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Abstract 
In this paper we propose a new paradigm concerning the 
schematic consideration of events in opposite to things. 
Starting from that paradigm, a new approach to a logic-
based, language-critically motivated modeling-approach and 
modeling-language is derived. Further, some examples for 
logics which can be used in our approach are presented and 
exemplified. These logics can be used in a modular way. 
Finally we present an event-oriented architecture for 
application systems, which is applicable for the 
implementation of application systems designed by usage of 
the event-oriented approach presented in this paper. 

1. Introduction 
While events are becoming ever important concerning 
design of software-products and event-driven architectures 
(EDA) are on the rise, a standardized modeling-language 
that is capable to model events in an easy and clear manner 
is still lacking. (Ortner and Schneider 2008) presented the 
main features of a logic-based language-approach for an 
event-oriented modeling-language. This paper picks up 
that language-logical approach for event-modeling and 
event-applications, exemplifies it and depicts the 
advantages of that approach in opposite to previous 
approaches.  
The Event Processing Glossary of the Event Processing 
Technical Society (EPTS, www.epts.com) defines an event 
as “anything that happens, or is contemplated as 
happening”.  
This rather general definition is to help harmonizing the 
manifold and not standardized definitions for “event” in 
context of complex event processing (CEP).  
In this paper we define an event as “anything that 
happened, is happening, will happen or might happen”. 
That definition does not tie the concept of an event to 
occurrences in a computer-program. Rather, it includes 
occurrences in physical world, like the receipt of an order 
in distance selling or the completion of a product. We 
follow (Sowa 2002) by stating that an event is identified by 
its position in time and space and by the ontological 
classification given by Sowa. A prerequisite for an event to 

take place at a certain position in time is that it has a 
starting- and an ending-point in time. That is why an event 
is a special occurrence that has a certain starting-point and 
an ending-point in time. Especially concerning the ex ante-
view, our understanding of an event differs from the 
prevalent view on events in event processing as a message 
about an occurrence which already took place (Luckham 
2007).  
In many approaches events are understood in terms of such 
a message. A single or several messages are computed and 
if their pattern matches a certain condition, a given action 
is executed. This pattern is called ECA (event – condition 
– action) schema.  
This kind of ex-post consideration may be adequate and 
useful for a lot of tasks, but by striving for the goal of a 
holistic modeling-approach for an event-application, the 
ECA-schema soon meets its limits.  (Anicic et al. 2008) 
propose the adoption of a context, thereby expanding the 
ECA-schema to an ECCA-schema (event – context – 
condition – action), what improves the situation insofar, 
that the execution of an action due to events does not only 
depend on a universal condition (rule) any more, but in 
addition on the actual circumstances of the system, like the 
information, that the same action has been executed 
recently due to a similar event-pattern, but did not lead to 
the results expected and is therefore useless at the current 
situation. That may prevent the system from doing the 
same action over and over without gaining any useful 
results. In this way the consideration of a context improves 
the power of the body of rules in an event-oriented 
application.  
Instead of introducing a separate context like (Anicic et al. 
2008), we consider things analogue to an object-oriented 
representation of a system-state.  
A complex event is considered as an event consisting of 
several other events. These may take place after each other, 
or (partly) at the same time or even totally decoupled with 
respect to time.  
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An event is called atomic or elementary, if it does not 
consist of other events. A composite event is a complex 
event which is constructed by connecting events using 
logics.  

2. Events and object-orientation 
Our approach brings another technological innovation with 
respect to modeling and implementing software-systems. 
Current object-oriented programming reconstructs things 
as objects.  
Occurrences like incidents or events are generated and 
implemented as (the execution of) methods of an object. In 
this way every occurrence - and with that every event, 
which presumes that something happens – is bound to a 
thing. In object-orientation an object reconstructs a thing 
that may have occurrences at its disposal. A reconstruction 
of an occurrence without binding it to a thing is not 
possible in line with object-oriented modeling and 
programming.  
We use the terms “object” and “item” synonymously. Both 
occurrences and things are considered as objects. 
Occurrences can be events, actions, processes and so on, 
like our definition of an event says. That is how our 
approach differs significantly from the object-oriented 
approach.  
The introduction of an event as defined above is centric to 
our approach. In opposite to object-orientation, an event 
can be modeled as a first-class instance without the 
necessity of binding it to a thing. This is quite important, 
since our approach takes events into account that will or 
might happen, an ex ante view on events.  
In part five of this paper we will see that events can be 
used to model consequences of the occurrence of a pattern 
of events, which includes the rules in which conditions are 
formulated and the resulting actions.  
An event itself can own and use objects (e.g. occurrences), 
so called event-things. To be clear: we do not want to 
abolish the modeling of things as objects. Things as objects 
(and independent from events) will do their part in event-
oriented applications as well. That is why we propose to 
put event-entities on the same level as thing-entities, both 
reconstructed as objects.  
It is reasonable to use things to model the organizational 
structure of a system and to use occurrences or events to 
model the operational structure of a system. The 
reconstruction of things and events on the same level is 
shown in the rational classification of objects in figure 1. 

