuss remaining challenges for applying our approach
to other human behavior modeling problems.

Introduction

Accurate models of human behavior are an important com-
ponent for realizing an improved symbiosis between hu-
mankind and technology across a number of different do-
mains. These models enable intelligent computer interfaces
that can anticipate user actions and intentions, ubiquitous
computing environments that automatically adapt to the be-
haviors of their occupants, and robots with human-like be-
havior that complements our own actions and goals. We
view human behavior as a structured sequence of context-
sensitive decisions. For simple domains, the choices for
each decision may be a deterministic function of a small
set of variables, and possible to completely specify by hand.
However, for sufficiently complex behavior, manual specifi-
cation is too difficult, and instead the model should be auto-
matically constructed from observed behavior.

Fortunately, most human behavior is purposeful — peo-
ple take actions to efficiently accomplish objectives — rather
than completely random. For example, when traversing the
road network (Figure 1), drivers are trying to reach some
destination, and choosing routes that have a low personal-
ized cost (in terms of time, money, stress, etc.). The model-
ing problem then naturally decomposes into modeling a per-
son’s changing “purposes,”’ and the context-efficient actions
taken to achieve those objectives. When “purposes” have
domain-level similarity, we’d expect the notion of efficiency
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Figure 1: The road network covering a portion of Pittsburgh.

to be similar for differing objectives, allowing behavior ful-
filling different goals to be useful for modeling common no-
tions of utility and efficiency. Markov decision processes
provide a framework for representing these objectives and
notions of efficiency.

Dealing with the uncertainty inherent in observed behav-
ior represents a key challenge in the machine learning prob-
lem of constructing these models. There are many sources
of this uncertainty. The observed agent may base its decision
making on additional information that the learner may not be
able to observe or that may differ from the observer’s infor-
mation due to noise. Another possibility is that the agent’s
behavior may be intrinsically random due to the nature of
its decision selection process. Additionally, nature often im-
poses additional randomness on the outcome of observed ac-
tions that must be taken into account.

We take a thoroughly probabilistic approach to reason-
ing about uncertainty in behavior modeling (Ziebart et al.
2008a). Under the constraint of matching the reward value
of demonstrated behavior within the Markov decision pro-



cess (MDP) framework, we employ the principle of max-
imum entropy to resolve the ambiguity in choosing a dis-
tribution over decisions. We provide efficient algorithms
for learning and inference within this setting. The resulting
distribution is a probabilistic model that normalizes glob-
ally over behaviors and can be understood as an extension
to chain conditional random fields that incorporates the dy-
namics of the planning system and extends to the infinite
horizon. We view our approach as a bridge between opti-
mal decision making frameworks, which provide strong per-
formance guarantees, but ignore decision uncertainty, and
probabilistic graphical models, which model decision uncer-
tainty, but provide no performance guarantees.

Our research effort is motivated by the problem of mod-
eling real human decision making. First, we apply our ap-
proach to modeling the context-dependent route preferences
of taxi drivers (Ziebart ef al. 2008b) using 100,000 miles of
collected GPS data. Second, we model the daily activities
of individuals collected from time-use surveys. Lastly, we
discuss remaining challenges for applying our approach to
other human behavior modeling problems.

Related Work

Our approach reconciles two disparate threads of research —
inverse optimal control and probabilistic graphical models.
We review each in this section.

Inverse Optimal Control and Imitation Learning

Inverse optimal control (IOC) (Boyd er al. 1994; Ng
& Russell 2000), originally posed by Kalman, describes
the problem of recovering an agent’s reward function,

R(s,a), given demonstrated sequence(s) of actions, {fl =

{a1]s1, az|s2, ...}, 2, ...}, when the remainder of the MDP
is known. It is synonymously known as inverse reinforce-
ment learning (IRL). Vectors of reward factors £ , describe
each available action, and the reward function is assumed
to be a linear function of those factors, R(s,a) = 0'f;,
parameterized by reward weights, 8. Ng & Russell (2000)
formulate inverse optimal control as the recovery of reward
weights, 6, that make demonstrated behavior optimal.

