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Abstract 
A system that seeks to build a semantically coherent 
representation from multiple texts requires (at least) three 
things: a representation language that is sufficiently 
expressive to capture the information conveyed by the text; 
a natural language engine that can interpret text and 
generate semantic representations in that language with 
reasonable reliability; and a knowledge integration 
capability that can integrate information from different texts 
and from background knowledge into a coherent whole. In 
this paper we present a case study of these requirements for 
interpreting four different paragraphs of text (from different 
sources), each describing how a two-stroke combustion 
engine behaves. We identify the challenges involved in 
meeting these requirements and how they might be 
addressed. One key feature that emerges is the need for 
extensive background knowledge to guide the interpretation, 
disambiguate, and fill in gaps. The resulting contribution of 
this paper is a deeper understanding of the overall machine 
reading task. 

Introduction 
Our vision of a machine reading system is one which can 
process text so as to be able to answer questions concerning 
the text's subject matter in a coherent way, including about 
facts implied by but not explicitly stated in the text. Our 
assumption is that such a system will need to form a 
coherent, "deep" representation of the text's content in 
order to do this (as opposed to question-answering using 
shallow information retrieval methods). Despite its appeal, 
the challenges of building such a system remain 
formidable: Corpus-based techniques for knowledge 
extraction, e.g., (Schubert 2002, Banko and Etzioni, 2007), 
tend to accumulate noisy fragments of knowledge of rather 
restricted types rather than an integrated, coherent model of 
a text's subject matter, while full ("deep") semantic 
processing of text typically produces output containing 
numerous errors (Bos, 2008). Despite this, we believe 
machine reading is still an achievable goal: an obvious way 
forward is to have the machine read multiple texts about the 
same topic and then integrate the results together, using 
redundancy to identify the reliable portions of the 
interpretations and discard the unreliable portions. Our goal 
in this paper is to explore this hypothesis and the 
requirements for it through a case study. 

To do this, we performed a manual analysis of the machine 
reading task for four paragraphs of text, shown in the 
appendix of this paper, describing the behavior of two-

stroke engines, i.e., of the task of interpreting the individual 
texts and then integrating the separate representations 
together. We first ran each text through Boeing's Language 
Understanding Engine (BLUE) (Clark and Harrison, 2008), 
and then analyzed issues which arose in the individual 
interpretations, and what it would take to then integrate 
those interpretations together. This paper presents this 
analysis, which is largely a thought experiment on the 
machine reading task, with particular emphasis on the 
integration step. The resulting contribution of this paper is a 
deeper understanding of the requirements for machine 
reading, and a sketch of a possible future implementation. 

The four texts were taken from the 2007 intermediate 
evaluation of the Mobius NLP system, following its earlier 
application for processing texts about a different topic (the 
human heart) (Barker et al, 2007). The texts themselves 
came from Web pages about two-stroke engines, and were 
slightly simplified for the Mobius project. Even in the 
simplified form, they still present formidable challenges for 
representation, interpretation, and integration. 

To generate the interpretations of each paragraph, BLUE 
converts sentences into a set of Skolemized, ground first-
order logic assertions, performing simple word sense 
disambiguation, semantic role labeling, coreference 
resolution, and structural transformation. Further details are 
given in (Clark and Harrison, 2008). For example, the 
interpretation of sentence 11 in the appendix is: 

;;; 11. "Igniting the mixture causes an explosion" 
 isa(mixture01,mixture#n1), 
 isa(ignite01,light#v4), 
 isa(explosion01,explosion#n1), 
 object(ignite01,mixture01), 
 causes(ignite01,explosion01). 

where mixture01 (etc) are Skolem individuals and 
mixture#n1 (etc) are WordNet word senses. 