3. Events in a classification of objects 
In figure one, on the lowest level of the classification, there 
are occurrences and things on an equal footing. An event is 
a special kind of occurrence. Further, one can see, that both 
(possibly equipped with qualities and connected with other 

components or objects) are objects. Further, both things 
and occurrences can be carriers of certain qualities. There 
are qualities that refer to a certain singular object and 
qualities that accord to the concept of an object, which 
means that all objects that are embraced by that concept 
per definition do have that quality.  
A component is a singular occurrence or thing equipped 
with qualities.  

 
Figure 1: A rational classification of objects 

 
If a component is self-contained, it is considered as an 
object without being connected to other components or 
objects. If that is not the case, it can be connected with 
other components.  
Connections enable us to construct new objects from 
components, which in this context may be other 
components – occurrences or things equipped with 
qualities – or even other objects. This makes a nested 
construction of objects possible.  
There are several different types of connections, which can 
be divided into classifications and compositions (Horrocks 
2005). Compositions can further be divided into 
aggregation (cover aggregation, Codd 1979), which are 
used to reconstruct part/whole relationships, and connexion 
(Cartesian aggregation, Codd 1979), that are used to 
reconstruct connections that are concepts on their own, like 
the concept “father” which is a connection between two 
persons. Connections via classification involve on the one 
hand subsumption, which are important with respect to the 
consideration of different language-levels (see part four of 
this paper) and inclusion. Inclusions are used to reconstruct 
species/genus-relationships. Inclusion empowers us with 
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abilities similar to those of inheritance in object-oriented 
programming- and modeling-languages. Besides the 
mentioned possibilities to connect components, they can be 
connected using logic, which is described in part five of 
this paper. Following the EPTS glossary, we call events 
that are constructed by connecting other events using 
logics as composite events.  

4. The concept “event” 
In our language-critical approach, the distinction between 
things and events becomes apparent by the existence of 
two different types of concepts.  On the one hand there are 
thing-concepts and on the other hand there are event-
concepts. According to (Frege and Beaney 1997), a 
concept is a function whose value is always a truth-value. 
If the concept embraces the given object (thing or 
occurrence), that truth-value is “true” and “false” 
otherwise.  
Considering the concept “dog”, its function is “dog(x)” and 
its truth-value depends on x being an object that is a dog or 
not. Dog(Fido) is true, if Fido is a dog and false otherwise. 
On a language-level, this fact is either expressed by the 
sentence “Fido is a dog” or by the negative sentence “Fido 
is not a dog.” 
Analogical, there are functions whose values are always a 
truth-value for event-concepts. The truth-value of the 
function “Writing a paper(x)” is true, if the occurrence x is 
an instance of the concept “Writing a paper” and false 
otherwise. The difference between the functions of thing- 
and event-concepts is the way they are reconstructed on the 
language-level. Considering two events A and B, with A 
being embraced by the concept “Writing a paper” und B 
not, the sentences that are reconstructed are “Event A does 
occur as Writing of a paper” und “Event B does not occur 
as Writing of a paper”. 
At this point the existence of two different language-levels 
becomes apparent: the schema- and the instance-level. On 
the schema-level there are concepts, which possess an 
intension and an extension. The intension of a concept is 
the schema that describes and defines an object (thing or 
event). The extension is the set of all objects (instances) 
embraced by that concept. This two-layered language 
allows us to reconstruct events similarly to things in an 
object-oriented programming-language. By defining 
schemas of events as a concept, the universal aspects of an 
event are modeled, e.g. that the result of an event “Writing 
a paper” always is a thing, namely the written paper.  
Singular aspects are reconstructed via the instances of the 
concept. Such singular aspects may be the actual point in 
time, an event started or ended.  
So, there is a strict distinction between the schema of a 
concept and the instances of a concept. In the same way, 
we differentiate between the schema and the instances of 
qualities and connections. Note, that the instances of a 