Unfortunately this formulation is ill-posed. Demonstrated
behavior is optimal for many different reward weights, in-
cluding degeneracies (e.g., all zeros). Abbeel & Ng (2004)
propose recovering reward weights so that a planner based
on those reward weights and the demonstrated trajectories
have equal reward (in expectation). This formulation re-
duces to matching the planner and demonstrated trajectories’
expected feature counts, fr = f
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Abbeel & Ng (2004) employ a series of deterministic con-
trols obtained from “solving” the optimal MDP for the dis-
tribution over trajectories. When sub-optimal behavior is
demonstrated (due to the agent’s imperfection or unobserved
reward factors), mixtures of policies are required to match
feature counts. Many different mixtures will match feature
counts and no method is proposed to resolve this ambiguity.
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Ratliff, Bagnell, & Zinkevich (2006) resolve this ambigu-
ity by posing inverse optimal control as a maximum mar-
gin problem with loss-augmentation. While the approach
yields a unique solution, it suffer from significant drawbacks
when no single reward function makes demonstrated behav-
ior both optimal and significantly better than any alternative
behavior. This arises quite frequently when, for instance,
the behavior demonstrated by the agent is imperfect, or the
planning algorithm only captures a part of the relevant state-
space and cannot perfectly describe the observed behavior.

An imitation learning approach to the problem, which
still aims to obtain similar behavior, but without any per-
formance guarantees, relaxes the MDP optimality assump-
tion by employing the MDP “solution” policy’s reward,
Qola,s) = maxcez, , 0 f¢, within a Boltzmann probabil-
ity distribution.

eQol(as)
> action o €90 (@55)

Neu & Szepesvari (2007) employ this distribution within a
loss function penalizing the squared difference in probabil-
ity between the model’s action distribution and the demon-
strated action distribution. Ramachandran & Amir (2007)
utilize it within a Bayesian approach to obtain a posterior
distribution over reward values using Markov Chain Monte
Carlo simulation. The main weaknesses of the model are
that maximum likelihood (and MAP) estimation of param-
eters is a non-convex optimization, and the learned model
lacks performance guarantees with respect to the Markov
decision process.

Our proposed approach is both probabilistic and con-
vex. Unlike the mixture of optimal behaviors (Abbeel
& Ng 2004), training behavior will always have non-zero
probability in our model, and parameter choices are well-
defined. Unlike maximum margin planning (Ratliff, Bag-
nell, & Zinkevich 2006), our method realistically assumes
that demonstrated behavior may be sub-optimal (at least
for the features observed by the learner). Finally, unlike
the Boltzmann Q-value stochastic model (Neu & Szepesvari
2007; Ramachandran & Amir 2007), learning in our model
is convex, cannot get “stuck” in local maxima, and provides
performance guarantees.

P(action a|s) =

2

Probabilistic Graphical Models

A great deal of research within the machine learning com-
munity has focused on developing probabilistic graphical
models to address uncertainty in data. These models provide
a framework for representing independence relationships be-
tween variables, learning probabilistic models of data, and
inferring the values of latent variables. Two main variants
are directed models (i.e., Bayesian networks) and undirected
models (i.e., Markov random fields and conditional random
fields).

Bayesian networks model the joint distribution of a set
of variables by factoring the distribution into a product of
conditional probabilities of each variable given its “parent”
variables (Pearl 1985). A number of Bayesian network mod-
els for decision making have been proposed (Attias 2003;



Verma & Rao 2006). Unfortunately in many real world de-
cision making problems, decisions are based not only on the
current action’s features, but the features of all subsequent
actions as well. This leads to a very non-compact model that
generalizes poorly when predicting withheld data. We inves-
tigate these deficiencies empirically in our experiments.
Markov random fields model the energy between combi-
nations of variables using potential functions. In their gen-
eralization, conditional random fields (CRFs) (Lafferty, Mc-
Callum, & Pereira 2001), the potential functions can de-
pend on an additional set of variables that are themselves
not modeled. In a number of recognition tasks, these addi-
tional variables are observations, and the CRF is employed
to recognize underlying structured properties from these ob-
servations. This approach has been applied to recognition
problems for text (Lafferty, McCallum, & Pereira 2001), vi-
sion (Kumar & Hebert 2006), and activities (Liao, Fox, &
Kautz 2007; Vail, Veloso, & Lafferty 2007). The maximum
entropy inverse optimal control model we derive for Markov
decision problems with deterministic action outcomes can
be interpreted as a chain conditional random field where
the entire sequence of decisions is conditioned on all state
and action features. This is significantly different than how
conditional random fields have been applied for recognition
tasks, where labels for each variable in the sequence are con-
ditioned on local observations from portion of the sequence.

