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Abstract 
Data Grids are used for managing massive amounts of data 
(Peta scale) that are distributed across heterogeneous 
storage systems. As such they are complex in nature and 
deal with multiple operations in the life-cycle of a data set 
from creation to usage to preservation to final disposition. 
Administering a data grid can be very challenging (not only 
for system administrators, but also for data providers and 
user communities). Data grids are reactive systems that 
handle events based on contextual information. They also 
maintain transactional capabilities in order to ensure 
consistency across distributed storage systems. We are 
developing a data grid system called integrated Rule 
Oriented Data Systems (iRODS) manage the phases of the 
data life-cycle using ECA-type rules.  Such a system not 
only captures the complex operational policies of a data grid 
but also provides a declarative semantics  for describing 
event processing based on a side effects ontology and 
context information stored in the  data grid. In this paper we 
describe the event management and processing being 
implemented in iRODS  and how a distributed rule engine is 
used to handle actions in a data grid. The iRODs data grid  
can be viewed as a  complex, distributed event processing 
system providing data life-cycle management capabilities 
using a rule-oriented architecture.  

Introduction   
Grid technologies provide software mechanisms to support 
distributed computation and access to distributed data.  
Data Grids [Chervenak et.al., Rajasekar 2003, Moore 
2006] provide access to large collections of data whose 
sizes are measured in Peta Bytes and hundreds of millions 
of files. A data grid  provides access to geographically 
distributed heterogeneous data resources assembled from 
file systems, tape archives, relational databases, semi-
structured data systems, video streaming systems, and 
sensor data streams.  Data grids support operations for end-
to-end data life-cycle management and  are used to share 
data across inter and intra-disciplinary groups without 
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having to aggregate the data into a centralized location.  
Data grids provide a virtualized interface to applications, 
hiding the idiosyncrasies of the underlying infrastructure 
from users and applications. They also provide semantic 
indexing using keyword-value-unit triplets as associative 
metadata describing the content and context of the data. 
Search on the metadata supports discovery of desired files 
in a collection. Data grids also support long-term 
preservation of data collections through management of 
technology evolution (hardware, software and data 
formats), support for contextual information drift, and 
virtualization of administrative functions.   
 
Data grids support the multiple operations required by the 
data life-cycle. In addition to being fault-tolerant and 
network latency aware, they provide facilities for multiple-
levels of authentication and authorization, facilities for 
auditing and accounting, support strategies for data 
placement, replication, backup, archiving and versioning, 
interfaces for rapid data ingestion and access, visualization 
and third-party data movement, support for server-side 
services for data assimilation, analysis, transformations, 
fusion and domain-specific server-side applications.  The 
data grid operations are quite complex in nature and can be 
viewed as  chains of functions.  Moreover, for the same 
operation, depending upon the context (defined by the user 
profile, resource attributes, contextual information of the 
data collection that is being accessed and administrative 
policies) the same operation can lead to a different chain of 
actions to be performed.  The contextual information in a 
data grid is captured in a persistent (relational) database 
holding information about data sets, collections of data, 
users, resources, meta data and system ontologies, services, 
operations and policies.  

Integrated Rule Oriented Data Systems (iRODS) 
Data grids can be viewed as large distributed event 
processing systems handling concurrent events from 
multiple users, administrators and temporal cues. In the 
Data Intensive Cyber Environments [DICE] group, based 
at UNC and UCSD, we have been conducting research and 
prototype development on policy-governed data grids 
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called the integrated Rule-Oriented Data Systems 
[Rajasekar 2006, iRODS, Moore 2007]. IRODS is adaptive 
middleware that provides a flexible, extensible and 
customizable data management architecture by encoding 
operations as  workflow functions that are defined by 
sequences of  micro-services. The work flow functions can 
be interpreted as policies and are encoded as  user-defined 
and/or administrator-defined ECA-type rules [Dayal 1996].  
The “semantics” (or side effects) of a functionality can be 
decided by users or data providers within limits  imposed 
by the system administrators. Hence, changes to a 
particular process or policy can be easily constructed by 
the user and tested and deployed without the aid of system 
and application developers. The user can also define 
conditions when these rules get triggered thus controlling 
application of different rules and rule sets based on current 
events and operating conditions.  
 