Then, looking at BLUE's interpretations of the four 
paragraphs, we analyzed challenges that arose in three 
areas: (I) knowledge representation, (II) language 
interpretation of the individual paragraphs, and (III) 
knowledge integration of the individual paragraph 
interpretations into a coherent whole. The knowledge 
integration step was performed manually, as we do not yet 
have an implementation. A goal in the analysis was to 
identify the tasks involved in this step and the requirements 
for a future implementation. 
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Analysis

Part I: Knowledge Representation 
1. Representation Language Requirements  
 (a) Representing Quantification 

Like many "how things work" texts, our four paragraphs 
each describe a "typical" two-stroke engine, which BLUE 
translates to a set of Skolemized ground assertions about 
that "typical" engine. To "raise" these assertions to be about 
all two-stroke engines, BLUE then adds universal 
quantification over the Skolem variable denoting the topic 
of the paragraph (i.e., the two-stroke engine Skolem), and 
existentially quantifies over all other Skolem variables 
(denoting the piston, the cylinder, etc.). One can view the 
set of assertions as describing a prototypical two-stroke 
engine, in that the properties described are true for all two-
stroke engines. This prototype-style representation has been 
used in other NLP systems also (e.g., Barker et al, 2007). 

While this approach works works well (including for our 
four paragraphs), it breaks down for sentences which 
quantify over individuals other than the paragraph topic, 
and for sentences with more complex quantification 
patterns, i.e., that do more than relate specific individuals 
together. Examples of quantifying over non-topic 
individuals are: most generic sentences (e.g., "Burning oil 
produces pollution"), statements which generalize beyond 
the paragraph topic (e.g., "The spark plug contains an 
electrode" refers to spark plugs in general, not just spark 
plugs of two-stroke engines), and when the author 
discusses two topics together (e.g., "The two-stroke engine 
is simpler than the four-stroke engine."). To handle these, 
the system would need to treat the text as describing several 
different prototypes (rather than just one about the 
paragraph topic), and decide which sentence contributes to 
which prototype. 

An example of a sentence with a more complex 
quantification pattern in our four texts is: 

4. The two-stroke engine has one power stroke for every 
revolution of the crankshaft. 

BLUE is currently unable to represent the semantics of this 
sentence, as it does not fit into a simple prototype 
(forall...exists...) quantification pattern. A fully capable 
machine reading system would need to address all these 
representational challenges. 

(b) Representing Change 

In any process, objects can change their location or other 
relationships to other objects.  For example, in our texts the 
piston keeps moving and the resulting interpretation 
produces contradictory statements about the piston’s 
location.  Similarly, the fresh mixture of fuel and air is first 
moved into the crankcase region of the cylinder and later 
into the combustion chamber of the cylinder, e.g.,: 

23. The vacuum in the crankcase sucks a fresh mixture 
of air-fuel-oil into the cylinder.   

The representation and reasoning system must be able to 
correctly handle these changes of state that occur 
throughout the process, requiring additional 
representational machinery besides a static graph (set of 
assertions) about objects and their relationships, e.g., using 
situation calculus or event calculus. In addition, for 
sentence 23, the property of being "fresh" is a fluent, and 
will change once the mixture is ignited. BLUE is currently 
not able to represent change; again, a fully capable machine 
reading system would need to address this challenge.  

(c) Representing second-order assertions 

While most of the text can be expressed as first-order logic 
assertions, statements about purpose, goals, and 
justifications express relationships between propositions, 
requiring additional representational machinery. For 
example: 

7. Two-stroke engines can operate in any orientation 
because the lubrication is in the cylinder. 

Here the text is essentially presenting part of an argument 
or proof (alternatively, it could be considered an if-then 
rule), requiring second-order machinery. BLUE has a 
limited ability to represent second-order expressions (by 
placing propositions as arguments to propositions), but is 
not able to manipulate them in any sensible fashion, again a 
challenge for a full machine reading system. 

2. Ontology Requirements 
BLUE uses WordNet as its ontology of concepts, and the 
University of Texas (UT)'s slot dictionary1 as its ontology 
of semantic relations (predicates). While these are 
reasonable starting points, they are not the complete story 
for machine reading. Although WordNet has vast coverage 
and extensive word-to-concept knowledge, it also has 
several well-known problems, in particular: sometimes 
sense distinctions are hard even for a human to discern 
(inter-annotator agreement for human taggers can be low); 
the hypernym tree does not always encode a subsumption 
relation (Kaplan and Schubert, 2001); and it has limited 
additional world knowledge besides the hypernym and 
part-of hierarchies. In addition, a machine reading system 
needs to be able to expand the ontology it is using to add 
new domain-specific concepts, including multiword 
concepts (e.g., for "reed valve", or "two-stroke engine") 
and concepts not already in WordNet (e.g., "biodiesel"). 