Maximum Entropy I0C

We take a different approach to matching feature counts that
allows us to deal with this ambiguity in a principled way, and
results in a single stochastic policy. We employ the princi-
ple of maximum entropy (Jaynes 1957) to resolve ambigui-
ties in choosing distributions. This principle leads us to the
distribution over behaviors constrained to match feature ex-
pectations, while being no more committed to any particular
path than this constraint requires.

Decision Sequence Distribution

Unlike previous work that reasons about policies, we con-
sider a distribution over the entire class of possible behav-
iors. For deterministic MDPs, the class of behaviors con-
sists of paths of (potentially) variable length. Similar to dis-
tributions of policies, many different distributions of paths
match feature counts when any demonstrated behavior is
sub-optimal. Any one distribution from among this set may
exhibit a preference for some of the paths over others that
is not implied by the path features. We employ the princi-
ple of maximum entropy, which resolves this ambiguity by
choosing the distribution that does not exhibit any additional
preferences beyond matching feature expectations (Equation
1). The resulting distribution over paths for deterministic
MDPs is parameterized by reward weights 6 (Equation 3).
Under this model, plans with equivalent rewards have equal
probabilities, and plans with higher rewards are exponen-
tially more preferred.

1 1 Tr,
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Given parameter weights, the partition function, Z(6), al-
ways converges for finite horizon problems and infinite hori-
zons problems with discounted reward weights. For infinite
horizon problems with zero-reward absorbing states, the par-
tition function can fail to converge even when the rewards of
all states are negative. However, given demonstrated tra-
jectories that are absorbed in a finite number of steps, the
reward weights maximizing entropy must be convergent.

Stochastic Policies

This distribution over paths provides a stochastic policy (i.e.,
a distribution over the available actions of each state) when
the partition function of Equation 3 converges. The proba-
bility of an action is weighted by the expected exponentiated
rewards of all paths that begin with that action.

P(action alf) Z P(¢|0)
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Learning from Demonstrated Behavior

Maximizing the entropy of the distribution over paths sub-
ject to the feature constraints from observed data implies that
we maximize the likelihood of the observed data under the
maximum entropy (exponential family) distribution derived
above (Jaynes 1957).

0* = argmax L(0) = argmax Z log P(C|0)

0 0
examples

Given the agent’s expected feature counts, this function
is convex and the optima can be obtained using gradient-
based optimization methods. The gradient is the difference
between expected empirical feature counts and the leaner’s
expected feature counts, which can be expressed in terms of
expected state visitation frequencies, Dy, .

VL) =f- Y Pl0)fc =T =) Dy, (5
¢ Si

At the maxima, the feature expectations match, guaranteeing
that the learner performs equivalently to the agent’s demon-
strated behavior regardless of the actual reward weights the
agent is attempting to optimize (Abbeel & Ng 2004).

Efficient State Frequency Calculations

Given the expected state frequencies, the gradient can eas-
ily be computed (Equation 5) for optimization. The most
straight-forward approach for computing the expected state
frequencies is based on enumerating each possible path. Un-
fortunately, the exponential growth of paths with the MDP’s
time horizon makes enumeration-based approaches compu-
tationally infeasible.

Instead, our algorithm computes the expected state oc-
cupancy frequencies efficiently using dynamic program-
ming (forward-backward algorithm for Conditional Random
Fields or value iteration in Markov decision problems). The
key observation is that the partition function can be defined
recursively.

Z(0,s) = ZeeTfCS = Z e foa Z ef fesa
Cs

action a Cs.a



Here we denote all paths starting at state s (and with action
a) as s (and (s o). We refer the reader to our previous paper
for full details (Ziebart et al. 2008a).

Stochastic Dynamics

In general, the outcomes of a person’s actions may be influ-
enced by randomness. In this case, the next state given an
action is a stochastic function of the current state according
to the conditional probability distribution, P(s;y1|st,at).
Our previous work (Ziebart et al. 2008a) provides an ap-
proximate approach for modeling behavior in this setting.
We now present an exact approach based on the principle of
maximum entropy.

First, we define an uncontrolled distribution over trajec-
tories, Q(¢) o [, | s, acc P(St41]5t, ar). We maximize
the entropy of our distribution over trajectories, P((), rela-
tive to this uncontrolled distribution. Solving the dual of this
optimization yields a new formula for recursively computing
the partition function:

Z(9,s) = Z o0 feat X, P(s]5,0)2(6,8)

action a

6)

From this recursive formula, action probabilities are ob-
tained. State frequencies are then computed from the action
probabilities for learning (Equation 5).