The programming of rules in iRODS can be viewed as 
lego-block type programming. The building blocks for the 
iRODS are micro-services - small, well-defined 
procedures/functions that perform a certain task. Users and 
administrators  “chain”  micro-services to implement a 
larger macro-level functionality (as rules)  to be executed 
on triggered events.  The rules can be published for use by 
others. For example, one may encode a rule that when 
accessing a data object from a collection named “B”, 
additional authorization checks need to be made. These 
authorization checks can be encoded as a set of additional 
rules with different triggers that can fire based on current 
operating conditions. In this way, one can control access to 
sensitive data based on rules and can escalate or reduce 
authorization levels dynamically as the situation warrants. 
The iRODS rule engine design builds upon the application 
of theories and concepts from a wide range of well-known 
paradigms from fields such as active databases, 
transactional systems, logic programming, business rule 
systems, constraint-management systems, workflows, 
service-oriented architecture and program verification.  
 
We have implemented a prototype of the iRODS system. 
The system consists of the following components: 

1. A three-layer peer-to-peer server system that 
interfaces to a remote client on one side and the 
storage and data providers at the other side. The 
middle layer implements the intelligence of the 
system through explicit rules and micro-services.  

2. An iCAT catalog system based on a relational 
database. Mechanisms are provided to access the 
database using its native API while exposing 
higher-level functions that can be used to interact 
with the iCAT catalog. 

3. A rule engine that interprets rules from a rule base 
and executes micro-services. 

4. A rich set of Client-side APIs and utilities. 
5. An administration utility. 

6. A Messaging Server that can be used for 
communications between micro-services running 
in parallel or at different times. 

7. A Rule Scheduler which can schedule rule 
invocations.  The scheduler can also be used for 
delaying operations or for asynchronous 
execution.  

 
Figure 1 provides an architectural diagram for the iRODS 
system. Figure 2 provides a servic-level diagram of the 
iRODS system. 
 
iRODS rules are invoked either by client operations 
(events such as ingestion of a new file, access to a copy of 
a file, etc) or by temporal cues or by events that are 
triggered by changes in the state of the iCAT persistent 
database. The distributed rule engine fires the rules at the 
storage location of the data and executes the relevant 
micro-services. The micro-services can check for 
conditions, change the metadata state or perform an 
operation such as replicating a file, or broadcasting an 
email, etc. The Administrative interface (under 
development) will provide a means for defining rules (a 
rich rule language supports atomic, deferred, and periodic 
execution of hierarchical rule sets), checking for rule base 
consistency, and managing other aspects of the data 
management system.  
 
  The iRODS prototype has been developed based on our 
experience in building and deploying a first generation data 
grid system called the Storage Resource Broker [SRB]. 
The SRB manages collections in a wide variety of domains 
from bioinformatics, to astronomy sky surveys, to 
earthquake simulations, to sensor data streams. It has been 
shown to scale to petabytes of data with 100s of millions of 
files. The main drawback of the SRB was the use of hard-
coded data management policies. If a user wanted to 
perform complex sets of operations on datasets, they had to 
program at the client level and move the data from the 
server to perform the operation. IRODS obviates the need 
for this through its flexible rules and micro-services 
allowing operations to be performed at the data server.  

Event-driven Data Management   
Distributed data management is normally viewed as a set 
of operations (such as get, put, remove, etc) that are 
performed on datasets residing at remote sites. In iRODS, 
we took a different approach and viewed the operations as 
occurring within a distributed event-based system. Our 
view takes the following principles in defining the 
operations that are performed by a data grid: 
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1. an operation is a  triggering event that   can result 
in different  actions based on the context in which 
the event occurs. 

2. An event triggers a sequence of actions and can 
trigger additonal events. 

3. Events are coded as ECA-type rules (called 
iRODS rules) that use a guard condition “C” to 
check the context for application.  . The actions  
“A” are called micro-services (in the current 
proto-type they are  C-language functions)   that 
have well-defined semantics attributed to them. In 
particular, they provide an external semantics 
based on the side-effects they cause in the outside 
world as well as in state information changes 
within the iCAT persistent database. 