The choice of semantic relation vocabulary is also a 
difficult one. Typically, either the relational vocabulary is 
very big (making selection of the right semantic relation 
hard), or the relations are heavily overloaded to mean 
different things in different contexts (making their 

                                                 
1  http://www.cs.utexas.edu/users/mfkb/RKF/tree/compon-
ents/specs/slotdictionary.html 
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semantics unclear). UT's slot dictionary is between these 
two extremes, providing a working vocabulary of about 
100 relations. This vocabulary was generally adequate, 
although in several cases shoehorning a relationship into 
this vocabulary seems to lose information (e.g., the 
prepositions in "through the pipe", "along the road", "under 
the bridge" all seem to map to the semantic role "path", 
apparently losing distinctions suggested by the different 
prepositions), and in some cases the appropriate semantic 
relation is unclear (e.g., what is the appropriate relation 
between "power" and "stroke" in "power stroke"?). Again, 
a good relational vocabulary is an important requirement 
for a machine reading system. 

Part II: Language Interpretation 
1. Explicit Knowledge: Basic Language Processing 

As is well known, the basic task of language interpretation 
-  here, synthesizing Skolemized logic assertions from text - 
is formidable due to the many sources of ambiguity in 
language, the many ways an idea can be expressed, and the 
imprecision and incompleteness of normal human 
communication. Common language interpretation 
challenges include: structural ambiguity (e.g., prepositional 
phrase attachment), word sense disambiguation, semantic 
role labeling, coordination, reference and anaphora 
resolution, generics and quantification, time, plurals and 
collectives, comparatives, implicit arguments, proper 
names, negation, modals, and pragmatics and discourse 
structure. As these have been extensively discussed in the 
NLP literature, we only highlight some interesting 
examples which arose in our texts below. 

5. The power stroke starts when the spark plug emits a 
spark.   

An interesting word sense disambiguation challenge here is 
whether the "spark" is an object or an event; one could 
argue that a spark (like an arc or a lightening bolt) is not a 
physical object in the normal sense, but rather is a short 
process (event). Also in this sentence, we would want to 
interpret "starts" as a temporal relation, rather than (as 
BLUE does) a verb. 

6. Two-stroke oil is mixed with fuel to provide lubrication.   
7. ...the lubrication is in the cylinder... 

Sentence 6 presents another interesting word sense 
disambiguation challenge as to whether "lubrication" is a 
substance or a lubricating event. Treating it as an event 
may seem slightly more natural, but then sentence 7 treats 
lubrication as a substance (a mixture consisting of the oil 
and the fuel). One could argue that "lubrication" in 6 
should therefore also be a substance; or alternatively if it is 
an event there then the text has violated the "one sense per 
text" assumption that is commonly made in word sense 
disambiguation. Again, an automated system would need to 
unravel these difficult choices. 

9. At the begining of the combustion stroke,.... 

In this sentence, the fronted prepositional phrase needs to 
be recognized as a relative temporal reference rather than 
about a "beginning" object. 

13. The piston compresses the mixture in the crankcase 
as it moves down. 

In 13, resolving the anaphoric referent for “it” is 
challenging, as the commonly used default rule of "it = the 
most recent noun" does not work in this case. Instead, 
domain knowledge or knowledge from elsewhere in the 
text is required to realize that the piston is the thing which 
is moving. 

23. The vacuum in the crankcase sucks a fresh mixture 
of air-fuel-oil into the cylinder. 

BLUE interprets "air-fuel-oil" as a single token, thus losing 
information that the mixture is a combination of air, fuel, 
and oil. 

31. The crankcase is the part of the cylinder on the other 
side of the piston. 

Sentence 31 has attachment ambiguity: is it the crankcase 
(correct) or the cylinder (incorrect) that is on the other side 
of the piston? (BLUE got this wrong). Knowledge that the 
the piston is in the cylinder, and thus the cylinder cannot be 
on the other side of the piston, could help resolve this. 

35. The sides of the piston act like valves. 

This sentence is a vague and complex reference to the fact 
that the piston covers and uncovers different holes (ports) 
as it moves, allowing gas to move in and out of the 
cylinder. If we generate a naive, literal interpretation of the 
text, then what semantic relation does "like" refer to? 
(BLUE just defaults to "related-to"). 

