
Logic-Based Modeling of Event-Oriented Architectures
for the Development of Application Systems

Matthias Fischer1, Erich Ortner1, Joachim Sternhuber1

1Technische Universität Darmstadt, Development of Application Systems,
Hochschulstraße 1,

64289 Darmstadt, Germany
[fischer, ortner, sternhuber]@winf.tu-darmstadt.de

Abstract
In this paper we propose a new paradigm concerning the
schematic consideration of events in opposite to things.
Starting from that paradigm, a new approach to a logic-
based, language-critically motivated modeling-approach and
modeling-language is derived. Further, some examples for
logics which can be used in our approach are presented and
exemplified. These logics can be used in a modular way.
Finally we present an event-oriented architecture for
application systems, which is applicable for the
implementation of application systems designed by usage of
the event-oriented approach presented in this paper.

1. Introduction
While events are becoming ever important concerning
design of software-products and event-driven architectures
(EDA) are on the rise, a standardized modeling-language
that is capable to model events in an easy and clear manner
is still lacking. (Ortner and Schneider 2008) presented the
main features of a logic-based language-approach for an
event-oriented modeling-language. This paper picks up
that language-logical approach for event-modeling and
event-applications, exemplifies it and depicts the
advantages of that approach in opposite to previous
approaches.
The Event Processing Glossary of the Event Processing
Technical Society (EPTS, www.epts.com) defines an event
as “anything that happens, or is contemplated as
happening”.
This rather general definition is to help harmonizing the
manifold and not standardized definitions for “event” in
context of complex event processing (CEP).
In this paper we define an event as “anything that
happened, is happening, will happen or might happen”.
That definition does not tie the concept of an event to
occurrences in a computer-program. Rather, it includes
occurrences in physical world, like the receipt of an order
in distance selling or the completion of a product. We
follow (Sowa 2002) by stating that an event is identified by
its position in time and space and by the ontological
classification given by Sowa. A prerequisite for an event to

take place at a certain position in time is that it has a
starting- and an ending-point in time. That is why an event
is a special occurrence that has a certain starting-point and
an ending-point in time. Especially concerning the ex ante-
view, our understanding of an event differs from the
prevalent view on events in event processing as a message
about an occurrence which already took place (Luckham
2007).
In many approaches events are understood in terms of such
a message. A single or several messages are computed and
if their pattern matches a certain condition, a given action
is executed. This pattern is called ECA (event – condition
– action) schema.
This kind of ex-post consideration may be adequate and
useful for a lot of tasks, but by striving for the goal of a
holistic modeling-approach for an event-application, the
ECA-schema soon meets its limits. (Anicic et al. 2008)
propose the adoption of a context, thereby expanding the
ECA-schema to an ECCA-schema (event – context –
condition – action), what improves the situation insofar,
that the execution of an action due to events does not only
depend on a universal condition (rule) any more, but in
addition on the actual circumstances of the system, like the
information, that the same action has been executed
recently due to a similar event-pattern, but did not lead to
the results expected and is therefore useless at the current
situation. That may prevent the system from doing the
same action over and over without gaining any useful
results. In this way the consideration of a context improves
the power of the body of rules in an event-oriented
application.
Instead of introducing a separate context like (Anicic et al.
2008), we consider things analogue to an object-oriented
representation of a system-state.
A complex event is considered as an event consisting of
several other events. These may take place after each other,
or (partly) at the same time or even totally decoupled with
respect to time.

46

An event is called atomic or elementary, if it does not
consist of other events. A composite event is a complex
event which is constructed by connecting events using
logics.

2. Events and object-orientation
Our approach brings another technological innovation with
respect to modeling and implementing software-systems.
Current object-oriented programming reconstructs things
as objects.
Occurrences like incidents or events are generated and
implemented as (the execution of) methods of an object. In
this way every occurrence - and with that every event,
which presumes that something happens – is bound to a
thing. In object-orientation an object reconstructs a thing
that may have occurrences at its disposal. A reconstruction
of an occurrence without binding it to a thing is not
possible in line with object-oriented modeling and
programming.
We use the terms “object” and “item” synonymously. Both
occurrences and things are considered as objects.
Occurrences can be events, actions, processes and so on,
like our definition of an event says. That is how our
approach differs significantly from the object-oriented
approach.
The introduction of an event as defined above is centric to
our approach. In opposite to object-orientation, an event
can be modeled as a first-class instance without the
necessity of binding it to a thing. This is quite important,
since our approach takes events into account that will or
might happen, an ex ante view on events.
In part five of this paper we will see that events can be
used to model consequences of the occurrence of a pattern
of events, which includes the rules in which conditions are
formulated and the resulting actions.
An event itself can own and use objects (e.g. occurrences),
so called event-things. To be clear: we do not want to
abolish the modeling of things as objects. Things as objects
(and independent from events) will do their part in event-
oriented applications as well. That is why we propose to
put event-entities on the same level as thing-entities, both
reconstructed as objects.
It is reasonable to use things to model the organizational
structure of a system and to use occurrences or events to
model the operational structure of a system. The
reconstruction of things and events on the same level is
shown in the rational classification of objects in figure 1.