Driver Route Modeling

Our research effort on maximum entropy approaches to IOC
was motivated by applications of imitation learning of driver
route choices. We are interested in recovering a utility func-
tion useful for predicting driving behavior as well as for
route recommendation.

Route Choice as an MDP

Road networks present a large planning space with known
structure. We model this structure for the road network sur-
rounding Pittsburgh, Pennsylvania, as a deterministic MDP
with over 300,000 states (i.e., road segments) and 900,000
actions (i.e., transitions at intersections). We assume that
drivers who are executing plans within the road network are
attempting to reach some goal while efficiently optimizing
some trade-off between time, safety, stress, fuel costs, main-
tenance costs, and other factors. We call this value a cost
(i.e., a negative reward). We represent the destination within
the MDP as an absorbing state where no additional costs
are incurred. Different trips have different destinations and
slightly different corresponding MDPs. We assume that the
reward weight is independent of the goal state and therefore
a single reward weight can be learned from many MDPs that
differ only in goal state.

Collecting and Processing GPS Data

We collected over 100,000 miles of GPS trace data (Fig-
ure 2) from taxi drivers. We fit the GPS traces to the road
network using a particle filter and applied our model to
learn driver preferences as a function of road network fea-
tures (e.g., segment distance, speed limits, road class, turn
type) (Ziebart et al. 2008a). Our evaluations (Table 1)
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Figure 2: The collected GPS datapoints

show significant improvements in most likely path estima-
tion and path density estimation of our model over other
Boltzmann Q-value models (Ramachandran & Amir 2007;
Neu & Szepesvari 2007) and Maximum Margin Planning
(Ratliff, Bagnell, & Zinkevich 2006).

Matching | 90% Match | Log Prob
Time-based 72.38% 43.12% N/A
Max Margin 75.29% 46.56% N/A
Action 77.30% 50.37% -7.91
Action (costs) 77.74% 50.75% N/A
MaxEnt paths 78.79 % 52.98 % -6.85

Table 1: Evaluation results for optimal estimated travel time
route, max margin route, Boltzmann Q-value distributions
(Action) and Maximum Entropy

In extensions to this work (Ziebart et al. 2008b), we
added contextual information (time of day, accidents, con-
struction, congestion) to the model and compared it to other
approaches previously applied to route prediction, turn pre-
diction, and destination prediction. In Table 2 we com-
pare against directed graphical models, which have been
employed for transportation routine modeling (Liao et al.
2007). Since we are only concerned with single modal trans-
portation, we compare against Markov models of decision at
next intersection conditioned on the goal location (Simmons
et al. 2006) and conditioned on the previous k road segments
(Krumm 2008).

Model Dist. Match | 90% Match
Markov (1x1) 62.4% 30.1%
Markov (3x3) 62.5% 30.1%
Markov (5x5) 62.5% 29.9%
Markov (10x10) 62.4% 29.6%
Markov (30x30) 62.2% 29.4%
Travel Time 72.5% 44.0%
Our Approach 82.6% 61.0%

Table 2: Evaluation results for Markov Model with various
grid sizes, time-based model, and our umodel



We also evaluated our model on the problem of predict-
ing destination given partial trajectory by simply employing
Bayes rule and incorporating a prior distribution over desti-
nations. In Figure 3, we compare against the Predestination
system (Krumm & Horvitz 2006) and a destination-based
Markov model (Simmons et al. 2006). Predestination dis-
cretizes the world into grid cells and probabilistically pre-
dicts drivers’ destinations based on a statistical model of
driver efficiency. It assumes a fixed metric (travel time)
and models efficiency (i.e., preference) given that metric,
whereas our model assumes a fixed preference model and
learn the driver’s metric.

Destination Prediction

'“6/. '_'
.*~~°' 0"-¢-A-¢.,.°~’.°~/

' -o- ' Markov Model
= & = Predestination

=== Our approach
20 40 60 80
Percentage of Trip Completed

Prediction Error (km)

Figure 3: The best Markov Model, Predestination, and our
approach’s prediction errors

We find both our model and Predestination significantly
outperform the Markov model, and our model performs
somewhat better given large amount (90%) and small
amount (10%-30%) of trip completed.