2. Implicit Knowledge: Pragmatics 
One might expect that at least the basic knowledge about a 
two-stroke engine, e.g., its parts or behavioral event 
sequence, are stated often and explicitly. In fact, this 
knowledge is rarely stated explicitly: the engine’s parts are 
mentioned but rarely declared explicitly as parts of the 
engine; events are stated but rarely declared explicitly as 
part of the engine's behavior, and their ordering is rarely 
made explicit. Rather, the authors are relying both on 
pragmatic knowledge (e.g., assume physical objects are 
part of the entity being described) and background 
knowledge (e.g., the reader already knows that pistons are 
engine components) to convey information. 

(a) Part-Of Relations 

As part-of relations are rarely stated explicitly, we assumed 
in our analysis that each solid object mentioned was a part 
of the two-stroke engine. (Background knowledge is 
needed to identify whether an object is solid or fluid). The 
fluids, however, are not assumed to be parts of the engine. 
Using this heuristic rule, parts such as the cylinder, piston, 
and spark plug are identified as parts of the engine. 
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Sometimes this assumption does not always hold, or is at 
least questionable. For example, 

24. The air-fuel-oil mixture is sucked from the 
carburetor.  

suggests the carburetor is part of the engine, although this 
is arguable. More generally, less focused texts can easily 
mention other objects e.g., the car chassis or the driver, 
which should not be treated as part of the engine. Clearly 
more sophisticated heuristics for capturing this pragmatic 
knowledge are needed. 

(b) Event Sequences and Temporal Relations 

A key issue for these "how things work" texts is how to 
deduce the sequential and temporal relations among the 
events within a sentence and across adjacent sentences. 
Often such relations are vaguely stated or unstated (again 
relying on pragmatics to recover them). For example, in: 

8. A two-stroke engine's combustion stroke occurs when 
the spark plug fires.  

what are the semantics of "occurs when"? The most we can 
say from a naive reading of the English is that there is some 
temporal overlap between the combustion stroke and the 
firing.  But from common sense about engines, we know 
that the firing of the spark plug is a short event, and from 
pragmatics we know the text is generally describing sub-
events of the combusion stroke, and thus the likely intended 
relation is a "starts-when" connection. 

More commonly, the temporal order is simply not stated: 

29. Igniting the mixture creates energy.   
30. The combustion chamber captures the energy.   

In general, pragmatics suggests that the author will describe 
events in order, and so the system can assume the capturing 
follows the igniting. This heuristic regarding consecutive 
sentences works well in general, but there are exceptions 
that have to be handled too.  

(c) Causal Relations 

Besides temporal relations between events, there may also 
be causal relations. For example: 

12. The explosion forces the piston down.  

Here "force" can be considered a causal relation between 
the exploding and the (unstated) moving event (an NLP 
engine would need to fill in this missing element). More 
generally, however, the causal links between events are 
unstated and would need to be inserted using background 
knowledge. For example: 

10. This mixture ignites when the spark plug generates a 
spark. 

implies a causal relation, although only a temporal relation 
is stated. Again, commonsense knowledge that sparks can 
trigger explosions is needed to fill in this connection. A 
possible source of such knowledge might be from work by 

Schubert (2002), whereby commonsense statements of 
possibility (e.g., "airplanes can fly", "people can eat food") 
are extracted automatically from text. 

In general, in an artifact each part is there for a reason, and 
there is a purposeful rationale for the events in its behavior 
(the spark plug emits a spark in order to ignite the gas; the 
gas is ignited in order to create pressure; etc.). Understand-
ing this rationale (teleology) is critical to understanding the 
artifact, however it is rarely stated explicitly, and requires 
pragmatic knowledge about the structure of the text and 
background knowledge to recover it. 

Part III: Knowledge Integration 
Aligning Texts 
Perhaps the most important task for machine reading is 
knowledge integration: combining information from 
different texts and from background knowledge to form a 
coherent whole. Given that interpretations for individual 
paragraphs are likely to be incomplete and erroneous in 
many places, exploiting redundancy and background 
knowledge is key to removing errors, filling in gaps, and 
reinforcing correct statements. Using our Skolemized 
predicate representation, this process can be visualized as a 
sophisticated graph integration (and editing) operation, 
where the four graphs denoting the interpretations of the 
four texts are combined. While we have not implemented 
this operation, we here analyze what it involves in the 
context of our four texts.  