3. Events in a classification of objects
In figure one, on the lowest level of the classification, there
are occurrences and things on an equal footing. An event is
a special kind of occurrence. Further, one can see, that both
(possibly equipped with qualities and connected with other

components or objects) are objects. Further, both things
and occurrences can be carriers of certain qualities. There
are qualities that refer to a certain singular object and
qualities that accord to the concept of an object, which
means that all objects that are embraced by that concept
per definition do have that quality.
A component is a singular occurrence or thing equipped
with qualities.

Figure 1: A rational classification of objects

If a component is self-contained, it is considered as an
object without being connected to other components or
objects. If that is not the case, it can be connected with
other components.
Connections enable us to construct new objects from
components, which in this context may be other
components – occurrences or things equipped with
qualities – or even other objects. This makes a nested
construction of objects possible.
There are several different types of connections, which can
be divided into classifications and compositions (Horrocks
2005). Compositions can further be divided into
aggregation (cover aggregation, Codd 1979), which are
used to reconstruct part/whole relationships, and connexion
(Cartesian aggregation, Codd 1979), that are used to
reconstruct connections that are concepts on their own, like
the concept “father” which is a connection between two
persons. Connections via classification involve on the one
hand subsumption, which are important with respect to the
consideration of different language-levels (see part four of
this paper) and inclusion. Inclusions are used to reconstruct
species/genus-relationships. Inclusion empowers us with

47

abilities similar to those of inheritance in object-oriented
programming- and modeling-languages. Besides the
mentioned possibilities to connect components, they can be
connected using logic, which is described in part five of
this paper. Following the EPTS glossary, we call events
that are constructed by connecting other events using
logics as composite events.

4. The concept “event”
In our language-critical approach, the distinction between
things and events becomes apparent by the existence of
two different types of concepts. On the one hand there are
thing-concepts and on the other hand there are event-
concepts. According to (Frege and Beaney 1997), a
concept is a function whose value is always a truth-value.
If the concept embraces the given object (thing or
occurrence), that truth-value is “true” and “false”
otherwise.
Considering the concept “dog”, its function is “dog(x)” and
its truth-value depends on x being an object that is a dog or
not. Dog(Fido) is true, if Fido is a dog and false otherwise.
On a language-level, this fact is either expressed by the
sentence “Fido is a dog” or by the negative sentence “Fido
is not a dog.”
Analogical, there are functions whose values are always a
truth-value for event-concepts. The truth-value of the
function “Writing a paper(x)” is true, if the occurrence x is
an instance of the concept “Writing a paper” and false
otherwise. The difference between the functions of thing-
and event-concepts is the way they are reconstructed on the
language-level. Considering two events A and B, with A
being embraced by the concept “Writing a paper” und B
not, the sentences that are reconstructed are “Event A does
occur as Writing of a paper” und “Event B does not occur
as Writing of a paper”.
At this point the existence of two different language-levels
becomes apparent: the schema- and the instance-level. On
the schema-level there are concepts, which possess an
intension and an extension. The intension of a concept is
the schema that describes and defines an object (thing or
event). The extension is the set of all objects (instances)
embraced by that concept. This two-layered language
allows us to reconstruct events similarly to things in an
object-oriented programming-language. By defining
schemas of events as a concept, the universal aspects of an
event are modeled, e.g. that the result of an event “Writing
a paper” always is a thing, namely the written paper.
Singular aspects are reconstructed via the instances of the
concept. Such singular aspects may be the actual point in
time, an event started or ended.
So, there is a strict distinction between the schema of a
concept and the instances of a concept. In the same way,
we differentiate between the schema and the instances of
qualities and connections. Note, that the instances of a