quality or a connection cannot be present without any 
carrier respectively component.  
We mentioned earlier, that things may be possessed by an 
event, respectively be created by an event. Just as well, one 
can imagine events that lead to the destruction of things, 
like a fire in a depot or the erasure of entries in a database. 
Further, events can be connected to things like an event 
taking place in a building or room. But still, we have to 
keep in mind that while two objects, no matter what kind 
of, are connected; they still are two independent distinct 
objects or components. They do not have to be connected 
in a universal way. The event “dance” may take place in a 
disco, but it does not have to. A dance can take place in a 
gymnasium or outdoors as well.  
That is why we propose the separate modeling of events 
and things and their schemas. Singular instances may be 
connected in a certain manner, it may even not be possible 
to decouple these instances (Sowa 2002), but their 
concepts and schemas should be separated. With this kind 
of modeling, the obligatory connection between things and 
occurrences can be overcome.  
Methods of objects that represent an action that can be 
taken by or with the object should be modeled as 
independent events and the respective components should 
be connected using logics. Using this approach of 
connecting events and things, it is possible to add more 
semantics to the model. This approach enables a holistic 
view and modeling of an application system, concerning 
the modeling of “real world”-events as well as the 
modeling and design of software. Further, the separation of 
events and things allows us to reuse events and actions 
(even taking methods of an object-oriented object into 
account) more easily, since they do not have to be bound to 
a certain object.  
Eventually we have to state, that the broadly used view on 
an event as a message respectively a trigger for something 
is narrower than our proposal, but we explicitly do not 
exclude it from our model, since our approach can easily 
be used to model that kind of events, if the shown 
advantages are not needed. But our approach does not 
restrict the modeler to that kind of events, in addition it 
allows to model services, procedures, commercial 
transactions etc. The model is rich in semantics and can be 
designed in a differentiated way.  

5. Logics to connect and evaluate events 
Figure 1 shows that complex events are generated by 
connecting events. Besides the connections shown in part 
three of this paper, that yield complex events, events can 
be logically connected. Logical connections between 
events can for example be of a temporal nature, like event 
A immediately taking place after event B, or both event A 
and event B taking place at the same time. In addition to a 
temporal aspect, two events might for instance be 
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connected with respect to the location where they take 
place. In this way a composite event may consist of two 
temporally linked events that take place at the same 
location or maybe two certain different locations that might 
for example be close to each other.  
In addition, more different logical connections of events 
are possible, depending on the logics applied when 
modeling the events. Events connected by logics are called 
composite events.  
With aid of logics, events can be connected in a way that 
allows complex analysis in terms of “complex event 
processing”. The proposed modeling-language is organized 
in a modular way, so the user can choose which logics to 
use and does not have to care about all available logic-
modules.  
The logics considered in our approach go beyond classical 
Boolean logic, in the sense that not only truth-values like 
“true” and “false” are distinguished, but in addition 
modalities like “necessary”, “possible” and so on.  
In (Ortner and Schneider 2008) temporal and modal logic 
for describing events and their relationships have already 
been introduced. Temporal logic allows us to take points in 
time, durations and concepts like concurrence into account 
when modeling events. The modal-logics-module enables 
us to grant attributes to events like “necessary” and 
“possible” (Kamlah and Lorenzen 1984). 
Both, the temporal- and the modal-logics-module, have 
been introduced. In addition to these, we now introduce 
further logic-modules 

 
5.1 Normative logic 
 
Besides events that are necessary for other events to take 
place, there can be events that are not obligatory for a 
complex event to occur but may be desirable or forbidden. 
Normative logic deals with attributes like “bidden” and 
“forbidden” (Lorenzen 1984).  
Take a look at an example: After the event “order” took 
place, the event “delivery” is aspired. Certain events have 
to occur respectively have to have already occurred to 
make the event “delivery” reachable. These might be the 
event “production” of the ordered goods, the availability of 
a delivery truck and a driver, and maybe even the event 
“payment”. One can think of a scenario, in which all these 
events are necessary for the event “delivery” to become 
reachable. In addition to these events, the company policy 
demands a quality inspection before the goods are 
delivered to the customer. If the framework given by the 
used temporal logic allows the event “quality inspection” 
to take place and leave enough time for the event 
“delivery” to take place on time, the event “quality 
inspection” will be executed.  
But if there is not enough time and if the event “quality 
inspection” would take place, the delivery would be late, 
the negative possible (unnecessary) event “quality 
inspection” may be omitted.  