In the rest of this section we use graphs to show the 
structure of the NL interpretations and how they can be 
combined. For presentation purposes, instances (nodes) in 
the graphs have abbreviated names (e.g., Co = "compress"), 
and relations (arcs) are not named. The full names should 
be fairly clear (in most cases) from the quoted source texts. 

A basic operation for integrating representations is to 
identify and unify (equate) coreferential individuals in the 
different texts' interpretations. For example, the piston in 
each of the four representations might be assumed to 
denote the same piston, and hence the Skolems denoting 
them unified (equated). However, care must be taken as 
sometimes there are multiple objects of the same type in a 
text (e.g., multiple "pieces" of mixture, multiple compress 
events), and so matching must also take into account the 
relations that each individual participates in. In addition, 
world knowledge is often needed to relate one 
representational fragment from one text with another 
fragment from another, e.g., when one fragment implies 
another, or is logically equivalent to the other. Below we 
provide some examples of these issues in these texts and 
discuss the issues involved in implementing them. 

As a first example, text 2 and text 3 both describe the 
compression of the air-fuel mixture: 

9. ...the mixture of fuel and air in the cylinder has been 
compressed. 
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21. The piston compresses the air-fuel mixture in the 
combustion chamber. 

In this case alignment is relatively straightforward, but with 
two complications. First, the location of the mixture is 
described at different levels of granularity (in the cylinder 
(9), vs. in the combustion chamber (21)). If the system had 
knowledge that the combustion chamber is part of the 
cylinder, it could align these two nodes, retaining the most 
specific one (combustion chamber). Such knowledge might 
come from background knowledge, or from other texts. In 
this case, text 4 states this piece of knowledge in sentence 
28. Alternatively, the system could hypothesize a part-
subpart relation given this alignment. Second, the system 
needs to realize that "the mixture of fuel and air" (9) is 
coreferential with "the air-fuel mixture" (21). Although it is 
reasonable for the system to assume this (as they are both 
mixtures and are related to the compressing event in the 
same way), our NLP system interpreted "air-fuel" as a 
single token, and thus the integrator would have difficulty 
realizing "air-fuel" and "fuel and air" were equivalent. 

As a second example, texts 2 and 4 both describe expulsion 
of the burnt gas: 

18. The mixture displaces the burned gases in the cylinder. 
39. Burnt mixture flows out of the cylinder... 

The integration here is not completely straightforward, 
because there are in fact two mixtures involved (one 
mixture displaces the other), and the "burnt mixture" in 
(39) is coreferential with "burned gases" not "the mixture" 
in (18). Thus naively assuming coreference based on same 
name/same concept would cause misalignment in this case. 
To achieve the correct alignment, the system would need to 
also match the property of being burnt. In addition, there is 
domain knowledge which can be used to reinforce this 
alignment, namely that: if a fluid is displaced from a 
container (e.g., the gases in 18), then it was inside the 
container and will flow out of the container (e.g., the 
mixture in 39). This piece of background knowledge would 
support the alignment of gases (18) and mixture (39), and 
also add a causal link that the displacement causes the 
flowing. 

A third example of alignment is between sentences 34 and 
38 (although these are both from text 4, they exhibit the 
same integration challenges as if they were from different 
texts). Both describe the piston moving the mixture: 

34. The piston moves mixture into the combustion 
chamber. 
38. ...the mixture to flow into the cylinder as the piston 
moves. 

The two moves here are different: the first is transitive and 
the second is intransitive. Again world knowledge can be 
used to identify the relationship between them and make 
the alignment, namely by using the rule IF X moves Y 
THEN (typically) X moves AND Y moves. In this case, as 
the piston moves the mixture, the piston moves (aligning 
with the move in 38) and the mixture moves (aligning with 
the flow in 38, given knowledge that a flow is a type of 
move), resulting in alignment. 

A fourth example is sentences 13 and 17 in text 2 
describing compression of the mixture in the crankcase: 

13. The piston compresses the mixture in the crankcase... 
17. The piston's movement pressurizes the mixture in the 
crankcase. 