quality or a connection cannot be present without any
carrier respectively component.
We mentioned earlier, that things may be possessed by an
event, respectively be created by an event. Just as well, one
can imagine events that lead to the destruction of things,
like a fire in a depot or the erasure of entries in a database.
Further, events can be connected to things like an event
taking place in a building or room. But still, we have to
keep in mind that while two objects, no matter what kind
of, are connected; they still are two independent distinct
objects or components. They do not have to be connected
in a universal way. The event “dance” may take place in a
disco, but it does not have to. A dance can take place in a
gymnasium or outdoors as well.
That is why we propose the separate modeling of events
and things and their schemas. Singular instances may be
connected in a certain manner, it may even not be possible
to decouple these instances (Sowa 2002), but their
concepts and schemas should be separated. With this kind
of modeling, the obligatory connection between things and
occurrences can be overcome.
Methods of objects that represent an action that can be
taken by or with the object should be modeled as
independent events and the respective components should
be connected using logics. Using this approach of
connecting events and things, it is possible to add more
semantics to the model. This approach enables a holistic
view and modeling of an application system, concerning
the modeling of “real world”-events as well as the
modeling and design of software. Further, the separation of
events and things allows us to reuse events and actions
(even taking methods of an object-oriented object into
account) more easily, since they do not have to be bound to
a certain object.
Eventually we have to state, that the broadly used view on
an event as a message respectively a trigger for something
is narrower than our proposal, but we explicitly do not
exclude it from our model, since our approach can easily
be used to model that kind of events, if the shown
advantages are not needed. But our approach does not
restrict the modeler to that kind of events, in addition it
allows to model services, procedures, commercial
transactions etc. The model is rich in semantics and can be
designed in a differentiated way.

5. Logics to connect and evaluate events
Figure 1 shows that complex events are generated by
connecting events. Besides the connections shown in part
three of this paper, that yield complex events, events can
be logically connected. Logical connections between
events can for example be of a temporal nature, like event
A immediately taking place after event B, or both event A
and event B taking place at the same time. In addition to a
temporal aspect, two events might for instance be

48

connected with respect to the location where they take
place. In this way a composite event may consist of two
temporally linked events that take place at the same
location or maybe two certain different locations that might
for example be close to each other.
In addition, more different logical connections of events
are possible, depending on the logics applied when
modeling the events. Events connected by logics are called
composite events.
With aid of logics, events can be connected in a way that
allows complex analysis in terms of “complex event
processing”. The proposed modeling-language is organized
in a modular way, so the user can choose which logics to
use and does not have to care about all available logic-
modules.
The logics considered in our approach go beyond classical
Boolean logic, in the sense that not only truth-values like
“true” and “false” are distinguished, but in addition
modalities like “necessary”, “possible” and so on.
In (Ortner and Schneider 2008) temporal and modal logic
for describing events and their relationships have already
been introduced. Temporal logic allows us to take points in
time, durations and concepts like concurrence into account
when modeling events. The modal-logics-module enables
us to grant attributes to events like “necessary” and
“possible” (Kamlah and Lorenzen 1984).
Both, the temporal- and the modal-logics-module, have
been introduced. In addition to these, we now introduce
further logic-modules

5.1 Normative logic

Besides events that are necessary for other events to take
place, there can be events that are not obligatory for a
complex event to occur but may be desirable or forbidden.
Normative logic deals with attributes like “bidden” and
“forbidden” (Lorenzen 1984).
Take a look at an example: After the event “order” took
place, the event “delivery” is aspired. Certain events have
to occur respectively have to have already occurred to
make the event “delivery” reachable. These might be the
event “production” of the ordered goods, the availability of
a delivery truck and a driver, and maybe even the event
“payment”. One can think of a scenario, in which all these
events are necessary for the event “delivery” to become
reachable. In addition to these events, the company policy
demands a quality inspection before the goods are
delivered to the customer. If the framework given by the
used temporal logic allows the event “quality inspection”
to take place and leave enough time for the event
“delivery” to take place on time, the event “quality
inspection” will be executed.
But if there is not enough time and if the event “quality
inspection” would take place, the delivery would be late,
the negative possible (unnecessary) event “quality
inspection” may be omitted.

Reasoning according to an example like this one can be
automated by using the architecture proposed in part six of
this paper.

5.2 Practical logic

In our example for the usage of normative logic, we used a
term which belongs naturally to practical logics (Lorenzen
1985). We stated that the event “delivery” would be
reachable respectively not reachable under certain
circumstances. Practical logic is engaged with attributes
like “reachable” and “avoidable”. At this point one can see
how our approach takes future into account.
One can picture a scenario opposite to the one we used
describing normative logic, in which events are
“necessary” to reach another event but did not yet take
place. In the context of a supply chain, the production of
goods might be initiated just when the goods are ordered or
if the stock falls below a certain amount of them. In this
case, the system reasons that for the event “delivery” to be
reachable, the event “production” has to be initiated first.
This reasoning uses events, logics, but also things like a
stock etc. to decide, what to do. Taking the current
circumstances into account, according to (Anicic et al.
2008) the system can reason, that due to the low stock level
there is need to initiate the event “production” to make the
event “delivery” reachable.