4. Departing from normal ECA semantics, only one 
iRODS rule per event can succeed. The rules are 
prioritized and applied in a specified order and the 
rule invocation completes when an ECA rule 
succeeds. (if needed, there is  syntax sugar in the 
language which all allows application of all rules) 

5. Extending ECA semantics, an iRODS rule is 
transactional in nature: it leaves the distributed 
system in the samestate as before if the action 
sequence fails at any part. This is necessary to 
make sure that the data grid is not left in an 
unstable state. To enable this transactional nature, 
every micro-service used in a rule is associated 
with a recovery micro-service.  Most of the side-
effects can be rolled back except for a few 
external effects that will be discussed later. With 
this, we have an extended ECAR type of rule (R 
standing for recovery). In relational databases 
transactional properties are handled with commits 
and rollbacks, even extending them into triggers. 
But in the case of a data grid, because of the 
complexity of operations involved, and the 
diversity of the side effects, explicit recovery is 
needed.  

6. An event can trigger sub-events (also encoded as 
iRODS rules) and hence one can look at the 
operational semantics as a hierarchical event tree. 

7. Operationally the sub-events and actions can 
happen serially, in parallel, in a distributed 
execution environment and/or in a time-delayed 
mode. 

8. Micro-services can communicate with each other  
in multiple ways: 

a. Using parameter passing 
b. Using a white-board which holds the 

local execution context. The white board 
can be ported or checkpointed for 
execution by a remote micro-service or 
for delayed execution. 

c. Using the global status and contextual 
information stored in the persistent iCAT 
database. 

d. Using a messaging system to transmit 
serialized messages. This way dataflow 
and workflow operational characteristics 
can be applied.  

9. The set of iRODS rules that are applied is 
normally fixed for each session for a user 
connection to the iRODS system. But flexibility is 
built into the system that can allow different sets 
of rules to be used for different users and groups. 
Hence a data grid can apply one set of rules for 
the seismic community and another set for the 
astronomy community. 

 
With the above principles in mind, we defined a rule 
system with rules of the form: 
    A :- C | M1, …, Mn | R1, …, Rn 
where A is the name triggering event, 
           C is the guard condition for the rule to fire 
           Mi  is a micro-service or a rule, and 
           Ri is a recovery micro-service. 
The checking of the guard condition may not change the 
state of the system, but only evaluate the context as defined 
by the white-board, parameters and results of iCAT 
database queries. When more than one rule is defined for 
an event, the rules are tried in a pre-defined priority order.  
The first rule whose guard condition succeeds is applied 
and its sequence of micro-services/sub-events is executed. 
If any of the micro-services fail, the recovery micro-
services are executed.  Then, the rest of the rules are 
checked for applicability repeating the process.  
 
As an example, consider an ingestion event, where a new 
dataset is being uploaded into the iRODS data grid. There 
is a sequence of actions that need to be performed for the 
data to be store in the grid. First, the user’s permission for 
performing the action in the data collection needs to be 
checked, then the users permission to store the file in a 
particular physical location is checked, then depending 
upon the type and size of the file, a data movement 
protocol is selected (to do the move in paralllel, in multiple 
hops by staging , etc). and then finally the dataset is stored 
into the system. Then the information about this new 
addition is entered into the iCAT database with 
information about its physical location, its logical name, 
ownership, size, type, etc. Moreover, if other events are 
triggered by this ingestion (such as extraction of metadata, 
replication of the data into other distributed resources, or 
performance of some transform or integrity check) these 
events can lead to more rules being fired and actions taken 
therewith. We show below a simpler (example rule) that 
can be used for such an ingestion event where contextual 
information plays a role. In this case, the context is based 
on either a user group or because of the type of data  being 
ingested. [Many of the details of the parameters are not 
shown for clarity purposes. In each of the rules, the first 
defines the event and the guard condition, the second line 
shows the action sequence and the third the recovery action 
sequence.] 
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(a) OnIngest :- userGroup == astro  

  | findResource, storeFile, registerInIcat, replicateFile    
  | nop, removeFile, rollback, unReplicate. 

(b)   OnIngest :- userGroup == seismic  &&  size > 1GB 
         | findTapeResource, storeFile,  registerInIcat, seisEv1   
         | nop, removeFile, rollback. 
(c)   OnIngest :- userGroup == seismic  &&  size <= 1GB 
         | findTinyResource, storeFile,  registerInIcat, seisEv2 
         | nop, removeFile, rollback. 
 