Again, to align these, the system needs background 
knowledge of the relationship between compressing and 
pressurizing, i.e., that compressing a gas causes 
pressurizing of the gas.  

In addition to using simple background knowledge as 
illustrated above, a knowledge integration system would 
greatly benefit from having larger script-like expectations 
about stereotypical events in the world. These expectations 
would allow gaps in the textual knowledge to be filled in, 
and potentially allow errors in the textual knowledge (or its 
interpretation) to be corrected. For example, one general 
script relevant to two-stroke engines is "compressing a 
contained gas", which might be encoded as: 

A wall of the container is moved inwards, causing a 
decrease in volume of the gas, causing an increase in 
pressure of the gas.  

18



This script can be aligned with sentence 17: 

17. The piston's movement pressurizes the mixture in the 
crankcase. 

given additional knowledge that "pressurize" means "to 
increase in pressure", and that IF X causes Y AND Y 
causes Z THEN (typically) X causes Z: 

In the above, through graph matching the moving piston is 
aligned with the moving wall, pressurize is aligned with 
increasing pressure, and the mixture in the crankcase is 
aligned with the gas in the container. Given this alignment, 
we not only validate the interpretation's structure but we 
now have additional inferences available to us, e.g., the 
volume of the mixture is decreased; and the piston is one of 
the walls of the crankcase. Thus this is very powerful, but 
of course requires availability of a library of general scripts 
like this in the first place. 

Finally, as described earlier, each text produces an event 
sequence which needs to be aligned with the others. For 
example, text 2's sequence includes a compress (9), 
generate (10), ignite (11), and explode (11), and text 3's 
sequence includes a drive (move) (20), compress (21), suck 
(23), and at the end an implicit creation of a spark (26):  

In this case, the two compress events match 
straighforwardly, but the spark generation event (10) is 
only implicitly referred in text 3: 

26. The spark from the spark plug begins... 

Unfortunately text 3 does not explicitly say that the spark is 
generated, just that it is "from the spark plug," making 
alignment difficult. However, if the system had formalized 
background knowledge about spark plugs (their behavior is 
to create sparks, sparks are short-lived), it could infer that 
the existence of a spark from a spark plug implied the 
creation of that spark from the plug, hence creating a 
second alignment point between the two event sequences. 
In general, as two event sequences are merged, the system 
would need additional background knowledge to identify 
the correct alignments when there was ambiguity, e.g., 
A+B+C & A+D+C becomes A+B+D+C if B precedes or 
causes D, or becomes A+B+C if D is a subevent of B. 

To summarize, the tasks we have identified and used for 
knowledge integration are: 
� coreference identification (same name/type/relation to 

other instances) 
� “logical” transformations (e.g., in appropriate contexts: 

part and subpart, event and subevent, distant cause and 
immediate cause). Yeh et al. (2003) and Tatu (2007) 
have both compiled catalogs of such transformations. 

� inference rule application (e.g., compress gas � 
pressurize gas) 

� matching with scripts 

In addition, as integration is a search process, a metric for 
the "quality" of the integrated representation is needed to 
guide the search (e.g., degree to which the representation 
accounts for information in the individual texts; degree of 
consistency with background knowledge; internal 
consistency and completeness). 
Missing Knowledge 
Even with four paragraphs of text, there is still knowledge 
missing in the (hand-built) integrated representation. In 
some cases, the missing knowledge could be acquired by 
using more texts, or performing "targeted reading" to find a 
specific fact. In other cases, general knowledge can be used 
to fill in the gaps. Some examples are as follows: 

1. Where is the spark plug? Nothing in the texts say that 
it is spatially connected to anything. It is possible that 
another text may answer this question. (It is worth 
noting that "how things work" texts are often 
accompanied by diagrams that (we assume) are 
inaccessible to the computer, and so the computer is at 
a disadvantage working from texts alone). 

2. What causes the ignition? Although sentence 10 says: 

10. This mixture ignites when the spark plug 
generates a spark. 

the text does not say that the spark is the cause of the 
ignition, or that the spark is in contact with the 
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mixture. This is commonsense knowledge about gas 
explosions, which is less likely to be spelled out 
explicitly. If the computer had background knowledge 
of the "gas explosion" script (e.g., ignite � explode � 
pressurize � expand), this missing knowledge could 
be filled in. This would also help answer the earlier 
question of where the spark plug is: If the spark plug 
emits a spark (sentences 5,10), and the spark is in 
contact with the mixture (gas explosion script), then 
the plug is also (likely) in contact with the mixture. 