5.3 Topological logic

A further logic relevant for the treatment of events is the
topological or positional logic (Kremer and Mints 2005),
which gets used in our approach with respect to its
importance in terms of a locative logic (location-logic).
This kind of logic is especially important when considering
events, since an event (which takes place at the occurrence-
level) is always singular in time and space. It enables us to
relate an event with a location (source) and to relate the
location of an event with the locations of other events. A
location can be given in terms of coordinates or by a
discrete value, like a room number or the identification of a
building.
In our example, locative logic can be used to model a
distance selling company that owns several storages and
possibly more than one production facility. If an “order”
event takes place at a certain location and the stock in the
storage next to the event’s location is too low to satisfy the
order, it has to be reasoned, what option to take. One
option might be to initiate a “production” event close to the
storage with low stock; another might be a delivery of the
desired goods from a distant storage to the one having
insufficient resources. It might even be possible to take the
goods for the customer from a different storage.

49

6. An event-oriented architecture
In this section we present an architecture that forms the
basis of the presented modeling-concept. It is depicted in
figure number two.
The lowest tier of the architecture is the integration tier,
which offers integration of external systems like databases.
The task of this layer is to encapsulate objects (both events
and things) from external systems in objects that conform
to the presented object classification, either things or
events. The layer contains data-resource-adapters, which
make connection to databases and other systems that offer
things-schemas and make information about thing-
instances available. It further contains application-
resource-adapters that are able to connect to other
applications and thereby makes services and applications
available as event-schemas and event-applications.

Figure 2: An event-oriented architecture

On the next higher level is the event application tier. In
this layer the applications of the event-schemas are
executed, which is why the business logic is located in this
layer. The business-logic is contained in event-applications
(of complex or atomic nature) which are coordinated,
controlled and orchestrated by the coordination tier.
The next layer is the coordination tier. Here the event- and
thing-schemas are located, as well as the connections
between singular events and things. The instances of
events, thinks, qualities and connections are managed by
this layer by a higher-level-language to be able to
coordinate and control them. That is why this tier is
responsible for controlling operations in an event-oriented

system. Logical connections and rules are deposited in this
layer, the reasoning is done in this layer and if necessary
new events respectively event-applications are initiated by
this layer.
If there are any logical connections between sub-events of
a complex event, for instance temporal or modal ones, this
tier decides automatically, what has to be done further and
initiates, waits for or skips events or event-applications. If
the system is not able to do all the reasoning automatically,
for example because of a lack of rules, the system commits
the decision to be made with respect to the current event-
and event-application situation to a user by using the client
tier for interaction. That may happen since we do not just
use Boolean, but in addition more complex logic-
combinations. Their examination might yield a result that
is not automatically decidable, for the result might not just
be a “true” or a “false”-value.
The top-layer of the architecture is the client tier. This tier
is responsible for tasks like interaction (both with users and
other automated systems) and data presentation. The quite
complex topic “interaction” is presented in a separate paper
(Fischer, Ortner, and Sternhuber 2009) in a context of a
deeper investigation of the architecture.
As depicted in figure two, the coordination tier is located
on a (single) server, while the event application tier may be
located on a server or it may be distributed. The client tier
may be located on a server and interact with users using
interfaces for interaction with software-systems or a web-
interface for interaction with human users. A further
possibility is the creation of “heavy clients”, computer
programs which have to be installed and configured on an
independent client.
The example used throughout the paper can now be
applied to the presented event-oriented architecture.
On the coordination tier there is a schema of an event
“order”, which contains all universal qualities and
properties of an order. The schemas of the events
“production”, “quality inspection”, “delivery”, “storage”
and “stock-level” are stored here as well, the latter two
being thing-schemas. Further, there are logical rules for
each event, describing, which events are necessary, bidden
or forbidden for an event e.g. “delivery” to be reachable
and to be able to take place.
On the event application tier the applications as instances
of these schemas are located. An actually happening order
is located in this tier as a supporting application containing
a specific set of qualities, like the order date, a date of
delivery, the number of ordered goods and so on.
When an order takes place, the coordination tier checks
which logical rules are available for an occurrence of an
“order”-event. In our example the coordination tier checks,
if the stocks are high enough to satisfy the order. Such
information about things is on the one hand available on
the coordination tier as schemas which describe the
universal aspects of things and on the other hand instances
of these schemas are managed on the event application tier.