Rule (a) is applied for users within user group “astro”.  
When a file is put into the data grid, a storage resource is 
selected, the file is stored, the state information is 
registered into the iCAT catalog, and the file is replicated.  
Note that this can be a sequence of images from a 
telescope that is being ingested. 
 
Rule (b) is applied for users within user group “seismic” 
for file sizes greater than 1 Gigabyte.  When a file is put 
into the data grid, a tape storage system is selected, the file 
is stored, the state information is registered into the iCAT 
catalog, and an additional micro-service called “seisEv1” is 
executed.  This might trigger a delayed or asynchronous 
action on the newly ingested file such as extraction of 
metadata, searching for some seismic markers, etc.   The 
input may consist of a stream of packets from a sensor 
network.  
 
Rule (c ) is also applied for users within user group 
“seismic”, but for files smaller than 1 Gigabyte.  When a 
file is put into the data grid, a “small” storage system is 
selected, the file is stored, the state information is 
registered into the iCAT catalog, and an additional micro-
service called “seisEv2” is executed. 
 
One might define another event as shown below which is 
triggered after ingestion of an image to extract astronomy 
metadata using a template called “astroTemplate”.  The 
descriptive metadata is loaded as attributes for the image 
and stored in the iCAT catalog for subsequent query and 
discovery operations.  
  
(d) OnNewFile :- Collection == astroColl  

  | extractMetadata  (astroTemplate,M), ingestICat(M). 
  | nop, rollback. 

(e) OnNewFile :- Collection == astroColl  
  | sendEmail(astroCollOwner) 

 
In the above case, when a new file is registered into the 
iCat, the OnNewFile event triggers application of the rules 
(d). If (d) fails for some reasons, then (e) fires and an email 
is sent to the collection owner about the failure. 
 
 
The triggering events in iRODS can be either user 
generated (ingest a single file or a collection of files), or 
dynamically generated from the iCat database (periodically 

perform replication checks or integrity checks), or queued 
events in the messaging system (workflow operations on a 
file based on flagged status messages).  The iRODS system 
has many rules coded for firing based on different types of 
events. These rules range from events of the data life-cycle 
such as ingest, remove, copy, move, replicate, trim, 
archive, synchronize, modify, change access permission, 
relocate, stage, purge, etc. They can also involve events 
that are associated with a single dataset or a collection such 
as extract metadata, resize or change resolution of an 
image, transform a document (eg., Word to pdf), snapshot 
a table, etc.  They can also involve events in data grid 
administration such as adding, and removing users, 
modifying  user profile,  creating a new resource, removing 
an existing resource, migrating files from one resource to 
another, backing up a resource, etc. . In a full-fledged data 
grid system such as the SRB there were more than one 
hundred such operational events that were identified.  They 
were initiated by specific commands that a user or 
administrator could execute in the SRB system. 

Micro-Services and iRODS Rules 
Micro-services are the building blocks of the iRODS 
system. They can be viewed as defining the Action part in 
an ECA-type rule. As described above, micro-services 
communicate with each other and with the process 
environment using four different communication models.  
The semantics of a micro-service can be captured based on 
the change-semantics that it encodes. The semantics of 
micro-services are based on three types of properties that 
hold before and after the execution of a micro-service: 
  

1) A micro-service can modify the value of variables 
and structures  in the white board it shares in the 
execution environment with other micro-services.  

2) A micro-services can insert, delete or update the 
values in the tables in the iCAT database.  

3) A micro-service can have side-effects outside the 
iRODS system (eg. creation of a new file in a file 
system). 

 
The white board is shared only during that particular rule 
execution. Note that a rule can fire other rules in a 
hierarchical fashion.  The white board can be shared across 
two sequential rule invocations provided the data grid 
“uses” the same white-board for the second rule. The white 
board can be packed and passed to remote  servers for use 
in their micro-service execution. Serializability of the 
hierarchical execution of micro-services is an important 
criteria  needed for establishing the semantics of  the 
distributed execution environment. We denote the status of 
the white board using the symbol $ (dollar). 