3. What happened to the fresh mixture after the 
explosion, and where did the burned gas appear from? 
Although we know the mixture becomes the burned 
gas, this is not stated in the text and from the 
computer's point of view the burned gas magically 
appears and the fresh mixture remains after the 
explosion. Again, background knowledge about 
explosions is needed to fill in this unstated detail. 

4. There is no mention of the passageway between the 
combustion chamber and the crankcase. Further texts 
could provide this. Again, the computer is handicapped 
without the ability to process diagrams. 

5. How do the intake and exhaust ports get covered and 
uncovered? In a two-stroke engine the moving piston 
covers and uncovers the ports, but the text only states: 

14. As the piston approaches the bottom of its 
stroke, the exhaust port is uncovered. 
16. As the piston reaches the bottom of the cylinder, 
the intake port is uncovered. 

These describe the time of the uncovering but not that 
the piston plays the role as the cover. Also, the event 
of covering the ports is not mentioned, although 
commonsense tells us that if they are uncovered, then 
they must have been covered previously. 

From these examples, it is clear that to construct a more 
complete model of a two-stroke engine, the system would 
need both more text (in particular for the spatial 
relationships) and more background knowledge (for some 
of the "obvious" unstated facts). In particular, basic 
knowledge/scripts about gas compression, gases exploding, 
fluid movement, and valves would be very helpful for 
filling in details and helping disambiguate the text. 
Incorrect and Conflicting Knowledge 
So far we have largely assumed correct and consistent text 
and its interpretation. However, in practice there will be 
errors in the interpretations, and a machine reading system 
will need to tolerate them. Sources of error include: 

1. Errors in language interpretation (e.g., wrong PP 
attachment). As discussed earlier, even with today's 
state-of-the-art NLP systems, there are frequently 
errors in the interpretations.  

2. Variants in the artifact being discussed. Not all two-
stroke engines are the same, for example a two-stroke 

engine in an ocean liner is quite different to one in a 
lawnmower. In addition, our four texts assume an 
orientation (that "up" is towards the combustion 
chamber), but other texts assume a different 
orientation. Given multiple texts, there may be genuine 
differences in the item being described, causing 
conflicts when trying to integrate the knowledge. For 
this reason, it is important to work with texts that are 
as homogeneous as possible. 

3. Different levels of sophistication, e.g., grade school vs 
college level descriptions. Related to the earlier point, 
authors may simplify to convey an idea, another 
potential source of conflicting knowledge. 

4. The author may simply make incorrect statements, e.g., 
through loose use of language or lack of 
understanding. For example, another text we looked at 
stated "The spark plug ignites a spark.", which 
conflicts with a normal understanding of ignition. 

For machine reading, it is thus critical to select texts that 
are as homogeneous as possible, and that use simple (rather 
than "flowery") language to ease NL interpretation. 
Homogeneity might be measured by overlap of words, or 
overlap of technical vocabulary, in the texts. Simplicity 
might be measured by sentence length, parse tree depth, 
prepositional phrase density, or some vocabulary measures.  

Sources of World Knowledge 
Throughout this paper we have cited the need for 
background knowledge. Where might this knowledge come 
from? Four potential sources are: 

1. Existing resources: e.g., WordNet, VerbNet, 
FrameNet, Cyc, The Component Library, OntoSem. 

2. Automatic acquisition from text: Numerous corpus-
based methods exist for acquiring knowledge from 
text, e.g., taxonomic knowledge, partonomic 
knowledge, paraphrases. 

3. Web volunteers: Although producing rather noisy data 
to date, there is significant potential in using 
communities of volunteers to acquire knowledge 
through on-line acquisition "games", e.g., OpenMind. 

4. Manual encoding: Although expensive, the task of 
manually encoding knowledge can be bounded by 
aiming just for general, highly reusable concepts rather 
than all world knowledge. 