50

Information concerning things and events that is not
needed to be present in memory all the time can be
accessed using the integration tier by requesting this
information from a database or any other external system
connected to the architecture.
Is the desired date of delivery far enough in the future, the
event “quality inspection” is initiated with all
corresponding event-applications. Otherwise it is omitted.
Finally the event “delivery” and all its event-applications
may take place.
The main benefit of the proposed architecture is the
possibility of a top-down modeling of events. In opposite
to a lot of architectures that are widespread at the moment
(Luckham 2007), the goal of our approach is not to look
for events that can be observed, but to model events in the
creation-process of an application. This way, there is no
need to aggregate low-level-events into complex events by
the use of agents, but complex events can immediately be
modeled and integrated into the application. By the
proposed unified coordination-layer, these events can be
orchestrated. That is why the cause of an event can be
determined easily, since new events are not created by an
independent agent but by the coordination layer. If the
coordination layer decides to create a new event, it knows
why that decision has been made. This way causality is
easy to control. Of course, this control over causality is
limited by the boundaries of the architecture. Concerning
events entering the systems or leaving the systems, we are
faced with the usual problems concerning causality.
The main disadvantage of the proposed architecture is that
it is not able to perform real-time-processing.

7. Conclusion
In this paper we presented a new approach to modeling of
events using logics. The application of some logic-modules
has been presented and exemplified. We further presented
an event-oriented architecture that in addition to modeling
is an approach to productive usage of the presented
paradigm in real-world scenarios.
The approaches presented are still under development and
need further elaboration. The results of that work will be
published successively.
Many scenarios described in our examples can – at least in
parts – be modeled and solved with currently available
methods of complex event processing. The advantage of
our holistic approach is the possibility to model the whole
systems by using events and logic-modules. There is no
need to use different languages for modeling events, rules,
conditions or actions; everything can be done in a single
language. Further this consistent formulation enables
automatic reasoning at the coordination tier in a
standardized manner. This way causality can be controlled
easily.

In this tier it is possible to add new event-schemas and
logic referring to them without any need for change in the
rest of the application system.
The goal of our architecture approach is the extension of
currently available approaches by the possibility of top-
down development of event-oriented applications.

References
Anicic, D.; Sen, S.; Stojanovic, N.; Ma, J.; and Schmidt,
K.-U. 2008. Contextualised Event-Triggered Reactivity
With Similarity Search. In Proceedings of the 1st iCEP08
Workshop on Complex Event Processing for the Future
Internet, Vienna, Austria.: CEUR-WS.org/Vol-
412/paper6.pdf

Codd, E. F. 1979. Extending the database relational model
to capture more meaning. ACM Trans. Database Syst.,
4(4): 397–434.

Fischer, M.; Ortner, E.; and Sternhuber, J. 2008.
Interaction in an Event-Based Context. An Architectural
Concept (Draft). Forthcoming.

Frege, G.; and Beaney, M. 1997. The Frege reader.
Oxford: Blackwell (Blackwell readers).

Horrocks, I. 2005. Applications of Description Logics.
State of the Art and Research Challenges. In Conceptual
structures: common semantics for sharing knowledge. 13th
International Conference on Conceptual Structures, 78–90
Berlin, Germany: Springer

Kamlah, W.; and Lorenzen, P. 1984. Logical propaedeutic.
Pre-school of reasonable discourse. Lanham, MD:
University Press of America.

Kremer, P.; and Mints, G. 2005. Dynamic topological
logic. In Annals of Pure and Applied Logic 131: 133–158.

Lorenzen, P. 1984. Normative logic and ethics. Mannheim,
Germany: Bibl. Inst.

Lorenzen, P. 1985. Grundbegriffe technischer und
politischer Kultur. Frankfurt am Main, Germany:
Suhrkamp

Luckham, D. 2007. The power of events. An introduction
to complex event processing in distributed enterprise
systems. Boston, Mass.: Addison-Wesley.

Ortner, E.; and Schneider, T. 2008. Temporal and Modal
Logic Based Event Languages for the Development of
Reactive Application Systems. In Proceedings of the 1st
iCEP08 Workshop on Complex Event Processing for the
Future Internet, Vienna, Austria.: CEUR-WS.org/Vol-
412/paper5.pdf

Sowa, J. F. 2002. Knowledge representation: Logical,
philosophical, and computational foundations. Pacific
Grove, Calif.: Brooks/Cole

51