Reasoning according to an example like this one can be 
automated by using the architecture proposed in part six of 
this paper.  

 
5.2 Practical logic 
 
In our example for the usage of normative logic, we used a 
term which belongs naturally to practical logics (Lorenzen 
1985). We stated that the event “delivery” would be 
reachable respectively not reachable under certain 
circumstances. Practical logic is engaged with attributes 
like “reachable” and “avoidable”. At this point one can see 
how our approach takes future into account.  
One can picture a scenario opposite to the one we used 
describing normative logic, in which events are 
“necessary” to reach another event but did not yet take 
place. In the context of a supply chain, the production of 
goods might be initiated just when the goods are ordered or 
if the stock falls below a certain amount of them. In this 
case, the system reasons that for the event “delivery” to be 
reachable, the event “production” has to be initiated first. 
This reasoning uses events, logics, but also things like a 
stock etc. to decide, what to do. Taking the current 
circumstances into account, according to (Anicic et al. 
2008) the system can reason, that due to the low stock level 
there is need to initiate the event “production” to make the 
event “delivery” reachable.  
 
5.3 Topological logic 

 
A further logic relevant for the treatment of events is the 
topological or positional logic (Kremer and Mints 2005), 
which gets used in our approach with respect to its 
importance in terms of a locative logic (location-logic). 
This kind of logic is especially important when considering 
events, since an event (which takes place at the occurrence-
level) is always singular in time and space. It enables us to 
relate an event with a location (source) and to relate the 
location of an event with the locations of other events. A 
location can be given in terms of coordinates or by a 
discrete value, like a room number or the identification of a 
building.  
In our example, locative logic can be used to model a 
distance selling company that owns several storages and 
possibly more than one production facility. If an “order” 
event takes place at a certain location and the stock in the 
storage next to the event’s location is too low to satisfy the 
order, it has to be reasoned, what option to take. One 
option might be to initiate a “production” event close to the 
storage with low stock; another might be a delivery of the 
desired goods from a distant storage to the one having 
insufficient resources. It might even be possible to take the 
goods for the customer from a different storage.  
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6. An event-oriented architecture 
In this section we present an architecture that forms the 
basis of the presented modeling-concept. It is depicted in 
figure number two.  
The lowest tier of the architecture is the integration tier, 
which offers integration of external systems like databases. 
The task of this layer is to encapsulate objects (both events 
and things) from external systems in objects that conform 
to the presented object classification, either things or 
events. The layer contains data-resource-adapters, which 
make connection to databases and other systems that offer 
things-schemas and make information about thing-
instances available. It further contains application-
resource-adapters that are able to connect to other 
applications and thereby makes services and applications 
available as event-schemas and event-applications.  
 

 
Figure 2: An event-oriented architecture 

 
On the next higher level is the event application tier. In 
this layer the applications of the event-schemas are 
executed, which is why the business logic is located in this 
layer. The business-logic is contained in event-applications 
(of complex or atomic nature) which are coordinated, 
controlled and orchestrated by the coordination tier.  
The next layer is the coordination tier. Here the event- and 
thing-schemas are located, as well as the connections 
between singular events and things. The instances of 
events, thinks, qualities and connections are managed by 
this layer by a higher-level-language to be able to 
coordinate and control them. That is why this tier is 
responsible for controlling operations in an event-oriented 