 
The iCAT is a persistent database, hence any changes 
made to it  are seen not only by other micro-services in the 
current rule execution, but also by other rules excuted 
locally or remotely, and by  rules and micro-services 
executed at a later time period. We rely on the relational 
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database transactional properties for maintaining the 
stability   and recoverability of the iRODS operations. We 
denote the status of the iCAT database using the symbol % 
(percent). 
 
The side-effects that result from a micro-service execution 
can be recoverable for the most part. A newly created file 
can be deleted, a change made to an external database can 
be deleted or rolled back, a change made to a file can be 
recovered when replicas of the file are available. A 
message sent through the iRODS messaging system can be 
rolled back by sending an appropriate counter message that 
rolls back the operation initiated by the original message. 
But there are some side-effects that are not recoverable. 
For example, if a micro-service sends an email to a user, 
even though it is possible to send another email to ignore 
the previous email, the recoverability is not as clean as one 
would want. Other side-effects such as remove the only 
copy of a file may not be recoverable at all.  We denote the 
side effects using the symbol # (hash sign).  
 
The side effects are defined by an ontology which we are 
developing to succinctly describe the changes that are 
made. Some of the elements of this ontology is shown 
below: 
   create_new_file(filename, pathname, resource). 
   send_email (from, to, subject, body). 
   replicate_file(filename, newpath, newresource). 
   compute_checksum(filename, checksum). 
The side effects elements are similar to the atoms in first-
order logic. In order to provide transactional capabilities, 
we have added a few  system-centric elements:        
    begin_side_effect_transaction 
    end_side_effect_transaction 
    commit_side_effect_transaction 
    rollback_side_effect_transaction 
 
These are similar to that used in relational databases to 
help in defining concurrent transactions and their 
semantics.  
 
The semantics of a micro-service is defined by a change 
semantics: 
 
   MS:  {$, %, #} micro-service {$’,%’, #’}, 
 
where $, % and # denote the semantic status before the 
execution of the micro-service and  $’, %’ and  #’ denote 
the status after the execution. Note that by capturing the 
change semantics as such, we define the semantics of the 
micro-service independent of the communications that 
happens through the micro-service. The semantics of a rule 
can be easily established as a composition of the semantics 
of the micro-services. But, as mentioned earlier, the white-
board is pertinent only for actions within a rule invocation 
and hence the semantics of a rule is defined only in terms 
of the iCAT database changes and the side effects ignoring 
the change made to the white board. 

 
    RS:  {%, #}  rule  {%’, #’}  
 
The Event semantics of an event is defined by the rule 
semantics of the rules. Since only one rule is applicable as 
per the policy  of the iRODS system, one can define the 
event semantics as follows: 
 
    ES:  {%, #}  Event  {%’, #’},  where 
 
    ES =  RS1 + RS2+ … + RSn 
 
RSi is the semantic of the ith rule which is defined for the 
Event. Notationally “+” denotes the exclusive-OR of the 
semantics but operationally it is applied left-to-right. The 
disjunctive nature of the above equation makes it quite 
complex to study the consistency of such a system and is 
an area of research. Applying logic programming methods 
[Lloyd 19877] and stable model semantics [Gelfond 1988] 
for disjunctive logic programs one can study such a 
semantics. We also build upon  some of the work done in 
reasoning with policy description language [Lobo 1999, 
Son 2001]. We do not explore this further in this paper. 

Conclusion   
Traditionally data management systems are not viewed as 
an event processing system. In our experience with the 
implementation and deployment of the Storage Resource 
Broker (SRB) and its use in large-scale production 
environment for more than 10 years in multiple disciplines 
(neuroscience, astronomy, seismology, cosmology, real-
time sensor systems, and high-energy physics), we have 
started to characterize the complex event handling that is 
being done during the life-cycle management of the data. 
This has led us to the design and development of the 
integrated Rule-Oriented Data Systems (iRODS) that 
captures the policies needed for handling such events. 
Moreover, our diverse user community has their own 
requirements for data management.  This led us to realize 
that a declarative rule-oriented environment that not only 
allows explicit declaration of policies for actions to be 
performed but also provides “programmability” for the 
user communities is a necessity.  
 
In this paper, we have put forth the idea that data life-cycle 
management can be viewed as complex and concurrent 
event  processing.  With iRODS, we have shown that such 
a system is viable and useful.  
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