Summary and Lessons Learned 
Although more experiments and analyses are needed, there 
are many interesting lessons that can be drawn from this 
exercise, in particular: 

1. Change needs to be represented and reasoned about. 
For "how things work" texts, it is important to 
represent and reason about change, and not just work 
with a static first-order logic representation. The 
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underlying representation produced by our language 
interpreter BLUE is inadequate in this regard. 

2. Implicit knowledge needs to be recovered. There is a 
surprisingly large amount of implicit knowledge in 
text. Some of this (e.g., engine parts, event ordering) 
requires heuristics about pragmatics and discourse to 
recover. Other parts require basic commonsense 
knowledge to fill in the "obvious" gaps. 

3. Four paragraphs is not enough. Even with perfect 
interpretation, the four paragraphs we are working with 
provide a rather incomplete description of the two-
stroke engine. Working with a larger set (e.g., 20-100 
texts) would provide more completeness, although also 
increase the integration challenges. 

4. Background knowledge plays a critical role. (This 
includes having a good starting ontology and semantic 
relation vocabulary). In our analysis, background 
knowledge was potentially useful for almost every 
disambiguation and integration decision being made. 

5. Knowledge integration is challenging. We have 
presented several examples of aligning and integrating 
interpretations, but further work is needed to distill this 
into a formal algorithm. 

Despite these challenges, the algorithmic nature of the steps 
discussed in knowledge integration is encouraging. We 
remain hopeful that the process can be automated, and that 
machine reading is an achievable goal in the near future. 
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Appendix: The Four Paragraphs 
TEXT 1 
1. Two-stroke engines are powerful devices. 
2. Two-stroke engines are also lightweight devices. 

3. Two-stroke engines are used for handheld devices that require a 
lot of power in a lightweight configuration. 
4. The two-stroke engine has one power stroke for every 
revolution of the crankshaft. 
5. The power stroke starts when the spark plug emits a spark. 
6. Two-stroke oil is mixed with fuel to provide lubrication. 
7. Two-stroke engines can operate in any orientation because the 
lubrication is in the cylinder with the fuel and the piston. 
TEXT 2 
8. A two-stroke engine's combustion stroke occurs when the spark 
plug fires. 
9. At the beginning of the combustion stroke, the mixture of fuel 
and air in the cylinder has been compressed. 
10. This mixture ignites when the spark plug generates a spark. 
11. Igniting the mixture causes an explosion. 
12. The explosion forces the piston down. 
13. The piston compresses the mixture in the crankcase as it 
moves down. 
14. As the piston approaches the bottom of its stroke, the exhaust 
port is uncovered. 
15. The pressure in the cylinder forces exhaust gases out of the 
cylinder. 
16. As the piston reaches the bottom of the cylinder, the intake 
port is uncovered. 
17. The piston's movement pressurizes the mixture in the 
crankcase. 
18. The mixture displaces the burned gases in the cylinder. 
TEXT 3 
19. In a two-stoke engine there is a compression stroke, followed 
by a combustion stroke. 
20. The compression stroke occurs when the crankshaft's 
momentum drives the piston up in the cylinder. 
21. The piston compresses the air-fuel mixture in the combustion 
chamber. 22. A vacuum is created in the crankcase. 
23. The vacuum in the crankcase sucks a fresh mixture of air-fuel-
oil into the cylinder. 
24. The air-fuel-oil mixture is sucked from the carburetor. 
25. There is a reed valve between the carburetor and the cylinder. 
26. The spark from the spark plug begins the combustion stroke 
when the piston reaches the top of the cylinder. 
TEXT 4 
27. In a two-stroke engine, one side of the piston is also a side of 
the combustion chamber. 
28. The combustion chamber is the part of the cylinder where the 
air-fuel mixture is compressed. 
29. Igniting the mixture creates energy. 
30. The combustion chamber captures the energy. 
31. The crankcase is the part of the cylinder on the other side of 
the piston. 32. The piston creates a vacuum in the crankcase. 
33. The vacuum sucks in mixture from the carburetor through the 
reed valve. 34. The piston moves mixture into the combustion 
chamber.  35. The sides of the piston act like valves. 
36. The cylinder has an exhaust port. 
37. The cylinder also has an intake port. 
38. The intake port allows mixture to flow into the cylinder as the 
piston moves. 
39. Burnt mixture flows out of the cylinder through the exhaust 
port. 
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