Time-Use Modeling

We now present preliminary experiments in applying our ap-
proach to modeling the time-use data collected from 12,248
individuals in the American Time-Use Survey (ATUS). As
has been argued by Partridge & Golle (2008), this data
serves as a valuable resource to the human behavior mod-
eling community due to its broad scope. The data covers a
broad corpus of activities collected from a diverse set of in-
dividuals over a long time period. We apply our approach to
model one day of time-use for an individual based on demo-
graphic information (e.g., age, gender).

Model Bits
Naive Model 1200.9
Stationary Markov Model | 122.6
Our approach 118.3

Table 3: Preliminary evaluation results for three models.

We evaluate three different models using 80% of the
dataset for training and 20% for testing. We use the empiri-
cal average log probability of the test set, Eflog, P(y|x)] as
our metric of evaluation. We choose base 2 so that the results
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can be interpreted as the number of bits required (on aver-
age) to represent a day’s sequence of activities (from the 18
broadest activity classes defined in the corpus). In Table 3,
we evaluate on three different models. The first is a naive
model that assumes a uniform distribution over activities
and an independence between each consecutive timestep. It
serves as a baseline. We next evaluate a stationary Markov
model. Finally, we evaluate our approach, where we con-
dition on demographic information (e.g., age, gender) and
also incorporate time-of-day. We find that of the three mod-
els, our approach performs the best.

Future efforts in modeling this data will involve incorpo-
rating additional information into the predictive model, al-
lowing additional flexibility in how time-of-day is incorpo-
rated, and conducting a more comprehensive evaluation.

Applicability Challenges

We now outline the challenges for applying our approach
more generally to problems of human behavior modeling.

Modeling Behavior Duration

In the driving domain, the duration spent on any one road
segment is influenced by many random external factors.
Rather than explicitly model the duration as part of the state
space, we abstracted expected duration as one component
in our cost function, and instead considered the sequence
of decisions as our state space. For many human behavior
modeling applications, the duration of different behavior or
activities, and not just the sequence of activities is important.

A well known shortcoming of Markovian models is that
the duration of staying in any state through self-transition
tends toward a decaying geometric distribution. For many
human behaviors, [pseudo-]Gaussian distributions better
model the duration of time spent on any particular behavior.
For instance, depending on the exact person, he may brush
his teeth for 90 seconds give or take roughly 15 seconds.

Semi-Markov decision processes (Sutton, Precup, &
Singh 1999) and semi-Markov conditional random fields
(Sarawagi & Cohen 2004) have been previously proposed.
Extending their ideas to the feature-based utility function of
our maximum entropy model, while still enabling efficient
inference and learning, is an important challenge for model-
ing human behavior.

Leveraging Human Similarity

For many domains, behavior is very personalized, and per-
sonalized models are much more important to obtain accu-
rate predictions. Obtaining models for an individual rather
than a group is trivial in our approach — simply use an in-
dividual’s training data rather than a group’s training data
to construct the model. However, in domains where data is
not plentiful for each individual, a model trained on a small
amount of an individual’s data may not generalize as well as
a model built for a group of people with more pooled data.
In domains where characteristics are known about each
individual, we hope to leverage the data of similar indi-
viduals to build a more accurate model of behavior for a
new individual. This will enable, for instance, a good prior



model of behavior based on demographic information when
no prior behavior has been observed for a user new to a sys-
tem. Developing and evaluating alternative methods for ac-
complishing this goal remains as a future challenge.

Conclusions and Future Work

We have presented our recently developed novel approach
for modeling human behavior by bridging two disparate
lines of research — optimal decision modeling and proba-
bilistic graphical models. The resulting model has a number
of mathmetical niceties — it is compact, it can be reasoned
about efficiently, and it can be trained efficiently as a convex
optimization. Unlike optimal decision making, our maxi-
mum entropy approach yields a probabilistic model that can
be easily incorporated within a Bayesian framework. Unlike
directed graphical models, which degrade poorly to random
walks in the absence of data, our model generalizes well and
provides strong performance guarantees.

We applied our method to the problem of modeling
route preferences, and evaluated the differences between our
model and other imitation learning models using a small fea-
ture space, and comparing against other previous approaches
to the problem with additional contextual information. We
also employed our approach on modeling time-use based
on demographic data. We found quite promising results in
terms of comparative predictive accuracy.

Finally, we discussed a number of challenges for applying
our approach more generally to other behavior modeling do-
mains. We specifically outlined modeling durations of dif-
ferent behaviors and groups of similar people as important
challenges for future research.
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