system. Logical connections and rules are deposited in this 
layer, the reasoning is done in this layer and if necessary 
new events respectively event-applications are initiated by 
this layer.  
If there are any logical connections between sub-events of 
a complex event, for instance temporal or modal ones, this 
tier decides automatically, what has to be done further and 
initiates, waits for or skips events or event-applications. If 
the system is not able to do all the reasoning automatically, 
for example because of a lack of rules, the system commits 
the decision to be made with respect to the current event- 
and event-application situation to a user by using the client 
tier for interaction. That may happen since we do not just 
use Boolean, but in addition more complex logic-
combinations. Their examination might yield a result that 
is not automatically decidable, for the result might not just 
be a “true” or a “false”-value.  
The top-layer of the architecture is the client tier. This tier 
is responsible for tasks like interaction (both with users and 
other automated systems) and data presentation. The quite 
complex topic “interaction” is presented in a separate paper 
(Fischer, Ortner, and Sternhuber 2009) in a context of a 
deeper investigation of the architecture.  
As depicted in figure two, the coordination tier is located 
on a (single) server, while the event application tier may be 
located on a server or it may be distributed. The client tier 
may be located on a server and interact with users using 
interfaces for interaction with software-systems or a web-
interface for interaction with human users. A further 
possibility is the creation of “heavy clients”, computer 
programs which have to be installed and configured on an 
independent client.  
The example used throughout the paper can now be 
applied to the presented event-oriented architecture.  
On the coordination tier there is a schema of an event 
“order”, which contains all universal qualities and 
properties of an order. The schemas of the events 
“production”, “quality inspection”, “delivery”, “storage” 
and “stock-level” are stored here as well, the latter two 
being thing-schemas. Further, there are logical rules for 
each event, describing, which events are necessary, bidden 
or forbidden for an event e.g. “delivery” to be reachable 
and to be able to take place.  
On the event application tier the applications as instances 
of these schemas are located. An actually happening order 
is located in this tier as a supporting application containing 
a specific set of qualities, like the order date, a date of 
delivery, the number of ordered goods and so on.  
When an order takes place, the coordination tier checks 
which logical rules are available for an occurrence of an 
“order”-event. In our example the coordination tier checks, 
if the stocks are high enough to satisfy the order. Such 
information about things is on the one hand available on 
the coordination tier as schemas which describe the 
universal aspects of things and on the other hand instances 
of these schemas are managed on the event application tier. 
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Information concerning things and events that is not 
needed to be present in memory all the time can be 
accessed using the integration tier by requesting this 
information from a database or any other external system 
connected to the architecture.  
Is the desired date of delivery far enough in the future, the 
event “quality inspection” is initiated with all 
corresponding event-applications. Otherwise it is omitted.  
Finally the event “delivery” and all its event-applications 
may take place.  
The main benefit of the proposed architecture is the 
possibility of a top-down modeling of events. In opposite 
to a lot of architectures that are widespread at the moment 
(Luckham 2007), the goal of our approach is not to look 
for events that can be observed, but to model events in the 
creation-process of an application. This way, there is no 
need to aggregate low-level-events into complex events by 
the use of agents, but complex events can immediately be 
modeled and integrated into the application. By the 
proposed unified coordination-layer, these events can be 
orchestrated. That is why the cause of an event can be 
determined easily, since new events are not created by an 
independent agent but by the coordination layer. If the 
coordination layer decides to create a new event, it knows 
why that decision has been made. This way causality is 
easy to control. Of course, this control over causality is 
limited by the boundaries of the architecture. Concerning 
events entering the systems or leaving the systems, we are 
faced with the usual problems concerning causality. 
The main disadvantage of the proposed architecture is that 
it is not able to perform real-time-processing. 

7. Conclusion 
In this paper we presented a new approach to modeling of 
events using logics. The application of some logic-modules 
has been presented and exemplified. We further presented 
an event-oriented architecture that in addition to modeling 
is an approach to productive usage of the presented 
paradigm in real-world scenarios.  
The approaches presented are still under development and 
need further elaboration. The results of that work will be 
published successively.  
Many scenarios described in our examples can – at least in 
parts – be modeled and solved with currently available 
methods of complex event processing. The advantage of 
our holistic approach is the possibility to model the whole 
systems by using events and logic-modules. There is no 
need to use different languages for modeling events, rules, 
conditions or actions; everything can be done in a single 
language. Further this consistent formulation enables 
automatic reasoning at the coordination tier in a 
standardized manner. This way causality can be controlled 
easily.  

In this tier it is possible to add new event-schemas and 
logic referring to them without any need for change in the 
rest of the application system.  
The goal of our architecture approach is the extension of 
currently available approaches by the possibility of top-
down development of event-oriented applications.  
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